Conditional Kaplan–Meier Estimator with Functional Covariates for Time-to-Event Data
Abstract
:1. Introduction
2. Model Setup and Estimation Method
2.1. The Proposed Method
2.2. Bandwidth Selection
- 1.
- Randomly split the index set into m equal-size blocks: . Let be the collection of indices that are not contained in .
- 2.
- Given a bandwidth h, for each ,
- (a)
- obtain , the survival probability estimates, using the observations .
- (b)
- obtain the fitness score for the estimates in 2(a) following certain model fitness metric E, based on the observations .
- 3.
- Summarize the overall fitness as .
- 4.
- Choose as the selected bandwidth.
3. Theoretical Properties
- (C1)
- Let for some constant . Given , let be a ball being centered at x and of radius [11]. There exists some , such that,
- (C2)
- The kernel function is Lipschitz-continuous over its support , satisfying and .
- (C3)
- Let denote the probability that the functional variable X is in . There exists a function and constants such that , and .
- (C4)
- Let , where is the minimal number of ’s to cover . This is called the Kolmogorov’s -entropy of [42]. For n large enough, and for some ,
4. Numerical Studies
- Scenario 1: , where , Unif, Unif, and distribution.
- Scenario 2: )/5}, where and are generated in the same way as in scenario 1, and Z follows a standard normal distribution.
- Scenario 3: ., where and generated in the same way as in scenario 1.
- Scenario 4: , where , with , , and for .
5. Application
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
15% Censoring | 25% Censoring | |||||
---|---|---|---|---|---|---|
n | Method | Mean | SD | Mean | SD | |
Scenario 1 | 50 | Cond.KM.MSE | 0.0156 | 0.0178 | ||
Cond.KM.Brier | 0.0759 | 0.0163 | 0.0806 | 0.0191 | ||
KM | 0.1065 | 0.0108 | 0.1103 | 0.0106 | ||
Scenario 3 | 50 | Cond.KM.MSE | 0.0533 | 0.0176 | 0.0607 | 0.0197 |
Cond.KM.Brier | 0.0566 | 0.0184 | 0.0636 | 0.0214 | ||
KM | 0.0165 | 0.0176 |
References
- Borggaard, C.; Thodberg, H.H. Optimal minimal neural interpretation of spectra. Anal. Chem. 1992, 64, 545–551. [Google Scholar] [CrossRef]
- Ferraty, F.; Vieu, P. Curves discrimination: A nonparametric functional approach. Comput. Stat. Data Anal. 2003, 44, 161–173. [Google Scholar] [CrossRef]
- Febrero, M.; Galeano, P.; González-Manteiga, W. Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels. Environmetrics Off. J. Int. Environmetrics Soc. 2008, 19, 331–345. [Google Scholar] [CrossRef]
- Ramsay, J.O.; Silverman, B.W. Applied Functional Data Analysis: Methods and Case Studies; Springer: Berlin/Heidelberg, Germany, 2002; Volume 77. [Google Scholar]
- Müller, H.G.; Stadtmüller, U. Generalized functional linear models. Ann. Stat. 2005, 33, 774–805. [Google Scholar] [CrossRef] [Green Version]
- James, G.M. Generalized linear models with functional predictors. J. R. Stat. Soc. Ser. B Stat. Methodol. 2002, 64, 411–432. [Google Scholar] [CrossRef]
- Marx, B.D.; Eilers, P.H. Generalized linear regression on sampled signals and curves: A P-spline approach. Technometrics 1999, 41, 1–13. [Google Scholar] [CrossRef]
- Cardot, H.; Ferraty, F.; Sarda, P. Functional linear model. Stat. Probab. Lett. 1999, 45, 11–22. [Google Scholar] [CrossRef]
- Cardot, H.; Ferraty, F.; Sarda, P. Spline estimators for the functional linear model. Stat. Sin. 2003, 13, 571–591. [Google Scholar]
- Cardot, H.; Sarda, P. Estimation in generalized linear models for functional data via penalized likelihood. J. Multivar. Anal. 2005, 92, 24–41. [Google Scholar] [CrossRef] [Green Version]
