Neutrosophic F-Test for Two Counts of Data from the Poisson Distribution with Application in Climatology
Abstract
:1. Introduction
2. Methods
3. Application
- Step-1
- State vs. .
- Step-2
- Let = 5% and the corresponding critical value at be 1 using the F-table from Kanji [1].
- Step-3
- For the last 30 days, the values of are calculated as .
- Step-4
- Accept as .
4. Comparative Study
5. Power of the Test
- Generate 100 values of counting data at various values of .
- Specify the values of = 0.01 and = 0.05 and select the corresponding table values using the F-table from Kanji [1].
- Compute the test statistic and record the number of values accepting and not accepting .
- The power of the test can be computed from the ratio of values accepting to the total number of replications.
6. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kanji, G.K. 100 Statistical Tests; Sage: Thousand Oaks, CA, USA, 2006. [Google Scholar]
- Krishnamoorthy, K.; Thomson, J. A more powerful test for comparing two Poisson means. J. Stat. Plan. Inference 2004, 119, 23–35. [Google Scholar] [CrossRef]
- Hilbe, J.M. The statistical analysis of count data/El análisis estadístico de los datos de recuento. Cult. Educ. 2017, 29, 409–460. [Google Scholar] [CrossRef]
- Puig, P.; Weiß, C.H. Some goodness-of-fit tests for the Poisson distribution with applications in Biodosimetry. Comput. Stat. Data Anal. 2020, 144, 106878. [Google Scholar] [CrossRef]
- White, G.C.; Bennetts, R.E. Analysis of Frequency Count Data Using the Negative Binomial Distribution. Ecology 1996, 77, 2549–2557. [Google Scholar] [CrossRef]
- Coxe, S.; West, S.G.; Aiken, L.S. The Analysis of Count Data: A Gentle Introduction to Poisson Regression and Its Alternatives. J. Pers. Assess. 2009, 91, 121–136. [Google Scholar] [CrossRef]
- Salinas-Rodriguez, A.; Manrique-Espinoza, B.; Sosa-Rubi, S.G. Statistical analysis for count data: Use of healthcare services applications. Salud Publica Mex. 2009, 51, 397–406. [Google Scholar]
- Pham, T.V.; Jimenez, C.R. An accurate paired sample test for count data. Bioinformatics 2012, 28, i596–i602. [Google Scholar] [CrossRef]
- Hawinkel, S.; Rayner, J.C.W.; Bijnens, L.; Thas, O. Sequence count data are poorly fit by the negative binomial distribution. PLoS ONE 2020, 15, e0224909. [Google Scholar] [CrossRef]
- Böhning, D.; Sangnawakij, P. Count outcome meta-analysis for comparing treatments by fusing mixed data sources: Comparing interventions using across report information. Adv. Stat. Anal. 2021, 105, 75–85. [Google Scholar] [CrossRef]
- Akpinar, E.K.; Akpinar, S. A statistical analysis of wind speed data used in installation of wind energy conversion systems. Energy Convers. Manag. 2005, 46, 515–532. [Google Scholar] [CrossRef]
- Yilmaz, V.; Çelik, H.E. A Statistical Approach to Estimate the Wind Speed Distribution: The Case of Gelibolu Region. Doğuş Üniversitesi Derg. 2008, 9, 122–132. [Google Scholar] [CrossRef]
- Ali, S.; Lee, S.-M.; Jang, C.-M. Statistical analysis of wind characteristics using Weibull and Rayleigh distributions in Deokjeok-do Island—Incheon, South Korea. Renew. Energy 2018, 123, 652–663. [Google Scholar] [CrossRef]
- Arias-Rosales, A.; Osorio-Gómez, G. Wind turbine selection method based on the statistical analysis of nominal specifications for estimating the cost of energy. Appl. Energy 2018, 228, 980–998. [Google Scholar] [CrossRef]
- Akgül, F.G.; Şenoğlu, B. Comparison of wind speed distributions: A case study for Aegean coast of Turkey. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 1–18. [Google Scholar] [CrossRef]
- Haq, M.A.U.; Rao, G.S.; Albassam, M.; Aslam, M. Marshall-Olkin Power Lomax distribution for modeling of wind speed data. Energy Rep. 2020, 6, 1118–1123. [Google Scholar] [CrossRef]
- Bludszuweit, H.; Dominguez-Navarro, J.A.; Llombart, A. Statistical Analysis of Wind Power Forecast Error. IEEE Trans. Power Syst. 2008, 23, 983–991. [Google Scholar] [CrossRef]
