Modeling Model Misspecification in Structural Equation Models
Abstract
:1. Introduction
2. Estimating Structural Equation Models
3. Modeling Model Misspecification
3.1. Stochastic Model for Model Misspecification
3.2. Estimating the Variance Components in the Stochastic Model
3.3. Error in Model Parameters Due to Model Misspecification
3.4. Computing the Total Error
4. Analytical Illustrative Examples
4.1. Example 1: Misspecified Error Structure in Unidimensional Factor Analysis
4.2. Example 2: Misspecified Error Structure in Confirmatory Factor Analysis
4.3. Example 3: Measurement Noninvariance in Multiple-Group SEM
5. Numerical Illustrative Example: ESS 2005 Data
5.1. Method
5.2. Results
6. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CFA | confirmatory factor analysis |
DWLS | diagonally weighted least squares |
ESS | European Social Survey |
ME | misspecification error |
ML | maximum likelihood |
MVN | multivariate normal |
SE | standard error |
SEM | structural equation model |
TE | total error |
WLS | weighted least squares |
Appendix A. Motivation of the Stochastic Model (19) for Model Misspecification in Covariances
References
- Bartholomew, D.J.; Knott, M.; Moustaki, I. Latent Variable Models and Factor Analysis: A Unified Approach; Wiley: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Bollen, K.A. Structural Equations with Latent Variables; Wiley: New York, NY, USA, 1989. [Google Scholar] [CrossRef]
- Browne, M.W.; Arminger, G. Specification and Estimation of Mean-and Covariance-Structure Models. In Handbook of Statistical Modeling for the Social and Behavioral Sciences; Arminger, G., Clogg, C.C., Sobel, M.E., Eds.; Springer: Boston, MA, USA, 1995; pp. 185–249. [Google Scholar] [CrossRef]
- Jöreskog, K.G.; Olsson, U.H.; Wallentin, F.Y. Multivariate Analysis with LISREL; Springer: Basel, Switzerland, 2016. [Google Scholar] [CrossRef]
- Mulaik, S.A. Foundations of Factor Analysis; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Shapiro, A. Statistical Inference of Covariance Structures. In Current Topics in the Theory and Application of Latent Variable Models; Edwards, M.C., MacCallum, R.C., Eds.; Routledge: Abingdon-on-Thames, UK, 2012; pp. 222–240. [Google Scholar] [CrossRef]
- Yuan, K.H.; Bentler, P.M. Structural Equation Modeling. In Handbook of Statistics; Psychometrics; Rao, C.R., Sinharay, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 26, pp. 297–358. [Google Scholar] [CrossRef]
- Robitzsch, A. Comparing the robustness of the structural after measurement (SAM) approach to structural equation modeling (SEM) against local model misspecifications with alternative estimation approaches. Stats 2022, 5, 631–672. [Google Scholar] [CrossRef]
- Wu, H.; Browne, M.W. Quantifying adventitious error in a covariance structure as a random effect. Psychometrika 2015, 80, 571–600. [Google Scholar] [CrossRef] [Green Version]
- Wu, H. An Empirical Bayesian Approach to Misspecified Covariance Structures. Unpublished Thesis, Ohio State University, Columbus, OH, USA, 2010. Available online: https://bit.ly/3HGuLFT (accessed on 9 May 2023).