- Ferraty, F.; Vieu, P. Nonparametric Functional Data Analysis: Theory and Practice; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Ferraty, F.; Mas, A.; Vieu, P. Nonparametric regression on functional data: Inference and practical aspects. Aust. N. Z. J. Stat. 2007, 49, 267–286. [Google Scholar] [CrossRef] [Green Version]
- Locantore, N.; Marron, J.; Simpson, D.; Tripoli, N.; Zhang, J.; Cohen, K.; Boente, G.; Fraiman, R.; Brumback, B.; Croux, C.; et al. Robust principal component analysis for functional data. Test 1999, 8, 1–73. [Google Scholar] [CrossRef]
- Kong, D.; Ibrahim, J.G.; Lee, E.; Zhu, H. FLCRM: Functional linear cox regression model. Biometrics 2018, 74, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasenstab, K.; Scheffler, A.; Telesca, D.; Sugar, C.A.; Jeste, S.; DiStefano, C.; Şentürk, D. A multi-dimensional functional principal components analysis of EEG data. Biometrics 2017, 73, 999–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Sedransk, N. Functional data analytic approach of modeling ECG T-wave shape to measure cardiovascular behavior. Ann. Appl. Stat. 2009, 3, 1382–1402. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.B.; Wu, T.T.; Rapoport, A.P.; Tan, M. Survival analysis with functional covariates for partial follow-up studies. Stat. Methods Med. Res. 2016, 25, 2405–2419. [Google Scholar] [CrossRef]
- Gellar, J.E.; Colantuoni, E.; Needham, D.M.; Crainiceanu, C.M. Cox regression models with functional covariates for survival data. Stat. Model. 2015, 15, 256–278. [Google Scholar] [CrossRef] [Green Version]
- Schmee, J.; Hahn, G.J. A simple method for regression analysis with censored data. Technometrics 1979, 21, 417–432. [Google Scholar] [CrossRef]
- Müller, H.G.; Zhang, Y. Time-varying functional regression for predicting remaining lifetime distributions from longitudinal trajectories. Biometrics 2005, 61, 1064–1075. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Beran, R. Nonparametric Regression with Randomly Censored Survival Data; Technical Report; University of California: Berkeley, CA, USA, 1981. [Google Scholar]
- Gentleman, R.; Crowley, J. Graphical methods for censored data. J. Am. Stat. Assoc. 1991, 86, 678–683. [Google Scholar] [CrossRef]
- Gonzalez-Manteiga, W.; Cadarso-Suarez, C. Asymptotic properties of a generalized Kaplan–Meier estimator with some applications. Commun. Stat.-Theory Methods 1994, 4, 65–78. [Google Scholar] [CrossRef]
- Rutikanga, J.U.; Diop, A. Functional Kernel Estimation of the Conditional Extreme Quantile under Random Right Censoring. Open J. Stat. 2021, 11, 162. [Google Scholar] [CrossRef]
- Graf, E.; Schmoor, C.; Sauerbrei, W.; Schumacher, M. Assessment and comparison of prognostic classification schemes for survival data. Stat. Med. 1999, 18, 2529–2545. [Google Scholar] [CrossRef]
- Gerds, T.A.; Schumacher, M. Consistent estimation of the expected Brier score in general survival models with right-censored event times. Biom. J. 2006, 48, 1029–1040. [Google Scholar] [CrossRef]
- Parzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33, 1065–1076. [Google Scholar] [CrossRef]
- Nadaraya, E.A. On estimating regression. Theory Probab. Its Appl. 1964, 9, 141–142. [Google Scholar] [CrossRef]
- Watson, G.S. Smooth regression analysis. Sankhyā Indian J. Stat. Ser. A 1964, 26, 359–372. [Google Scholar]
- Gasser, T.; Müller, H.G. Kernel estimation of regression functions. In Smoothing Techniques for Curve Estimation; Springer: Berlin/Heidelberg, Germany, 1979; pp. 23–68. [Google Scholar]