- Brano, V.L.; Orioli, A.; Ciulla, G.; Culotta, S. Quality of wind speed fitting distributions for the urban area of Palermo, Italy. Renew. Energy 2011, 36, 1026–1039. [Google Scholar] [CrossRef]
- Katinas, V.; Gecevicius, G.; Marciukaitis, M. An investigation of wind power density distribution at location with low and high wind speeds using statistical model. Appl. Energy 2018, 218, 442–451. [Google Scholar] [CrossRef]
- Zaman, B.; Lee, M.H.; Riaz, M.; Abujiya, M.R. An improved process monitoring by mixed multivariate memory control charts: An application in wind turbine field. Comput. Ind. Eng. 2020, 142, 106343. [Google Scholar] [CrossRef]
- Viertl, R. Univariate statistical analysis with fuzzy data. Comput. Stat. Data Anal. 2006, 51, 133–147. [Google Scholar] [CrossRef]
- Filzmoser, P.; Viertl, R. Testing hypotheses with fuzzy data: The fuzzy p-value. Metrika 2004, 59, 21–29. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Chen, C.-C. Tests of quality characteristics of two populations using paired fuzzy sample differences. Int. J. Adv. Manuf. Technol. 2006, 27, 574–579. [Google Scholar] [CrossRef]
- Taheri, S.M.; Arefi, M. Testing fuzzy hypotheses based on fuzzy test statistic. Soft Comput. 2008, 13, 617–625. [Google Scholar] [CrossRef]
- Jamkhaneh, E.B.; Ghara, A.N. Proceedings of the 2010 International Conference on Intelligent Computing and Cognitive Informatics, Kuala Lumpur, Malaysia, 22–23 June 2010; IEEE: Piscataway Township, NY, USA; pp. 86–89.
- Chachi, J.; Taheri, S.M.; Viertl, R. Testing Statistical Hypotheses Based on Fuzzy Confidence Intervals. Austrian J. Stat. 2012, 41, 267–286. [Google Scholar] [CrossRef]
- Kalpanapriya, D.; Pandian, P. Statistical hypotheses testing with imprecise data. Appl. Math. Sci. 2012, 6, 5285–5292. [Google Scholar]
- Montenegro, M.; Casals, M.A.R.; Lubiano, M.A.A.; Gil, M.A.A. Two-sample hypothesis tests of means of a fuzzy random variable. Inf. Sci. 2001, 133, 89–100. [Google Scholar] [CrossRef]
- Park, S.; Lee, S.-J.; Jun, S. Patent Big Data Analysis using Fuzzy Learning. Int. J. Fuzzy Syst. 2017, 19, 1158–1167. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophy. Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning; Infinite Study: Ann Arbor, MI, USA, 1998; Volume 105, pp. 118–123. [Google Scholar]
- Smarandache, F. Introduction to Neutrosophic Measure, Neutrosophic Integral, And Neutrosophic Probability; Infinite Study: Ann Arbor, MI, USA, 2011. [Google Scholar] [CrossRef]
- Broumi, S.; Smarandache, F. Correlation Coefficient of Interval Neutrosophic Set. Appl. Mech. Mater. 2013, 436, 511–517. [Google Scholar] [CrossRef]
- Guo, Y.; Sengur, A. NCM: Neutrosophic c-means clustering algorithm. Pattern Recognit. 2015, 48, 2710–2724. [Google Scholar] [CrossRef]
- Broumi, S.; Bakali, A.; Talea, M.; Smarandache, F. Bipolar Neutrosophic Minimum Spanning Tree; Infinite Study: Ann Arbor, MI, USA, 2018. [Google Scholar]
- Abdel-Baset, M.; Chang, V.; Gamal, A. RETRACTED: Evaluation of the green supply chain management practices: A novel neutrosophic approach. Comput. Ind. 2019, 108, 210–220. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, M.; Elhoseny, M.; Son, L.H.; Chiclana, F.; Zaied, A.E.-N.H. Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artif. Intell. Med. 2019, 101, 101735. [Google Scholar] [CrossRef] [PubMed]
- Smarandache, F. Introduction to Neutrosophic Statistics; Infinite Study: Ann Arbor, MI, USA, 2014. [Google Scholar] [CrossRef]
- Chen, J.; Ye, J.; Du, S. Scale Effect and Anisotropy Analyzed for Neutrosophic Numbers of Rock Joint Roughness Coefficient Based on Neutrosophic Statistics. Symmetry 2017, 9, 208. [Google Scholar] [CrossRef]
- Chen, J.; Ye, J.; Du, S.; Yong, R. Expressions of Rock Joint Roughness Coefficient Using Neutrosophic Interval Statistical Numbers. Symmetry 2017, 9, 123. [Google Scholar] [CrossRef]
- Aslam, M. Neutrosophic analysis of variance: Application to university students. Complex Intell. Syst. 2019, 5, 403–407. [Google Scholar] [CrossRef]
