Confidence Intervals for the Signal-to-Noise Ratio and Difference of Signal-to-Noise Ratios of Log-Normal Distributions
Abstract
:1. Introduction
2. The Confidence Intervals for a Single SNR
2.1. The GCI Approach for a Single SNR
- (i)
- The distribution of is free of all unknown parameters.
- (ii)
- The observed value of is the parameter of interest.
Algorithm 1: The GCI for the SNR. |
For a given and For 1 to h: Generate from chi-squared distribution with degrees of freedom Compute from Equation (4) Compute from Equation (5) End g loop Compute the -th quantiles of defined by Compute the -th quantiles of defined by |
2.2. The Large Sample Approach for a Single SNR
3. The Confidence Intervals for the Difference between SNRs
3.1. The GCI Approach for the Difference between SNRs
3.2. The Large Sample Approach for the Difference between SNRs
3.3. The MOVER Approach for the Difference between SNRs
4. Simulation Studies
5. Empirical Applications
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Niwitpong, S. Confidence intervals for coefficient of variation of lognormal distribution with restricted parameter space. Appl. Math. Sci. 2013, 7, 3805–3810. [Google Scholar] [CrossRef]
- Ng, C.K. Inference on the common coefficient of variation when populations are lognormal: A simulation-based approach. J. Stat. Adv. Theory Appl. 2014, 11, 117–134. [Google Scholar]
- Thangjai, W.; Niwitpong, S.-A.; Niwitpong, S. Simultaneous fiducial generalized confidence intervals for all differences of coefficients of variation of log-normal distributions. Lecture Notes Artif. Intell. 2016, 9978, 552–561. [Google Scholar]
- Holgersson, H.E.T.; Karlsson, P.S.; Mansoor, R. Estimating mean-standard deviation ratios of financial data. J. Appl. Stat. 2012, 39, 657–671. [Google Scholar] [CrossRef]
- Soliman, A.A.; Abd Ellah, A.H.; Abou-Elheggag, N.A.; Modhesh, A.A. Estimation of the coefficient of variation for non-normal model using progressive first-failure-censoring data. J. Appl. Stat. 2012, 39, 2741–2758. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions; John Wiley: New York, NY, USA, 1994. [Google Scholar]
- Crow, E.L.; Shimizu, K. Lognormal Distributions; Marcel Dekker: New York, NY, USA, 1988. [Google Scholar]
- Jafari, A.A.; Abdollahnezhad, K. Inferences on the means of two log-normal distributions: A computational approach test. Commun. Stat.-Simul. Comput. 2015, 44, 1659–1672. [Google Scholar] [CrossRef]
- Sharma, K.K.; Krishna, H. Asymptotic sampling distribution of inverse coefficient of variation and its applications. IEEE Trans. Reliab. 1994, 43, 630–633. [Google Scholar] [CrossRef]
- George, F.; Kibria, B.M.G. Confidence intervals for signal-to-noise ratio of a poisson distribution. Am. J. Biostat. 2011, 2, 44–55. [Google Scholar]
- George, F.; Kibria, B.M.G. Confidence intervals for estimating the population signal-to-noise ratio: A simulation study. J. Appl. Stat. 2012, 39, 1225–1240. [Google Scholar] [CrossRef]
- Albatineh, A.N.; Kibria, B.M.G.; Zogheib, B. Asymptotic sampling distribution of inverse coefficient of variation and its applications: Revisited. Int. J. Adv. Stat. Probab. 2014, 2, 15–20. [Google Scholar] [CrossRef]
