Bayesian Hierarchical Copula Models with a Dirichlet–Laplace Prior
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Statistical Model
2.1.1. Likelihood and Priors Distributions
- 1.
- Update :
- (a)
- Sample from a proposal Cauchy ;
- (b)
- Set and compute the following.
- (c)
- Sample ,
- (d)
- Set if ; otherwise, .
- 2.
- Update :
- (a)
- Sample from a proposal Cauchy ;
- (b)
- Compute the following.
- (c)
- Sample ;
- (d)
- Set if ; otherwise, .
- 3.
- Update : sample .
- 4.
- Update : sample , and set the following.
- 5.
- Update : sample and set the following.
- Update :
- (a)
- Sample from discrete uniform distribution in ;
- (b)
- Compute the following.
- (c)
- Sample ;
- (d)
- Set if ; otherwise, .
2.1.2. Prior Distribution of
2.1.3. Previous Work
3. Results
3.1. Simulation Study
3.2. Real Data Applications
3.2.1. Column Vertebral Data
3.2.2. Financial Data Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
S&P | Standard and Poor’s 500 stock exchange index; |
mle or MLE | Maximum likelihood estimator; |
MSE | Mean squared error; |
MCMC | Markov chain Monte Carlo. |
Appendix A
References
- Kelley, L.T. The Interpretation of Educational Measurement; Measurement and Adjustment Series; WorldBook Company: Yonkers-on-Hudson, NY, USA, 1927. [Google Scholar]
- Tiao, G.C.; Tan, W.Y. Bayesian Analysis of Random-Effect Models in the Analysis of Variance. i. Posterior Distribution of Variance-Components. Biometrika 1965, 52, 37–53. [Google Scholar] [CrossRef]
- Hill, B.M. Inference About Variance Components in the One-Way Model. J. Am. Stat. Assoc. 1965, 60, 806–825. [Google Scholar] [CrossRef]
- Stone, M.; Springer, B.G.F. A Paradox Involving Quasi Prior Distributions. Biometrika 1965, 52, 623–627. [Google Scholar] [CrossRef]
- Lindley, D.V.; Smith, A.F.M. Bayes Estimates for the Linear Model. J. R. Stat. Soc. Ser. B (Methodol.) 1972, 34, 1–41. [Google Scholar] [CrossRef]
- Gelman, A. Prior Distributions for Variance Parameters in Hierarchical Models (Comment on Article by Browne and Draper. Bayesian Anal. 2006, 1, 515–534. [Google Scholar] [CrossRef]
- Zhuang, H.; Diao, L.; Yi, G.Y. A Bayesian Hierarchical Copula Model. Electron. J. Stat. 2020, 14, 4457–4488. [Google Scholar] [CrossRef]
- Berger, J. The Case for Objective Bayesian Analysis. Bayesian Anal. 2006, 1, 385–402. [Google Scholar] [CrossRef]
- Hobert, J.P.; Casella, G. The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models. J. Am. Stat. Assoc. 1996, 91, 1461–1473. [Google Scholar] [CrossRef]
- Park, T.; Casella, G. The Bayesian Lasso. J. Am. Stat. Assoc. 2008, 103, 681–686. [Google Scholar] [CrossRef]