- Aslam, M.; Albassam, M. Application of Neutrosophic Logic to Evaluate Correlation between Prostate Cancer Mortality and Dietary Fat Assumption. Symmetry 2019, 11, 330. [Google Scholar] [CrossRef]
- Aslam, M. A new method to analyze rock joint roughness coefficient based on neutrosophic statistics. Measurement 2019, 146, 65–71. [Google Scholar] [CrossRef]
- Ye, J. Multiple-attribute group decision-making method under a neutrosophic number environment. J. Intell. Syst. 2016, 25, 377–386. [Google Scholar] [CrossRef]
- Liu, P.; Liu, X. The neutrosophic number generalized weighted power averaging operator and its application in multiple attribute group decision making. Int. J. Mach. Learn. Cybern. 2018, 9, 347–358. [Google Scholar] [CrossRef]
- Zheng, E.; Teng, F.; Liu, P. Multiple attribute group decision-making method based on neutrosophic number generalized hybrid weighted averaging operator. Neural Comput. Appl. 2017, 28, 2063–2074. [Google Scholar] [CrossRef]
- Pramanik, S.; Roy, R.; Roy, T.K. Teacher Selection Strategy Based on Bidirectional Projection Measure in Neutrosophic Number Environment. In Neutrosophic Operational Research; Smarandache, F., Abdel-Basset, M., El-Henawy, I., Eds.; Pons Publishing House: Bruxelles, Belgium, 2017; Volume 2, ISBN 978-1-59973-537-5. [Google Scholar]
- Maiti, I.; Mandal, T.; Pramanik, S. Neutrosophic goal programming strategy for multi-level multi-objective linear programming problem. J. Ambient Intell. Humaniz. Comput. 2019, 11, 3175–3186. [Google Scholar] [CrossRef]
- Mondal, K.; Pramanik, S.; Giri, B.C.; Smarandache, F. NN-Harmonic Mean Aggregation Operators-Based MCGDM Strategy in a Neutrosophic Number Environment. Axioms 2018, 7, 12. [Google Scholar] [CrossRef]
- Pramanik, S.; Banerjee, D. Neutrosophic number goal programming for multi-objective linear programming problem in neutrosophic number environment. MOJ Curr. Res. Rev. 2018, 1, 135–141. [Google Scholar] [CrossRef]
- Aslam, M. RETRACTED ARTICLE: Neutrosophic statistical test for counts in climatology. Sci. Rep. 2021, 11, 17806. [Google Scholar] [CrossRef]
- Aslam, M. Enhanced statistical tests under indeterminacy with application to earth speed data. Earth Sci. Inform. 2021, 14, 1261–1267. [Google Scholar] [CrossRef]
Period | Low Min, Low Max | High Min, High Max | |
---|---|---|---|
Last 30 days | [115, 152] | [597, 1483] | [0.1923, 0.1024] |
Last 365 days | [15679, 19150] | [37143, 33514] | [0.4221, 0.5713] |
Period | Low Min, Low Max | High Min, High Max | |
---|---|---|---|
Last 30 days | [0, 1] | [14, 25] | [0, 0.0384] |
Last 365 days | [586, 985] | [2384, 2363] | [0.2457, 0.4166] |
Period | Neutrosophic Form | Measure of Indeterminacy |
---|---|---|
U.S Daily Records | ||
Last 30 days | ||
Last 365 days | ||
U.S Monthly Records | ||
Last 30 days | ||
Last 365 days |
[0, 0] | [0.90, 0.90] |
[0, 0.2] | [0.90, 0.91] |
[0, 0.4] | [0.90, 0.92] |
[0, 0.6] | [0.90, 0.97] |
[0, 0.8] | [0.90, 0.96] |
[0, 1] | [0.90, 0.97] |
0 | [0.86, 0.86] |
0.2 | [0.86, 0.89] |
0.4 | [0.86, 0.89] |
0.6 | [0.86, 0.91] |
0.8 | [0.86, 0.92] |
1 | [0.86, 0.94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslam, M. Neutrosophic F-Test for Two Counts of Data from the Poisson Distribution with Application in Climatology. Stats 2022, 5, 773-783. https://doi.org/10.3390/stats5030045
Aslam M. Neutrosophic F-Test for Two Counts of Data from the Poisson Distribution with Application in Climatology. Stats. 2022; 5(3):773-783. https://doi.org/10.3390/stats5030045
Chicago/Turabian StyleAslam, Muhammad. 2022. "Neutrosophic F-Test for Two Counts of Data from the Poisson Distribution with Application in Climatology" Stats 5, no. 3: 773-783. https://doi.org/10.3390/stats5030045
APA StyleAslam, M. (2022). Neutrosophic F-Test for Two Counts of Data from the Poisson Distribution with Application in Climatology. Stats, 5(3), 773-783. https://doi.org/10.3390/stats5030045