- Uanhoro, J.O. Modeling misspecification as a parameter in Bayesian structural equation models. Educ. Psychol. Meas. 2023. [Google Scholar] [CrossRef]
- Stefanski, L.A.; Boos, D.D. The calculus of M-estimation. Am. Stat. 2002, 56, 29–38. [Google Scholar] [CrossRef]
- Bollen, K.A.; Davis, W.R. Two rules of identification for structural equation models. Struct. Equ. Model. 2009, 16, 523–536. [Google Scholar] [CrossRef]
- Drton, M.; Foygel, R.; Sullivant, S. Global identifiability of linear structural equation models. Ann. Stat. 2011, 39, 865–886. [Google Scholar] [CrossRef] [Green Version]
- Meredith, W. Measurement invariance, factor analysis and factorial invariance. Psychometrika 1993, 58, 525–543. [Google Scholar] [CrossRef]
- Putnick, D.L.; Bornstein, M.H. Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. Dev. Rev. 2016, 41, 71–90. [Google Scholar] [CrossRef] [Green Version]
- Boos, D.D.; Stefanski, L.A. Essential Statistical Inference; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Gourieroux, C.; Monfort, A.; Trognon, A. Pseudo maximum likelihood methods: Theory. Econometrica 1984, 52, 681–700. [Google Scholar] [CrossRef] [Green Version]
- Kolenikov, S. Biases of parameter estimates in misspecified structural equation models. Sociol. Methodol. 2011, 41, 119–157. [Google Scholar] [CrossRef]
- White, H. Maximum likelihood estimation of misspecified models. Econometrica 1982, 50, 1–25. [Google Scholar] [CrossRef]
- Browne, M.W. Generalized least squares estimators in the analysis of covariance structures. S. Afr. Stat. J. 1974, 8, 1–24. Available online: https://bit.ly/3yviejm (accessed on 9 May 2023). [CrossRef]
- Savalei, V. Understanding robust corrections in structural equation modeling. Struct. Equ. Model. 2014, 21, 149–160. [Google Scholar] [CrossRef]
- MacCallum, R.C.; Browne, M.W.; Cai, L. Factor Analysis Models as Approximations. In Factor Analysis at 100; Cudeck, R., MacCallum, R.C., Eds.; Lawrence Erlbaum: Hillsdale, NJ, USA, 2007; pp. 153–175. [Google Scholar] [CrossRef]
- Held, L.; Sabanés Bové, D. Applied Statistical Inference; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Robitzsch, A. Model-robust estimation of multiple-group structural equation models. Algorithms 2023, 16, 210. [Google Scholar] [CrossRef]
- Ver Hoef, J.M. Who invented the delta method? Am. Stat. 2012, 66, 124–127. [Google Scholar] [CrossRef]
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Boker, S.; Neale, M.; Maes, H.; Wilde, M.; Spiegel, M.; Brick, T.; Spies, J.; Estabrook, R.; Kenny, S.; Bates, T.; et al. OpenMx: An open source extended structural equation modeling framework. Psychometrika 2011, 76, 306–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, J. Teacher’s corner: Structural equation modeling with the sem package in R. Struct. Equ. Model. 2006, 13, 465–486. [Google Scholar] [CrossRef] [Green Version]
- Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Searle, S.R.; Casella, G.; McCulloch, C.E. Variance Components; Wiley: New York, NY, USA, 1992. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Xu, G. DIF statistical inference and detection without knowing anchoring items. arXiv 2021, arXiv:2110.11112. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Liu, H. Testing differential item functioning without predefined anchor items using robust regression. J. Educ. Behav. Stat. 2022, 47, 666–692. [Google Scholar] [CrossRef]