- Albatineh, A.N.; Boubakari, I.; Kibria, B.M.G. New confidence interval estimator of the signal-to-noise ratio based on asymptotic sampling distribution. Commun. Stat.-Theory Methods 2017, 46, 574–590. [Google Scholar] [CrossRef]
- Niwitpong, S. Confidence intervals for functions of signal-to-noise ratios of normal distributions. Stud. Comput. Intell. 2018, 760, 196–212. [Google Scholar]
- Saothayanun, L.; Thangjai, W. Confidence intervals for the signal to noise ratio of two-parameter exponential distribution. Stud. Comput. Intell. 2018, 760, 255–265. [Google Scholar]
- Weerahandi, S. Generalized confidence intervals. J. Am. Stat. Assoc. 1993, 88, 899–905. [Google Scholar] [CrossRef]
- Zou, G.Y.; Donner, A. Construction of confidence limits about effect measures: A general approach. Stat. Med. 2008, 27, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.Y.; Taleban, J.; Hao, C.Y. Confidence interval estimation for lognormal data with application to health economics. Comput. Stat. Data Anal. 2009, 53, 3755–3764. [Google Scholar] [CrossRef]
- Fung, W.K.; Tsang, T.S. A simulation study comparing tests for the equality of coefficients of variations. Stat. Med. 1998, 17, 2003–2014. [Google Scholar] [CrossRef]
- McDonald, C.J.; Blemis, L.; Tierny, W.M.; Martin, D.K. The regenstrief medical records. MD Comput. 1988, 5, 34–47. [Google Scholar] [PubMed]
- Zhou, X.H.; Gao, S.; Hui, S.L. Methods for comparing the means of two independent log-normal samples. Biometrics 1997, 53, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
n | |||||
---|---|---|---|---|---|
CP | AL | CP | AL | ||
10 | 1 | 0.9500 | 1.3508 | 0.9544 | 1.3650 |
2 | 0.9472 | 2.2220 | 0.9532 | 2.2435 | |
5 | 0.9516 | 5.0444 | 0.9584 | 5.1305 | |
10 | 0.9446 | 10.0207 | 0.9504 | 10.2081 | |
20 | 1 | 0.9484 | 0.9093 | 0.9508 | 0.9114 |
2 | 0.9478 | 1.4735 | 0.9504 | 1.4787 | |
5 | 0.9500 | 3.3674 | 0.9534 | 3.3920 | |
10 | 0.9482 | 6.6255 | 0.9522 | 6.6779 | |
30 | 1 | 0.9464 | 0.7271 | 0.9486 | 0.7273 |
2 | 0.9524 | 1.1735 | 0.9522 | 1.1762 | |
5 | 0.9486 | 2.6824 | 0.9518 | 2.6952 | |
10 | 0.9472 | 5.2706 | 0.9480 | 5.2988 | |
50 | 1 | 0.9498 | 0.5562 | 0.9520 | 0.5562 |
2 | 0.9442 | 0.8966 | 0.9458 | 0.8982 | |
5 | 0.9518 | 2.0413 | 0.9526 | 2.0463 | |
10 | 0.9488 | 4.0273 | 0.9494 | 4.0396 | |
100 | 1 | 0.9466 | 0.3888 | 0.9478 | 0.3887 |
2 | 0.9438 | 0.6261 | 0.9464 | 0.6269 | |
5 | 0.9508 | 1.4310 | 0.9510 | 1.4321 | |
10 | 0.9544 | 2.8149 | 0.9526 | 2.8185 | |
200 | 1 | 0.9416 | 0.2734 | 0.9410 | 0.2733 |
2 | 0.9502 | 0.4398 | 0.9500 | 0.4397 | |
5 | 0.9514 | 1.0044 | 0.9498 | 1.0052 | |
10 | 0.9494 | 1.9778 | 0.9496 | 1.9786 |
CP | AL | CP | AL | CP | AL | ||
---|---|---|---|---|---|---|---|
(10, 10) | (10, 1) | 0.9488 | 10.0317 | 0.9538 | 10.2105 | 0.9798 | 11.7848 |
(10, 2) | 0.9526 | 10.2872 | 0.9550 | 10.4755 | 0.9814 | 12.0907 | |
(10, 5) | 0.9470 | 11.2646 | 0.9526 | 11.4413 | 0.9786 | 13.2053 | |
(10, 10) | 0.9522 | 14.4306 | 0.9562 | 14.6390 | 0.9834 | 16.8961 | |
(10, 20) | (10, 1) | 0.9500 | 10.0019 | 0.9534 | 10.1874 | 0.9796 | 11.7508 |
(10, 2) | 0.9520 | 10.1478 | 0.9564 | 10.3345 | 0.9826 | 11.9089 | |
(10, 5) | 0.9436 | 10.5090 | 0.9478 | 10.6756 | 0.9772 | 12.2262 | |
(10, 10) | 0.9520 | 12.1011 | 0.9566 | 12.2590 | 0.9758 | 13.8301 | |
(20, 20) | (10, 1) | 0.9544 | 6.6445 | 0.9570 | 6.6991 | 0.9686 | 7.1539 |
(10, 2) | 0.9472 | 6.7690 | 0.9468 | 6.8209 | 0.9610 | 7.2840 | |