- Hans, C. Bayesian Lasso Regression. Biometrika 2009, 96, 835–845. [Google Scholar] [CrossRef]
- Carvalho, C.M.; Polson, N.G.; Scott, J.G. The Horseshoe Estimator for Sparse Signals. Biometrika 2010, 97, 465–480. [Google Scholar] [CrossRef] [Green Version]
- Armagan, A.; Dunson, D.; Lee, J. Generalized Double Pareto Shrinkage. Stat. Sin. 2013, 23, 119–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, A.; Pati, D.; Pillai, N.S.; Dunson, D.B. Dirichlet–Laplace Priors for Optimal Shrinkage. J. Am. Stat. Assoc. 2016, 110, 1479–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofert, M.; Kojadinovic, I.; Maechler, M.; Yan, J. Elements of Copula Modeling with R; Springer Use R! Series; Springer: New York, NY, USA, 2018. [Google Scholar]
- Millar, R. Conditional vs. marginal estimation of the predictive loss of hierarchical models using WAIC and cross-validation. Stat. Comput. 2018, 28, 375–385. [Google Scholar] [CrossRef]
- Gelman, A. and Rubin, D.B. Inference from iterative simulation using multiple sequences (with discussion). Stat. Sci. 1992, 1, 457–472. [Google Scholar]
- De Luca, G.; Zuccolotto, P. A Tail Dependence-Based Dissimilarity Measure for Financial Time Series Clustering. Adv. Data Anal. Classif. 2011, 5, 323–340. [Google Scholar] [CrossRef]
- Joe, H.; Smith, R.L.; Weissman, I. Bivariate Threshold Methods for Extremes. J. R. Stat. Soc. Ser. B (Methodol.) 1992, 54, 171–183. [Google Scholar] [CrossRef]
- Durante, F.; Pappadà, R.; Torelli, N. Clustering of Financial Time Series in Risky Scenarios. Adv. Data Anal. Classif. 2014, 8, 359–376. [Google Scholar] [CrossRef]
- Fuchs, S.; Di Lascio, F.M.L.; Durante, F. Dissimilarity Functions for Rank-Invariant Hierarchical Clustering of Continuous Variables. Comput. Stat. Data Anal. 2021, 159, 107201. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | Mean | |
---|---|---|---|---|---|---|
Bayes | 0.1449 | 0.1514 | 0.1104 | 0.1106 | 0.1283 | 0.1291 |
MLE | 0.1861 | 0.1832 | 0.1251 | 0.1477 | 0.1854 | 0.1655 |
Group | Feature | p | q | |||
---|---|---|---|---|---|---|
Disk Hernia | PI | 50.2874 | 13.9408 | 0.9992 | 104.9370 | 50.7792 |
PT | 17.3686 | 6.9609 | 0.3137 | 1.8070 | 68.7768 | |
LL | 32.8948 | 11.7179 | 1.0000 | 5.2906 | 364.8091 | |
SS | 30.4401 | 7.8546 | −0.1599 | 3.5617 | 1.4520 | |
PR | 116.5142 | 12.9605 | −0.1742 | 5.9304 | 0.4001 | |
DS | 2.4849 | 5.4948 | −0.1557 | 1.7725 | 358.2803 | |
Spondylolisthesis | PI | 71.6191 | 15.0308 | −0.0261 | 1.6375 | 67.3817 |
PT | 20.7980 | 11.4766 | 0.2862 | 1.9411 | 44.5023 | |
LL | 64.0920 | 16.3405 | 0.2633 | 2.1057 | 73.7317 | |
SS | 49.5130 | 13.1427 | 0.3057 | 46.4772 | 0.0649 | |
