Comparative Assessment of Biomass and Power-to-Gas Processes Integrated with Different Electricity-Driven Gasification Technologies
Abstract
1. Introduction
2. Process Description
2.1. Requirements on SNG
2.2. Process Configurations
2.3. Gasification Unit
- (1)
- Pure O2 gasification
- (2)
- O2-enriched air gasification
- (3)
- Steam gasification
2.4. Cooling and Cleaning Unit
2.5. Methanation Synthesis Unit
2.6. CO2 Separation and Compression
2.7. Process Simulation and Heat Integration
3. Assessment Methodology
3.1. Life-Cycle Model
- (1)
- Cultivation and collection
- (2)
- Feedstock transportation
- (3)
- Constructing and dismantling
- (4)
- SNG production
- (5)
- End use
3.2. Technical Assessment
3.3. Carbon Emission Assessment
3.4. Economic Assessment
4. Results and Discussion
4.1. Product Properties
4.2. Life-Cycle Energy and Exergy Efficiencies
4.3. Life-Cycle Carbon Emission
- (1)
- Influence of allocation method of cultivation stage
- (2)
- Influence of renewable power’s GWP
4.4. Equivalent Unit Production Cost
- (1)
- Cost under Baseline Scenario
- (2)
- Influences of Feedstock and Electricity Costs
- (3)
- Influences of Carbon Trading of Separated CO2 Stream
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AOH | annual operation hours |
BPtG | biomass and power-to-gas |
C | cost |
CPCD | China products carbon footprint factors database |
C&C | biomass cultivation and collection |
C&D | plant constructing and dismantling |
eUPC | equivalent unit production cost |
EU | End use |
FT | feedstock transportation |
GWP | global warming potential |
HHV | higher heating value |
LHV | lower heating value |
MWE | moderate water electrolysis |
O&M | operation and maintenance |
pM | methanation pressure |
PIN | input power |
PAG | Plasma-assisted gasification |
PG | producer gas |
RHG | resistance heating gasification |
SCE | specific chemical exergy |
SE | specific exergy |
SNG | synthetic natural gas |
SP | SNG production |
SWE | sufficient water electrolysis |
TCI | total capital investment |
TPC | total production cost |
UPC | Unit production cost |
VPAS | vacuum pressure swing adsorption |
WE | water electrolysis |
ηEH | electrical-to-heat efficiency |
ηWE | energy efficiency of water electrolysis |
Subscript | |
FS | feedstock |
RE | renewable power |
LC | life cycle |
+CP | with CO2 capture |
References
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on Research Achievements of Biogas from Anaerobic Digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Song, G.; Xiao, J.; Yan, C.; Gu, H.; Zhao, H. Quality of Gaseous Biofuels: Statistical Assessment and Guidance on Production Technologies. Renew. Sustain. Energy Rev. 2022, 169, 112959. [Google Scholar] [CrossRef]
- Mesfun, S.; Lundgren, J.; Toffolo, A.; Lindbergh, G.; Lagergren, C.; Engvall, K. Integration of an Electrolysis Unit for Producer Gas Conditioning in a Bio-Synthetic Natural Gas Plant. J. Energy Resour. Technol. Trans. ASME 2019, 141, 12002. [Google Scholar] [CrossRef]
- Sarić, M.; Dijkstra, J.W.; Walspurger, S. Power-to-Gas Coupling to Biomethane Production: A Feasibility Study. In Proceedings of the 13th International Conference on Polygeneration Strategies, Vienna, Austria, 18–20 November 2013. [Google Scholar]
- Di Salvo, M.; Wei, M. Synthesis of Natural Gas from Thermochemical and Power-to-Gas Pathways for Industrial Sector Decarbonization in California. Energy 2019, 182, 1250–1264. [Google Scholar] [CrossRef]