- Funder, D.C.; Gardiner, G. MIsgivings about measurement invariance. PsyArXiv 2023. [Google Scholar] [CrossRef]
- Robitzsch, A. Estimation methods of the multiple-group one-dimensional factor model: Implied identification constraints in the violation of measurement invariance. Axioms 2022, 11, 119. [Google Scholar] [CrossRef]
- Robitzsch, A.; Lüdtke, O. Why full, partial, or approximate measurement invariance are not a prerequisite for meaningful and valid group comparisons. Struct. Equ. Model. 2023, 1–12. [Google Scholar] [CrossRef]
- Welzel, C.; Inglehart, R.F. Misconceptions of measurement equivalence: Time for a paradigm shift. Comp. Political Stud. 2016, 49, 1068–1094. [Google Scholar] [CrossRef]
- Monseur, C.; Berezner, A. The computation of equating errors in international surveys in education. J. Appl. Meas. 2007, 8, 323–335. [Google Scholar]
- Monseur, C.; Sibberns, H.; Hastedt, D. Linking errors in trend estimation for international surveys in education. IERI Monogr. Ser. 2008, 1, 113–122. [Google Scholar]
- Robitzsch, A.; Lüdtke, O. Linking errors in international large-scale assessments: Calculation of standard errors for trend estimation. Assess. Educ. 2019, 26, 444–465. [Google Scholar] [CrossRef]
- Robitzsch, A. Linking error in the 2PL model. J 2023, 6, 58–84. [Google Scholar] [CrossRef]
- Knoppen, D.; Saris, W. Do we have to combine values in the Schwartz’ human values scale? A comment on the Davidov studies. Surv. Res. Methods 2009, 3, 91–103. [Google Scholar] [CrossRef]
- Beierlein, C.; Davidov, E.; Schmidt, P.; Schwartz, S.H.; Rammstedt, B. Testing the discriminant validity of Schwartz’ portrait value questionnaire items—A replication and extension of Knoppen and Saris (2009). Surv. Res. Methods 2012, 6, 25–36. [Google Scholar] [CrossRef]
- Asparouhov, T.; Muthén, B. Multiple-group factor analysis alignment. Struct. Equ. Model. 2014, 21, 495–508. [Google Scholar] [CrossRef] [Green Version]
- Gifi, A. Nonlinear Multivariate Analysis; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Oberski, D.L. Evaluating sensitivity of parameters of interest to measurement invariance in latent variable models. Polit. Anal. 2014, 22, 45–60. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; The R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 15 March 2023).
- Robitzsch, A. sirt: Supplementary Item Response Theory Models; The R Foundation for Statistical Computing: Vienna, Austria, 2023; R package version 3.13-162; Available online: https://github.com/alexanderrobitzsch/sirt (accessed on 9 May 2023).
- Brennan, R.L. Generalizabilty Theory; Springer: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Cronbach, L.J.; Gleser, G.C.; Nanda, H.; Rajaratnam, N. The Dependability of Behavioral Measurements: Theory of Generalizability for Scores and Profiles; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Husek, T.R.; Sirotnik, K. Item Sampling in Educational Research; CSEIP Occasional Report No. 2; University of California: Los Angeles, CA, USA, 1967; Available online: https://bit.ly/3k47t1s (accessed on 8 May 2023).
- Hunter, J.E. Probabilistic foundations for coefficients of generalizability. Psychometrika 1968, 33, 1–18. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.P. Generalizability in factorable domains: “Domain validity and generalizability”. Educ. Psychol. Meas. 1978, 38, 75–79. [Google Scholar] [CrossRef]
- McDonald, R.P. Behavior domains in theory and in practice. Alta. J. Educ. Res. 2003, 49, 212–230. [Google Scholar]