PR | 114.6216 | 15.5666 | 0.0259 | 1.4962 | 32.5924 | |
DS | 51.6375 | 52.3930 | 0.5757 | 42.0584 | 0.0520 | |
Healthy | PI | 51.5086 | 12.4646 | 0.6837 | 2.5388 | 24.2468 |
PT | 12.8140 | 6.7551 | −0.1121 | 1.7036 | 71.8428 | |
LL | 44.9715 | 187.1274 | 0.3583 | 28.3301 | 0.0707 | |
SS | 38.8785 | 9.6135 | 0.2867 | 1.9040 | 17.9808 | |
PR | 124.0712 | 53.4395 | 0.1274 | 55.3812 | 0.0364 | |
DS | 2.1427 | 6.1430 | 0.3069 | 1.2030 | 7.8901 |
Model A | Model B | |||||||
---|---|---|---|---|---|---|---|---|
Group | Features | Copula | Posterior Mean | Posterior s.d. | Posterior CI (95%) | Posterior Mean | Posterior s.d. | Posterior CI (95%) |
Disk Hernia | PI vs. PT | Gaussian | 0.696 | 0.046 | (0.599, 0.775) | 0.632 | 0.073 | (0.469, 0.751) |
PI vs. SS | Gaussian | 0.726 | 0.040 | (0.633, 0.793) | 0.680 | 0.076 | (0.506, 0.789) | |
DS vs. PI | Gaussian | 0.161 | 0.098 | (−0.031, 0.339) | 0.229 | 0.126 | (−0.041, 0.450) | |
DS vs. PT | Frank | −0.511 | 0.577 | (−1.489, 0.522) | −0.245 | 0.820 | (−1.858, 1.340) | |
DS vs. LL | Gaussian | 0.244 | 0.103 | (0.031, 0.435) | 0.265 | 0.109 | (0.037, 0.462) | |
DS vs. PR | Gaussian | −0.055 | 0.113 | (−0.263, 0.175) | −0.075 | 0.126 | (−0.315, 0.174) | |
Spondylolisthesis | PI vs. PT | Frank | 5.718 | 0.505 | (0.599, 0.775) | 5.719 | 0.756 | (4.383, 7.138) |
PI vs. SS | Gumbel | 1.729 | 0.099 | (1.554, 1.943) | 1.725 | 0.128 | (1.490, 1.984) | |
DS vs. PI | Frank | 3.427 | 0.431 | (2.552, 4.245) | 3.674 | 0.867 | (2.447, 4.897) | |
DS vs. PT | Survival Clayton | 0.887 | 0.143 | (0.608, 1.174) | 1.036 | 0.193 | (0.679, 1.422) | |
DS vs. LL | Frank | 3.230 | 0.426 | (2.437, 4.104) | 3.191 | 0.801 | (2.016, 4.370) | |
DS vs. PR | Joe | 1.466 | 0.115 | (1.265, 1.698) | 1.421 | 0.154 | (1.121, 1.734) | |
Healthy | PI vs. PT | Gaussian | 0.633 | 0.038 | (0.555, 0.699) | 0.621 | 0.057 | (0.496, 0.717) |
PI vs. SS | Gumbel | 2.574 | 0.178 | (2.239, 2.910) | 2.552 | 0.235 | (2.115, 3.023) | |
DS vs. PI | Frank | 1.822 | 0.430 | (0.936, 2.632) | 1.794 | 1.100 | (0.465, 3.139) | |
DS vs. PT | Gaussian | 0.242 | 0.080 | (0.085, 0.401) | 0.210 | 0.102 | (−0.000, 0.394) | |
DS vs. LL | Frank | 1.409 | 0.570 | (0.335, 2.538) | 1.661 | 0.680 | (0.362, 2.970) | |
DS vs. PR | Gaussian | −0.111 | 0.093 | (−0.289, 0.065) | −0.076 | 0.123 | (−0.310, 0.169) |
Group | Components | Posterior Mean | Posterior s.d. | Posterior CI (95%) |
---|---|---|---|---|
1 | NTRS | 0.5001 | 0.0592 | (0.4153, 0.5918) |
STT | ||||
2 | CVX | 0.4833 | 0.0592 | (0.4061, 0.5715) |
XOM | ||||
3 | AMAT | 0.4499 | 0.0633 | (0.3648, 0.5573) |
LRCX | ||||
4 | BEN | 0.4259 | 0.0649 | (0.3457, 0.5359) |
