Regression Models for Lifetime Data: An Overview
Abstract
:1. Introduction
2. Accelerated Failure Time
3. Proportional Odds
4. Proportional Hazards
5. Proportional Reversed Hazards
6. Proportional Lifetimes
6.1. Proportional Mean Residual Life
6.2. Proportional Mean Past Lifetimes
6.3. Proportional Median Residual Lifetime
7. Accelerated Hazards
8. Additive Hazards
9. Some Relations between Models
10. First Hitting Time Regression
11. Other Multi-Parameter Regression Models
12. Discussion
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AFT | Accelerated Failure Time |
FHT | First Hitting Time |
MRL | Mean Residual Life |
PH | Proportional Hazards |
PO | Proportional Odds |
PRH | Proportional Reversed Hazards |
References
- Chapman, J.W.; O’Callaghan, C.J.; Hu, N.; Ding, K.; Yothers, G.A.; Catalano, P.J.; Shi, Q.; Gray, R.C.; O’Connell, M.J.; Sargent, D.J. Innovative estimation of survival using log-normal survival modelling on ACCENT database. Br. J. Cancer 2013, 108, 784–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royston, P. The lognormal distribution as a model for survival time in cancer, with an emphasis on prognostic factors. Stat. Neerl. 2001, 55, 89–104. [Google Scholar] [CrossRef]
- Bennett, S. Analysis of survival data by the proportional odds model. Stat. Med. 1983, 2, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S. Log-logistic regression models for survival data. Appl. Stat. 1983, 32, 165–171. [Google Scholar] [CrossRef]
- Lawless, J.F. A note on lifetime regression models. Biometrika 1986, 73, 509–512. [Google Scholar] [CrossRef]
- Collett, D. Modelling Survival Data in Medical Research, 3rd ed.; Chapman & Hall: Boca Raton, FL, USA, 2014. [Google Scholar]
- Cox, D.R. Regression models and life tables. J. R. Statist. Soc. B 1972, 34, 187–220. [Google Scholar] [CrossRef]
- Oakes, D. An introduction to survival models: In honor of Ross Prentice. Lifetime Data Anal. 2013, 19, 442–462. [Google Scholar] [CrossRef]
- Freedman, D.A. Survival analysis: A primer. Am. Stat. 2008, 62, 110–119. [Google Scholar] [CrossRef]
- Bagdanovicius, V.B.; Nikulin, M.S. Generalized proportional hazards model based on modified partial likelihood. Lifetime Data Anal. 1999, 5, 329–350. [Google Scholar] [CrossRef]
- Bagdanovicius, V.B.; Hafdi, M.A.; Himdi, K.E.; Nikulin, M. Statistical analysis of the generalized linear proportional hazards model. J. Math. Sci. 2005, 127, 1673–1681. [Google Scholar] [CrossRef]
- Gupta, R.C.; Gupta, R.D. Proportional reversed hazard rate model and its applications. J. Stat. Plan. Inf. 2007, 137, 3525–3536. [Google Scholar] [CrossRef]
- Popovic, B.V.; Genc, A.I.; Domma, F. Generalized proportional reversed hazard rate distributions with application in medicine. Stat. Methods Appl. 2022, 31, 459–480. [Google Scholar] [CrossRef]
- Kalbfleisch, J.D.; Lawless, J.F. Inference based on retrospective ascertainment: An analysis of the data on transfusion-related AIDS. J. Am. Stat. Assoc. 1989, 84, 360–372. [Google Scholar] [CrossRef]
- O’Neill, T.J. The inverse proportional hazards model. Statist. Probab. Lett. 1991, 12, 125–129. [Google Scholar] [CrossRef]
- Oakes, D.; Dasu, T. A note on residual life. Biometrika 1990, 77, 89–104. [Google Scholar] [CrossRef]
- Oakes, D.; Dasu, T. Inference for the proportional mean residual life model. Inst. Math. Stat. Lect. Notes 2003, 43, 105–116. [Google Scholar]
- Zahedi, H. Proportional mean remaining life model. J. Stat. Plan. Inf. 1991, 29, 221–228. [Google Scholar] [CrossRef]
- Cai, Z.; Su, J.; Sufianti. A regression analysis of expected shortfall. Stat. Interface 2015, 8, 295–303. [Google Scholar] [CrossRef]
- Shrahili, M.; Albabtain, A.A.; Kayid, M.; Kaabi, Z. Stochastic aspects of proportional vitalities model. Mathematics 2020, 8, 1823. [Google Scholar] [CrossRef]
- Jeong, J.-H. Statistical Inference on Residual Life; Springer: New York, NY, USA, 2014. [Google Scholar]
- Hougaard, P. Fundamentals of survival data. Biometrics 1999, 55, 13–22. [Google Scholar] [CrossRef]
- Lee, C.H.; Ning, J.; Kryscio, R.J.; Shen, Y. Analysis of combined incident and prevalent cohort data under a proportional mean residual life model. Stat. Med. 2019, 38, 2103–2114. [Google Scholar] [CrossRef] [PubMed]
- Asadi, M.; Berred, A. Properties and estimation of the mean past lifetime. Statistics 2012, 46, 405–417. [Google Scholar] [CrossRef]
- Bandos, H. Regression on Median Residual Life Function for Censored Survival Data. Ph.D. Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2007. [Google Scholar]
