The Use of Radioactive Tracers to Detect and Correct Feed Flowrate Imbalances in Parallel Flotation Banks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rougher Flotation Circuit
2.2. Residence Time Distribution Measurements
2.3. RTD Characterizations
2.4. Pulp Distribution between Parallel Flotation Banks
3. Results
4. Conclusions
- The radioactive tests allowed an imbalance between two parallel flotation banks (rougher banks A and B) to be detected by non-invasive measurements. The rougher bank B received approximately 66% of the feed from the distribution box. This operational problem was not observable by the online instrumentation available in the plant.
- The plant flexibility made it possible for changes in the feed distributor to decrease the flowrate towards the rougher bank B.
- An alternative valve configuration in the feed distributor was set, which allowed the residence times of the parallel banks to be balanced.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
References
- Bogdanov, O.; Hainman, V.; Yanis, N.; Podnek, A. Investigation of the action of modifying agents in flotation by means of radioactive tracers. Int. J. Appl. Radiat. Isot. 1957, 2, 206–207. [Google Scholar] [CrossRef]
- Petryka, L.; Przewlocki, K. Radiotracer Investigations of Benefication Copper Ore in the Industrial Flotation Process. Isot. Isot. Environ. Health Stud. 1983, 19, 339–341. [Google Scholar] [CrossRef]
- Gaudin, A.; de Bruyn, P.; Bloecher, F.; Chang, C. Radioactive Tracers in Flotation. Min. Metall. 1948, 29, 432–435. [Google Scholar]
- Batty, J.V.; Gibbs, H.; Poston, A.M. Radioactive Techniques for Continuously Measuring Flotation Froth Density and Pulp Flow Rates; US Department of the Interior, Bureau of Mines: Washington, DC, USA, 1966; Volume 6855.
- Mesa, D.; Cole, K.; van Heerden, M.R.; Brito-Parada, P.R. Hydrodynamic characterisation of flotation impeller designs using Positron Emission Particle Tracking (PEPT). Sep. Purif. Technol. 2021, 276, 119316. [Google Scholar] [CrossRef]
- Waters, K.; Rowson, N.; Fan, X.; Parker, D.; Cilliers, J. Positron emission particle tracking as a method to map the movement of particles in the pulp and froth phases. Miner. Eng. 2008, 21, 877–882. [Google Scholar] [CrossRef]
- Boucher, D.; Jordens, A.; Sovechles, J.; Langlois, R.; Leadbeater, T.W.; Rowson, N.A.; Cilliers, J.J.; Waters, K.E. Direct mineral tracer activation in positron emission particle tracking of a flotation cell. Miner. Eng. 2017, 100, 155–165. [Google Scholar] [CrossRef]
- Yianatos, J.; Díaz, F. Hydrodynamic characterization of industrial flotation machines using radioisotopes. In Radioisotopes-Applications in Physical Sciences; InTech: Shanghai, China, 2011; pp. 391–416. [Google Scholar]
- Yianatos, J.; Bergh, L.; Vinnett, L.; Panire, I.; Diaz, F. Modelling of residence time distribution of liquid and solid in mechanical flotation cells. Miner. Eng. 2015, 78, 69–73. [Google Scholar] [CrossRef]
- Yianatos, J.; Vinnett, L.; Panire, I.; Alvarez-Silva, M.; Díaz, F. Residence time distribution measurements and modelling in industrial flotation columns. Miner. Eng. 2017, 110, 139–144. [Google Scholar] [CrossRef]