TROW | ||||
5 | CMS | 0.4256 | 0.0661 | (0.3347, 0.5296) |
PNW | ||||
6 | APD | 0.4198 | 0.0655 | (0.3389, 0.5274) |
LIN | ||||
7 | PEAK | 0.4170 | 0.0636 | (0.3538, 0.5097) |
VTR | ||||
WELL | ||||
8 | DHI | 0.3942 | 0.0643 | (0.3137, 0.4895) |
LEN | ||||
PHM | ||||
9 | MLM | 0.3827 | 0.0678 | (0.2881, 0.4963) |
VMC | ||||
10 | HD | 0.3757 | 0.0675 | (0.2828, 0.4851) |
LOW | ||||
11 | COP | 0.3685 | 0.0681 | (0.2765, 0.4880) |
MRO | ||||
12 | ADP | 0.3532 | 0.0692 | (0.2663, 0.4704) |
PAYX | ||||
13 | CSX | 0.3395 | 0.0674 | (0.2672, 0.4535) |
NSC | ||||
UNP | ||||
14 | T | 0.3338 | 0.0699 | (0.2368, 0.4509) |
VZ | ||||
15 | CAH | 0.3337 | 0.0691 | (0.2414, 0.4401) |
MCK | ||||
16 | BAC | 0.3235 | 0.0671 | (0.2590, 0.4203) |
C | ||||
JMP | ||||
MS | ||||
17 | AIV | 0.3221 | 0.0668 | (0.2593, 0.4187) |
AVB | ||||
EQR | ||||
ESS | ||||
UDR | ||||
18 | RSG | 0.3168 | 0.0694 | (0.2275, 0.4255) |
WM | ||||
19 | DVN | 0.2979 | 0.0682 | (0.2166, 0.4103) |
EOG | ||||
NBL | ||||
20 | D | 0.2932 | 0.0708 | (0.1953, 0.4113) |
SO | ||||
21 | NI | 0.2920 | 0.0700 | (0.2022, 0.4032) |
SRE | ||||
22 | IP | 0.2914 | 0.0713 | (0.1957, 0.4145) |
PKG | ||||
23 | CB | 0.2839 | 0.0715 | (0.1815, 0.4132) |
TRV | ||||
24 | GL | 0.2818 | 0.0677 | (0.2177, 0.3804) |
LNC | ||||
MET | ||||
UNM | ||||
25 | CMA | 0.2294 | 0.0666 | (0.1526, 0.3273) |
FITB | ||||
HBAN | ||||
KEY | ||||
MTB | ||||
PNC | ||||
RF | ||||
TFC | ||||
USB | ||||
26 | ATO | 0.2201 | 0.0692 | (0.1256, 0.3412) |
EVRG | ||||
27 | ETR | 0.1923 | 0.0652 | (0.1175, 0.2953) |
NEE | ||||
PEG | ||||
28 | AEE | 0.1768 | 0.0633 | (0.1174, 0.2855) |
AEP | ||||
DTE | ||||
DUK | ||||
ED | ||||
ES | ||||
LNT | ||||
WEC | ||||
XEL | ||||
29 | ARE | 0.1522 | 0.0605 | (0.0874, 0.2439) |
BXP | ||||
DRE | ||||
FRT | ||||
KIM | ||||
MAA | ||||
PLD | ||||
REG | ||||
SPG | ||||
30 | EW | 0.0008 | 0.0011 | (0.0000, 0.0028) |
SYK |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onorati, P.; Liseo, B. Bayesian Hierarchical Copula Models with a Dirichlet–Laplace Prior. Stats 2022, 5, 1062-1078. https://doi.org/10.3390/stats5040063
Onorati P, Liseo B. Bayesian Hierarchical Copula Models with a Dirichlet–Laplace Prior. Stats. 2022; 5(4):1062-1078. https://doi.org/10.3390/stats5040063
Chicago/Turabian StyleOnorati, Paolo, and Brunero Liseo. 2022. "Bayesian Hierarchical Copula Models with a Dirichlet–Laplace Prior" Stats 5, no. 4: 1062-1078. https://doi.org/10.3390/stats5040063
APA StyleOnorati, P., & Liseo, B. (2022). Bayesian Hierarchical Copula Models with a Dirichlet–Laplace Prior. Stats, 5(4), 1062-1078. https://doi.org/10.3390/stats5040063