- Robitzsch, A. Lp loss functions in invariance alignment and Haberman linking with few or many groups. Stats 2020, 3, 246–283. [Google Scholar] [CrossRef]
- Robitzsch, A. Robust and nonrobust linking of two groups for the Rasch model with balanced and unbalanced random DIF: A comparative simulation study and the simultaneous assessment of standard errors and linking errors with resampling techniques. Symmetry 2021, 13, 2198. [Google Scholar] [CrossRef]
- Steyer, R.; Sengewald, E.; Hahn, S. Some comments on Wu and Browne. Psychometrika 2015, 80, 608–610. [Google Scholar] [CrossRef]
Par | Est | SE | ME | JKME | TE |
---|---|---|---|---|---|
3.070 | 0.021 | 0.097 | - | 0.100 | |
2.698 | 0.017 | 0.094 | - | 0.095 | |
2.602 | 0.022 | 0.126 | - | 0.127 | |
2.678 | 0.019 | 0.101 | - | 0.103 | |
0.591 | 0.021 | 0.029 | - | 0.036 | |
0.567 | 0.021 | 0.029 | - | 0.036 | |
0.685 | 0.024 | 0.032 | - | 0.040 | |
0.556 | 0.018 | 0.029 | - | 0.034 | |
0 | - | - | - | - | |
0.062 | 0.046 | 0.226 | 0.329 | 0.231 | |
0.186 | 0.061 | 0.187 | 0.154 | 0.197 | |
0.326 | 0.052 | 0.205 | 0.339 | 0.212 | |
−0.421 | 0.031 | 0.220 | 0.206 | 0.223 | |
−0.109 | 0.055 | 0.214 | 0.188 | 0.221 | |
−0.012 | 0.049 | 0.215 | 0.141 | 0.220 | |
−0.504 | 0.042 | 0.239 | 0.236 | 0.243 | |
0.232 | 0.041 | 0.206 | 0.174 | 0.210 | |
−0.544 | 0.050 | 0.213 | 0.211 | 0.218 | |
1 | - | - | - | - | |
1.329 | 0.141 | 0.135 | 0.333 | 0.195 | |
1.132 | 0.097 | 0.118 | 0.183 | 0.153 | |
1.534 | 0.149 | 0.152 | 0.190 | 0.213 | |
1.363 | 0.100 | 0.123 | 0.307 | 0.158 | |
1.423 | 0.100 | 0.131 | 0.477 | 0.164 | |
2.164 | 0.172 | 0.154 | 0.434 | 0.231 | |
1.370 | 0.116 | 0.135 | 0.284 | 0.178 | |
1.142 | 0.086 | 0.105 | 0.308 | 0.136 | |
1.148 | 0.092 | 0.116 | 0.420 | 0.148 |
Country | Est | SE | ME | JKME | TE |
---|---|---|---|---|---|
Factor Means | |||||
1 | 0.065 | 0.024 | 0.124 | 0.102 | 0.127 |
2 | 0.117 | 0.023 | 0.134 | 0.166 | 0.136 |
3 | 0.220 | 0.030 | 0.113 | 0.074 | 0.117 |
4 | 0.336 | 0.029 | 0.116 | 0.156 | 0.119 |
5 | −0.285 | 0.025 | 0.106 | 0.215 | 0.109 |
6 | −0.026 | 0.031 | 0.118 | 0.209 | 0.122 |
7 | 0.056 | 0.030 | 0.110 | 0.026 | 0.114 |
8 | −0.354 | 0.025 | 0.127 | 0.135 | 0.130 |
9 | 0.258 | 0.022 | 0.135 | 0.136 | 0.137 |
10 | −0.387 | 0.023 | 0.130 | 0.108 | 0.132 |
Factor Variances | |||||
1 | 0.831 | 0.027 | 0.032 | 0.089 | 0.042 |
2 | 0.958 | 0.024 | 0.024 | 0.034 | 0.034 |
3 | 0.884 | 0.022 | 0.027 | 0.044 | 0.035 |
4 | 1.029 | 0.024 | 0.027 | 0.106 | 0.036 |
5 | 0.970 | 0.019 | 0.023 | 0.033 | 0.030 |
6 | 0.991 | 0.027 | 0.028 | 0.072 | 0.039 |
7 | 1.223 | 0.019 | 0.023 | 0.015 | 0.029 |
8 | 0.973 | 0.029 | 0.027 | 0.049 | 0.039 |
9 | 0.888 | 0.017 | 0.030 | 0.046 | 0.035 |
10 | 0.890 | 0.020 | 0.031 | 0.081 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robitzsch, A. Modeling Model Misspecification in Structural Equation Models. Stats 2023, 6, 689-705. https://doi.org/10.3390/stats6020044
Robitzsch A. Modeling Model Misspecification in Structural Equation Models. Stats. 2023; 6(2):689-705. https://doi.org/10.3390/stats6020044
Chicago/Turabian StyleRobitzsch, Alexander. 2023. "Modeling Model Misspecification in Structural Equation Models" Stats 6, no. 2: 689-705. https://doi.org/10.3390/stats6020044
APA StyleRobitzsch, A. (2023). Modeling Model Misspecification in Structural Equation Models. Stats, 6(2), 689-705. https://doi.org/10.3390/stats6020044