- Chen, Y.Q. Accelerated hazards regression model and its adequacy for censored survival data. Biometrics 2001, 57, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Ciampi, A.; Etezadi-Amoli, J. A general model for testing the proportional hazards and the accelerated failure time hypotheses in the analysis of censored survival data with covariates. Comm. Statist. Theory Methods 1985, 14, 651–667. [Google Scholar] [CrossRef]
- Shyur, H.-J.; Keng, H.; I, I.-K.; Huang, C.-L. Using extended hazard regression model to assess the probability of aviation event. Appl. Math. Comput. 2012, 218, 10647–10655. [Google Scholar] [CrossRef]
- Louzada-Neto, F. Extended hazard regression model for reliability and survival analysis. Lifetime Data Anal. 1997, 3, 367–381. [Google Scholar] [CrossRef]
- Aalen, O.O. A linear regression model for the analysis of life times. Stat. Med. 1989, 8, 907–925. [Google Scholar] [CrossRef]
- Xie, X.; Strickler, H.D.; Xue, X. Additive hazard regression models: An application to the natural history of human papillomavirus. Comput. Math. Models Med. 2013, 2013, 796270. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-L.T.; Whitmore, G.A. Threshold regression for survival analysis: Modeling event times by a stochastic process reaching a boundary. Stat. Sci. 2006, 21, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Xiao, T.; Whitmore, G.A.; He, X.; Lee, M.-L.T. Threshold regression for time-to-event analysis: The stthreg package. Stata J. 2012, 12, 257–283. [Google Scholar] [CrossRef] [Green Version]
- Caroni, C. First Hitting Time Regression Models; ISTE & John Wiley: London, UK; Hoboken, NJ, USA, 2017. [Google Scholar]
- Lee, M.-L.T. A survey of threshold regression for time-to-event analysis and applications. Taiwan J. Math. 2019, 23, 293–305. [Google Scholar]
- Balka, J.; Desmond, A.F.; McNicholas, P.D. Review and implementation of cure models based on first hitting times for Wiener processes. Lifetime Data Anal. 2009, 15, 147–176. [Google Scholar] [CrossRef]
- Lee, M.-L.T.; Whitmore, G.A. Multivariate threshold regression models with cure rates: Identification and estimation in the presence of the Esscher property. Stats 2022, 5, 172–189. [Google Scholar] [CrossRef]
- De Bin, R.; Stikbakke, V.G. A boosting first-hitting-time model for survival analysis in high-dimensional settings. Lifetime Data Anal. 2022; in press. [Google Scholar] [CrossRef]
- Chen, Y.; Lawrence, J.; Lee, M.-L.T. Group sequential designs for randomized trials using “first hitting time” model. Stat. Med. 2022, 41, 2375–2402. [Google Scholar] [CrossRef]
- Race, J.A.; Pennell, M.L. Semi-parametric survival analysis via Dirichlet process mixtures of the First Hitting Time model. Lifetime Data Anal. 2021, 27, 177–194. [Google Scholar] [CrossRef]
- Lee, M.-L.T.; Lawrence, J.; Chen, Y.; Whitmore, G.A. Accounting for delayed entry into observational studies and clinical trials: Length-biased sampling and restricted mean survival time. Lifetime Data Anal. 2022, 28, 637–658. [Google Scholar] [CrossRef]
- Rigby, R.A.; Stasinopoulos, M.D.; Heller, G.Z.; De Bastiani, F. Distributions for Modeling Location, Scale, and Shape: Using GAMLSS in R; Chapman & Hall/CRC: Boca Raton, FL, USA, 2021. [Google Scholar]
- R Package ’mpr’. Available online: https://cran.r-project.org/web/packages/mpr/mpr.pdf (accessed on 5 November 2022).
- Burke, K.; MacKenzie, G. Multi-parameter regression survival modeling: An alternative to proportional hazards. Biometrics 2017, 73, 678–686. [Google Scholar] [CrossRef] [Green Version]
- Burke, K.; Jones, M.C.; Noufaily, A. A flexible parametric modelling framework for survival analysis. Appl. Stat. 2020, 69, 429–457. [Google Scholar] [CrossRef] [Green Version]
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random survival forests. Ann. Appl. Stat. 2008, 2, 841–860. [Google Scholar] [CrossRef]
- Katzman, J.L.; Shaham, U.; Cloninger, A.; Bates, J.; Jiang, T.; Kluger, Y. DeepSurv: Personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 2018, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Kvamme, H.; Borgan, O.; Scheel, I. Time-to-event prediction with neural networks and Cox regression. J. Mach. Learn. Res. 2019, 20, 1–30. [Google Scholar]
- Andersen, P.K. Fifty years with the Cox proportional hazards regression model. J. Indian Inst. Sci. 2022; in press. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caroni, C. Regression Models for Lifetime Data: An Overview. Stats 2022, 5, 1294-1304. https://doi.org/10.3390/stats5040078
Caroni C. Regression Models for Lifetime Data: An Overview. Stats. 2022; 5(4):1294-1304. https://doi.org/10.3390/stats5040078
Chicago/Turabian StyleCaroni, Chrys. 2022. "Regression Models for Lifetime Data: An Overview" Stats 5, no. 4: 1294-1304. https://doi.org/10.3390/stats5040078
APA StyleCaroni, C. (2022). Regression Models for Lifetime Data: An Overview. Stats, 5(4), 1294-1304. https://doi.org/10.3390/stats5040078