- Barbuzza, E.; Buceti, G.; Pozio, A.; Santarelli, M.; Tosti, S. Gasification of Wood Biomass with Renewable Hydrogen for the Production of Synthetic Natural Gas. Fuel 2019, 242, 520–531. [Google Scholar] [CrossRef]
- Song, G.; Wang, L.; Yao, A.; Cui, X.; Xiao, J. Technical and Economic Assessment of a High-Quality Syngas Production Process Integrating Oxygen Gasification and Water Electrolysis: The Chinese Case. ACS Omega 2021, 6, 27851–27864. [Google Scholar] [CrossRef]
- Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S. Future Cost and Performance of Water Electrolysis: An Expert Elicitation Study. Int. J. Hydrogen Energy 2017, 42, 30470–30492. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen Production for Energy: An Overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Cui, X.; Song, G.; Yao, A.; Wang, H.; Wang, L.; Xiao, J. Technical and Economic Assessments of a Novel Biomass-to-Synthetic Natural Gas (SNG) Process Integrating O2-Enriched Air Gasification. Process Saf. Environ. Prot. 2021, 156, 417–428. [Google Scholar] [CrossRef]
- Song, G.; Zhao, S.; Wang, X.; Cui, X.; Wang, H.; Xiao, J. An Efficient Biomass and Renewable Power-to-Gas Process Integrating Electrical Heating Gasification. Case Stud. Therm. Eng. 2022, 30, 101735. [Google Scholar] [CrossRef]
- Zhang, X.; Bauer, C.; Mutel, C.L.; Volkart, K. Life Cycle Assessment of Power-to-Gas: Approaches, System Variations and Their Environmental Implications. Appl. Energy 2017, 190, 326–338. [Google Scholar] [CrossRef]
- Prabhakaran, P.; Giannopoulos, D.; Köppel, W.; Mukherjee, U.; Remesh, G.; Graf, F.; Trimis, D.; Kolb, T.; Founti, M. Cost Optimisation and Life Cycle Analysis of SOEC Based Power to Gas Systems Used for Seasonal Energy Storage in Decentral Systems. J. Energy Storage 2019, 26, 100987. [Google Scholar] [CrossRef]
- Skorek-Osikowska, A.; Martín-Gamboa, M.; Dufour, J. Thermodynamic, Economic and Environmental Assessment of Renewable Natural Gas Production Systems. Energy Convers. Manag. X 2020, 7, 100046. [Google Scholar] [CrossRef]
- GB/T-33445-2016; Coal-Based Synthetic Natural Gas. Chinese National Technical Standard: Beijing, China, 2016.
- GB-17820-2018; Natural Gas. Chinese National Technical Standard: Beijing, China, 2018.
- Song, G.; Xiao, J.; Yu, Y.; Shen, L. A Techno-Economic Assessment of SNG Production from Agriculture Residuals in China. Energy Sources Part B Econ. Plan. Policy 2016, 11, 465–471. [Google Scholar] [CrossRef]
- Song, G.; Xiao, J.; Zhao, H.; Shen, L. A Unified Correlation for Estimating Specific Chemical Exergy of Solid and Liquid Fuels. Energy 2012, 40, 164–173. [Google Scholar] [CrossRef]
- Ding, Z.; Han, Z.; Fu, Q.; Shen, Y.; Tian, C.; Zhang, D. Optimization and Analysis of the VPSA Process for Industrial-Scale Oxygen Production. Adsorption 2018, 24, 499–516. [Google Scholar] [CrossRef]
- Vilela, C.M.; Boymans, E.; Vreugdenhil, B. Co-Production of Aromatics in Biomass and Waste Gasification. Processes 2021, 9, 463. [Google Scholar] [CrossRef]
- Zwart, R.W.R.; Boerrigter, H.; Deurwaarder, E.P.; van der Meijden, C.M.; Paasen, S.V.B. Production of Synthetic Natural Gas (SNG) from Biomass. Available online: https://www.biosng.com/fileadmin/biosng/user/documents/reports/e06018.pdf (accessed on 19 September 2021).