- Lelinski, D.; Allen, J.; Redden, L.; Weber, A. Analysis of the residence time distribution in large flotation machines. Miner. Eng. 2002, 15, 499–505. [Google Scholar] [CrossRef]
- Massinaei, M.; Kolahdoozan, M.; Noaparast, M.; Oliazadeh, M.; Yianatos, J.; Shamsadini, R.; Yarahmadi, M. Hydrodynamic and kinetic characterization of industrial columns in rougher circuit. Miner. Eng. 2009, 22, 357–365. [Google Scholar] [CrossRef]
- Mankosa, M.; Kohmuench, J.; Christodoulou, L.; Yan, E. Improving fine particle flotation using the StackCell™ (raising the tail of the elephant curve). Miner. Eng. 2018, 121, 83–89. [Google Scholar] [CrossRef]
- Wills, B.A.; Finch, J. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery; Butterworth-Heinemann: Oxford, UK; Waltham, MA, USA, 2015. [Google Scholar]
- Leonida, C. Froth Flotation for the 21st Century. Eng. Min. J. 2019, 220, 58–64. [Google Scholar]
- Mesa, D.; Brito-Parada, P.R. Scale-up in froth flotation: A state-of-the-art review. Sep. Purif. Technol. 2019, 210, 950–962. [Google Scholar] [CrossRef]
- Yianatos, J.; Bergh, L.; Pino, C.; Vinnett, L.; Muñoz, C.; Yañez, A. Industrial evaluation of a new flotation mechanism for large flotation cells. Miner. Eng. 2012, 36–38, 262–271. [Google Scholar] [CrossRef]
- Levenspiel, O. Chemical Reaction Engineering, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
Tracer | Baseline | Valve Setting 1 | Valve Setting 2 |
---|---|---|---|
Liquid | ✓ | - | ✓ |
Fine Solid | ✓ | ✓ | - |
Medium Solid | ✓ | ✓ | - |
Coarse Solid | ✓ | - | ✓ |
Tracer | Rougher Bank | Mean Residence Times, min | |||||
---|---|---|---|---|---|---|---|
Baseline | Valve Setting 1 | Valve Setting 2 | |||||
Cell 1 | Cells 1 + 2 | Cell 1 | Cells 1 + 2 | Cell 1 | Cells 1 + 2 | ||
Liquid | A | 10.5 | 16.6 | - | - | 10.8 | 22.9 |
B | 4.8 | 10.8 | - | - | 9.5 | 21.9 | |
Fine Solid | A | 15.9 | 21.2 | 13.4 | 22.9 | - | - |
B | 5.8 | 11.7 | 9.1 | 19.5 | - | - | |
Medium Solid | A | 14.4 | 21.3 | 10.3 | 21.3 | - | - |
B | 6.0 | 12.8 | 5.4 | 13.6 | - | - | |
Coarse Solid | A | 13.2 | 18.4 | - | - | 11.5 | 18.4 |
B | 6.0 | 11.6 | - | - | 10.2 | 21.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henríquez, F.; Maldonado, L.; Yianatos, J.; Vallejos, P.; Díaz, F.; Vinnett, L. The Use of Radioactive Tracers to Detect and Correct Feed Flowrate Imbalances in Parallel Flotation Banks. J 2022, 5, 287-297. https://doi.org/10.3390/j5020020
Henríquez F, Maldonado L, Yianatos J, Vallejos P, Díaz F, Vinnett L. The Use of Radioactive Tracers to Detect and Correct Feed Flowrate Imbalances in Parallel Flotation Banks. J. 2022; 5(2):287-297. https://doi.org/10.3390/j5020020
Chicago/Turabian StyleHenríquez, Felipe, Luis Maldonado, Juan Yianatos, Paulina Vallejos, Francisco Díaz, and Luis Vinnett. 2022. "The Use of Radioactive Tracers to Detect and Correct Feed Flowrate Imbalances in Parallel Flotation Banks" J 5, no. 2: 287-297. https://doi.org/10.3390/j5020020
APA StyleHenríquez, F., Maldonado, L., Yianatos, J., Vallejos, P., Díaz, F., & Vinnett, L. (2022). The Use of Radioactive Tracers to Detect and Correct Feed Flowrate Imbalances in Parallel Flotation Banks. J, 5(2), 287-297. https://doi.org/10.3390/j5020020