(10, 5) | 0.9538 | 7.4738 | 0.9560 | 7.5268 | 0.9680 | 8.0377 | |
(10, 10) | 0.9484 | 9.4132 | 0.9542 | 9.4808 | 0.9670 | 10.1245 | |
(20, 30) | (10, 1) | 0.9462 | 6.6156 | 0.9482 | 6.6683 | 0.9612 | 7.1191 |
(10, 2) | 0.9488 | 6.7309 | 0.9506 | 6.7879 | 0.9652 | 7.2436 | |
(10, 5) | 0.9476 | 7.1425 | 0.9500 | 7.1944 | 0.9642 | 7.6577 | |
(10, 10) | 0.9462 | 8.5451 | 0.9490 | 8.5939 | 0.9636 | 9.0967 | |
(30, 30) | (10, 1) | 0.9472 | 5.3335 | 0.9476 | 5.3628 | 0.9560 | 5.5961 |
(10, 2) | 0.9490 | 5.4207 | 0.9504 | 5.4488 | 0.9602 | 5.6858 | |
(10, 5) | 0.9510 | 5.9488 | 0.9514 | 5.9759 | 0.9596 | 6.2359 | |
(10, 10) | 0.9468 | 7.5196 | 0.9504 | 7.5510 | 0.9608 | 7.8795 | |
(30, 50) | (10, 1) | 0.9480 | 5.3190 | 0.9500 | 5.3487 | 0.9608 | 5.5803 |
(10, 2) | 0.9528 | 5.3545 | 0.9544 | 5.3822 | 0.9632 | 5.6136 | |
(10, 5) | 0.9482 | 5.6710 | 0.9484 | 5.6972 | 0.9570 | 5.9314 | |
(10, 10) | 0.9480 | 6.6886 | 0.9490 | 6.7106 | 0.9560 | 6.9580 | |
(50, 50) | (10, 1) | 0.9454 | 4.0718 | 0.9478 | 4.0828 | 0.9534 | 4.1862 |
(10, 2) | 0.9498 | 4.1297 | 0.9522 | 4.1404 | 0.9576 | 4.2452 | |
(10, 5) | 0.9474 | 4.5239 | 0.9484 | 4.5352 | 0.9544 | 4.6500 | |
(10, 10) | 0.9484 | 5.7153 | 0.9486 | 5.7265 | 0.9540 | 5.8714 | |
(50, 100) | (10, 1) | 0.9506 | 4.0473 | 0.9516 | 4.0578 | 0.9578 | 4.1601 |
(10, 2) | 0.9528 | 4.0727 | 0.9534 | 4.0848 | 0.9590 | 4.1869 | |
(10, 5) | 0.9448 | 4.2837 | 0.9448 | 4.2948 | 0.9526 | 4.3974 | |
(10, 10) | 0.9444 | 4.9404 | 0.9458 | 4.9500 | 0.9510 | 5.0543 | |
(100, 100) | (10, 1) | 0.9504 | 2.8427 | 0.9500 | 2.8476 | 0.9516 | 2.8829 |
(10, 2) | 0.9526 | 2.8886 | 0.9522 | 2.8915 | 0.9556 | 2.9273 | |
(10, 5) | 0.9490 | 3.1646 | 0.9508 | 3.1688 | 0.9528 | 3.2080 | |
(10, 10) | 0.9492 | 3.9953 | 0.9500 | 3.9996 | 0.9522 | 4.0490 | |
(100, 200) | (10, 1) | 0.9498 | 2.8268 | 0.9508 | 2.8297 | 0.9540 | 2.8646 |
(10, 2) | 0.9482 | 2.8482 | 0.9486 | 2.8523 | 0.9508 | 2.8872 | |
(10, 5) | 0.9500 | 2.9978 | 0.9512 | 3.0016 | 0.9534 | 3.0367 | |
(10, 10) | 0.9474 | 3.4493 | 0.9486 | 3.4509 | 0.9502 | 3.4865 | |
(200, 200) | (10, 1) | 0.9458 | 2.0017 | 0.9474 | 2.0025 | 0.9490 | 2.0147 |
(10, 2) | 0.9524 | 2.0294 | 0.9520 | 2.0302 | 0.9534 | 2.0427 | |
(10, 5) | 0.9480 | 2.2231 | 0.9484 | 2.2236 | 0.9502 | 2.2372 | |
(10, 10) | 0.9496 | 2.8045 | 0.9486 | 2.8053 | 0.9500 | 2.8225 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thangjai, W.; Niwitpong, S.-A. Confidence Intervals for the Signal-to-Noise Ratio and Difference of Signal-to-Noise Ratios of Log-Normal Distributions. Stats 2019, 2, 164-173. https://doi.org/10.3390/stats2010012
Thangjai W, Niwitpong S-A. Confidence Intervals for the Signal-to-Noise Ratio and Difference of Signal-to-Noise Ratios of Log-Normal Distributions. Stats. 2019; 2(1):164-173. https://doi.org/10.3390/stats2010012
Chicago/Turabian StyleThangjai, Warisa, and Sa-Aat Niwitpong. 2019. "Confidence Intervals for the Signal-to-Noise Ratio and Difference of Signal-to-Noise Ratios of Log-Normal Distributions" Stats 2, no. 1: 164-173. https://doi.org/10.3390/stats2010012
APA StyleThangjai, W., & Niwitpong, S. -A. (2019). Confidence Intervals for the Signal-to-Noise Ratio and Difference of Signal-to-Noise Ratios of Log-Normal Distributions. Stats, 2(1), 164-173. https://doi.org/10.3390/stats2010012