- Juraík, M.; Sues, A.; Ptasinski, K.J. Exergetic Evaluation and Improvement of Biomass-to-Synthetic Natural Gas Conversion. Energy Environ. Sci. 2009, 2, 791–801. [Google Scholar] [CrossRef]
- Seemann, M.C.; Schildhauer, T.J.; Biollaz, S.M.A. Fluidized Bed Methanation of Wood-Derived Producer Gas for the Production of Synthetic Natural Gas. Ind. Eng. Chem. Res. 2010, 49, 7034–7038. [Google Scholar] [CrossRef]
- Guo, W.; Feng, F.; Song, G.; Xiao, J.; Shen, L. Simulation and Energy Performance Assessment of CO2 Removal from Crude Synthetic Natural Gas via Physical Absorption Process. J. Nat. Gas Chem. 2012, 21, 633–638. [Google Scholar] [CrossRef]
- Song, G.; Feng, F.; Xiao, J.; Shen, L. Technical Assessment of Synthetic Natural Gas (SNG) Production from Agriculture Residuals. J. Therm. Sci. 2013, 22, 359–365. [Google Scholar] [CrossRef]
- Song, G.; Qiao, H.; Gu, H.; Cui, X. Exergetic Comparison of Electrical Heating Gasification and Water Electrolysis Assisted Gasification for Renewable Electricity Storage. BioResources 2022, 17, 993–1000. [Google Scholar] [CrossRef]
- Li, Q. Integrated Performance Evaluation of Hydrogen Production from Biomass Stage-Gasification Based on Exergy Theory; Southeast University: Dhaka, Bangladesh, 2019. [Google Scholar]
- China City Greenhouse Gas Working Group. China Products Carbon Footprint Factors Database. Available online: https://lca.cityghg.com/ (accessed on 18 December 2024).
- Li, Q.; Song, G.; Xiao, J.; Hao, J.; Li, H.; Yuan, Y. Exergetic Life Cycle Assessment of Hydrogen Production from Biomass Staged-Gasification. Energy 2020, 190, 116416. [Google Scholar] [CrossRef]
- Feng, F.; Song, G.; Shen, L.; Xiao, J. Environmental Benefits Analysis Based on Life Cycle Assessment of Rice Straw-Based Synthetic Natural Gas in China. Energy 2017, 139, 341–349. [Google Scholar] [CrossRef]
- EPA. Emission Factors for Greenhouse Gas Inventories; EPA: Washington, DC, USA, 2021. [Google Scholar]
- Abbasi, M.; Chahartaghi, M.; Hashemian, S.M. Energy, Exergy, and Economic Evaluations of a CCHP System by Using the Internal Combustion Engines and Gas Turbine as Prime Movers. Energy Convers. Manag. 2018, 173, 359–374. [Google Scholar] [CrossRef]
- Steubing, B.; Zah, R.; Ludwig, C. Life Cycle Assessment of SNG from Wood for Heating, Electricity, and Transportation. Biomass Bioenergy 2011, 35, 2950–2960. [Google Scholar] [CrossRef]
- China Carbon Emissions Trading Network Chart of the Seven Major Carbon Markets in China. Available online: http://www.tanpaifang.com/tanhangqing/ (accessed on 16 November 2021).
- Wei, T.; Xiao, J.; Yang, K. Life Cycle Assessment of Jet Fuel from Biomass Gasification and Fischer-Tropsch Synthesis. China Environ. Sci. 2018, 38, 383–391. [Google Scholar] [CrossRef]
- Solar Thermal Energy Alliance. Price List of Electricity Storage at the Generating Side. Available online: https://www.sohu.com/a/435556045_120093798 (accessed on 21 December 2021).
- Beijixing Energy Storage Network Agent Electricity Purchase Prices of 29 Provinces and Cities in China in January 2022. Available online: https://chuneng.bjx.com.cn/news/20211229/1196551.shtml (accessed on 12 January 2022).