- Ma, S. Estimation and inference in functional single-index models. Ann. Inst. Stat. Math. 2016, 68, 181–208. [Google Scholar] [CrossRef]
- De Boor, C. A Practical Guide to Splines; Applied Mathematical Sciences Volume 27; Springer: New York, NY, USA, 2001. [Google Scholar]
- Dabrowska, D.M. Non-parametric regression with censored survival time data. Scand. J. Stat. 1987, 14, 181–197. [Google Scholar]
- Dabrowska, D.M. Uniform consistency of the kernel conditional Kaplan–Meier estimate. Ann. Stat. 1989, 17, 1157–1167. [Google Scholar] [CrossRef]
- Kara-Zaitri, L.; Laksaci, A.; Rachdi, M.; Vieu, P. Uniform in bandwidth consistency for various kernel estimators involving functional data. J. Nonparametr. Stat. 2017, 29, 85–107. [Google Scholar] [CrossRef]
- Berg, A.; Suaray, K. Bootstrap bandwidth selection for a smooth survival function estimator from censored data. J. Stat. Res. 2010, 44, 207. [Google Scholar]
- Harrell, F.E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis; Springer: Berlin/Heidelberg, Germany, 2015; Volume 3. [Google Scholar]
- Kattan, M.W.; Gerds, T.A. The index of prediction accuracy: An intuitive measure useful for evaluating risk prediction models. Diagn. Progn. Res. 2018, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cortese, G.; Combescure, C.; Marshall, R.; Lee, M.; Lim, H.J.; Haller, B. Overview of model validation for survival regression model with competing risks using melanoma study data. Ann. Transl. Med. 2018, 6, 325. [Google Scholar] [CrossRef] [PubMed]
- Kvamme, H.; Borgan, Ø. The brier score under administrative censoring: Problems and solutions. arXiv 2019, arXiv:1912.08581. [Google Scholar]
- Ferraty, F.; Laksaci, A.; Tadj, A.; Vieu, P. Rate of uniform consistency for nonparametric estimates with functional variables. J. Stat. Plan. Inference 2010, 140, 335–352. [Google Scholar] [CrossRef]
- Bouzebda, S.; Nemouchi, B. Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional U-statistics involving functional data. J. Nonparametr. Stat. 2020, 32, 452–509. [Google Scholar] [CrossRef]
- Kuelbs, J.; Li, W.V. Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 1993, 116, 133–157. [Google Scholar] [CrossRef] [Green Version]
- Nicoleris, T.; Yatracos, Y.G. Rates of convergence of estimates, Kolmogorov’s entropy and the dimensionality reduction principle in regression. Ann. Stat. 1997, 25, 2493–2511. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: London, UK, 2018. [Google Scholar]
- Jack, C.R.; Petersen, R.C.; Xu, Y.C.; O’Brien, P.C.; Smith, G.E.; Ivnik, R.J.; Boeve, B.F.; Waring, S.C.; Tangalos, E.G.; Kokmen, E. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999, 52, 1397. [Google Scholar] [CrossRef] [Green Version]
- Fjell, A.M.; Walhovd, K.B.; Fennema-Notestine, C.; McEvoy, L.K.; Hagler, D.J.; Holland, D.; Brewer, J.B.; Dale, A.M.; Initiative, A.D.N. CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. J. Neurosci. 2010, 30, 2088–2101. [Google Scholar] [CrossRef] [Green Version]
- Barnes, D.E.; Cenzer, I.S.; Yaffe, K.; Ritchie, C.S.; Lee, S.J.; Alzheimer’s Disease Neuroimaging Initiative. A point-based tool to predict conversion from mild cognitive impairment to probable Alzheimer’s disease. Alzheimer’s Dement. 2014, 10, 646–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Chan, W.; Doody, R.S.; Quinn, J.; Luo, S.; Alzheimer’s Disease Neuroimaging Initiative. Prediction of conversion to Alzheimer’s disease with longitudinal measures and time-to-event data. J. Alzheimer’s Dis. 2017, 58, 361–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, P.M.; Hayashi, K.M.; De Zubicaray, G.I.; Janke, A.L.; Rose, S.E.; Semple, J.; Hong, M.S.; Herman, D.H.; Gravano, D.; Doddrell, D.M.; et al. Mapping hippocampal and ventricular change in Alzheimer disease. Neuroimage 2004, 22, 1754–1766. [Google Scholar] [CrossRef] [PubMed]
- Apostolova, L.G.; Dinov, I.D.; Dutton, R.A.; Hayashi, K.M.; Toga, A.W.; Cummings, J.L.; Thompson, P.M. 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer’s disease. Brain 2006, 129, 2867–2873. [Google Scholar] [CrossRef]
- Blanken, A.E.; Hurtz, S.; Zarow, C.; Biado, K.; Honarpisheh, H.; Somme, J.; Brook, J.; Tung, S.; Kraft, E.; Lo, D.; et al. Associations between hippocampal morphometry and neuropathologic markers of Alzheimer’s disease using 7 T MRI. NeuroImage Clin. 2017, 15, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.J.; Wang, L. Locally weighted censored quantile regression. J. Am. Stat. Assoc. 2009, 104, 1117–1128. [Google Scholar] [CrossRef] [Green Version]
- Leng, C.; Tong, X. A quantile regression estimator for censored data. Bernoulli 2013, 19, 344–361. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Huang, Y. Survival analysis with quantile regression models. J. Am. Stat. Assoc. 2008, 103, 637–649. [Google Scholar] [CrossRef]
- Zheng, Q.; Peng, L.; He, X. High dimensional censored quantile regression. Ann. Stat. 2018, 46, 308. [Google Scholar] [CrossRef]
15% Censoring | 25% Censoring | |||||
---|---|---|---|---|---|---|
n | Method | Mean | SD | Mean | SD | |
Scenario 1 | 100 | Cond.KM.MSE | 0.0118 | 0.0106 | ||
Cond.KM.Brier | 0.0617 | 0.0123 | 0.0644 | 0.0113 | ||
KM | 0.1034 | 0.0064 | 0.1035 | 0.0063 | ||
400 | Cond.KM.MSE | 0.0047 | 0.0060 | |||
Cond.KM.Brier | 0.0393 | 0.0051 | 0.0437 | 0.0067 | ||
KM | 0.0990 | 0.0052 | 0.0992 | 0.0053 | ||
Scenario 2 | 100 | Cond.KM.MSE | 0.0092 | 0.0081 | ||
Cond.KM.Brier | 0.0843 | 0.0106 | 0.0882 | 0.0098 | ||
KM | 0.1865 | 0.0121 | 0.1884 | 0.0117 | ||
400 | Cond.KM.MSE | 0.0061 | 0.0051 | |||
Cond.KM.Brier | 0.0569 | 0.0066 | 0.0609 | 0.0071 | ||
KM | 0.1877 | 0.0112 | 0.1838 | 0.0110 | ||
Scenario 3 | 100 | Cond.KM.MSE | 0.0378 | 0.0130 | 0.0417 | 0.0149 |
Cond.KM.Brier | 0.0392 | 0.0129 | 0.0437 | 0.0149 | ||
KM | 0.0122 | 0.0133 | ||||
400 | Cond.KM.MSE | 0.0210 | 0.0066 | 0.0237 | 0.0082 | |
Cond.KM.Brier | 0.0227 | 0.0072 | 0.0251 | 0.0083 | ||
KM | 0.0064 | 0.0079 | ||||
Scenario 4 | 100 | Cond.KM.MSE | 0.0103 | 0.0152 | ||
Cond.KM.Brier | 0.0858 | 0.0114 | 0.0984 | 0.0152 | ||
KM | 0.1661 | 0.0135 | 0.1696 | 0.0148 | ||
FLCRM | 0.1805 | 0.1067 | 0.1817 | 0.0994 | ||
400 | Cond.KM.MSE | 0.0073 | 0.0084 | |||
Cond.KM.Brier | 0.0620 | 0.0082 | 0.0746 | 0.0108 | ||
KM | 0.1621 | 0.0105 | 0.1661 | 0.0125 | ||
FLCRM | 0.1757 | 0.1143 | 0.1776 | 0.1120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tholkage, S.; Zheng, Q.; Kulasekera, K.B. Conditional Kaplan–Meier Estimator with Functional Covariates for Time-to-Event Data. Stats 2022, 5, 1113-1129. https://doi.org/10.3390/stats5040066
Tholkage S, Zheng Q, Kulasekera KB. Conditional Kaplan–Meier Estimator with Functional Covariates for Time-to-Event Data. Stats. 2022; 5(4):1113-1129. https://doi.org/10.3390/stats5040066
Chicago/Turabian StyleTholkage, Sudaraka, Qi Zheng, and Karunarathna B. Kulasekera. 2022. "Conditional Kaplan–Meier Estimator with Functional Covariates for Time-to-Event Data" Stats 5, no. 4: 1113-1129. https://doi.org/10.3390/stats5040066
APA StyleTholkage, S., Zheng, Q., & Kulasekera, K. B. (2022). Conditional Kaplan–Meier Estimator with Functional Covariates for Time-to-Event Data. Stats, 5(4), 1113-1129. https://doi.org/10.3390/stats5040066