BPtG Process | SWE | MWE | VPSA | PAG | RHG |
---|---|---|---|---|---|
Feedstock (t/h) | 25 | 25 | 25 | 25 | 25 |
O2 purity (%) | 100 | 100 | 90 | — | — |
SN | 0.933 | 0.151 | 0.164 | 0.300 | 0.300 |
pM (bar) | 65 | 40 | 45 | 30 | 30 |
CH4 (vol.%) | 92.25 | 93.68 | 85.00 | 93.62 | 93.62 |
H2 (vol.%) | 3.38 | 2.86 | 2.65 | 2.92 | 2.92 |
CO (vol.%) | 0.001 | 0.02 | 0.02 | 0.02 | 0.02 |
CO2 (vol.%) | 3.57 | 1.87 | 3.01 | 1.87 | 1.87 |
N2 (vol.%) | 0.61 | 1.19 | 8.85 | 1.19 | 1.19 |
HHV (MJ/Nm3) | 36.39 | 37.59 | 34.12 | 37.58 | 37.58 |
SCE (MJ/Nm3) | 33.94 | 35.06 | 31.82 | 35.05 | 35.05 |
SE (MJ/Nm3) | 34.39 | 35.51 | 32.27 | 35.49 | 35.49 |
Yield (Nm3/kg) | 0.829 | 0.422 | 0.336 | 0.422 | 0.422 |
PIN (MW) | 192.2 | 43.8 | 7.0 | 39.7 | 36.3 |
BPtG Process | SWE | MWE | VPSA | PAG | RHG |
---|---|---|---|---|---|
ECT (106 CNY) | 137 | 118 | 72 | 94 | 94 |
TCI (106 CNY) | 391 | 337 | 206 | 268 | 268 |
eUPC (CNY/Nm3) | 3.475 | 2.719 | 2.025 | 2.499 | 2.400 |
eUPC contribution (%) | |||||
Feedstock cost | 10.2 | 25.4 | 47.1 | 27.6 | 28.8 |
Electricity cost | 78.8 | 44.5 | 13.2 | 43.9 | 41.7 |
O&M | 5.5 | 5.6 | 20.0 | 6.1 | 6.4 |
Depreciation | 4.3 | 9.1 | 10.4 | 7.9 | 8.2 |
BPtG | Relative Change (%) | ||
---|---|---|---|
CFS (¥/t) | 300 | 300 | −50 |
CRE (¥/kWh) | 0.9 | 0.3 | 0.1 |
MWE process | −1.3 | −2.6 | −6.7 |
VPSA process | −4.8 | −6.1 | −18.2 |
PAG process | −1.5 | −2.8 | −7.8 |
RHG process | −1.6 | −2.9 | −8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, G.; Cui, X.; Wang, L.; Wei, Z. Comparative Assessment of Biomass and Power-to-Gas Processes Integrated with Different Electricity-Driven Gasification Technologies. Clean Technol. 2025, 7, 7. https://doi.org/10.3390/cleantechnol7010007
Song G, Cui X, Wang L, Wei Z. Comparative Assessment of Biomass and Power-to-Gas Processes Integrated with Different Electricity-Driven Gasification Technologies. Clean Technologies. 2025; 7(1):7. https://doi.org/10.3390/cleantechnol7010007
Chicago/Turabian StyleSong, Guohui, Xiaobo Cui, Liang Wang, and Zheng Wei. 2025. "Comparative Assessment of Biomass and Power-to-Gas Processes Integrated with Different Electricity-Driven Gasification Technologies" Clean Technologies 7, no. 1: 7. https://doi.org/10.3390/cleantechnol7010007
APA StyleSong, G., Cui, X., Wang, L., & Wei, Z. (2025). Comparative Assessment of Biomass and Power-to-Gas Processes Integrated with Different Electricity-Driven Gasification Technologies. Clean Technologies, 7(1), 7. https://doi.org/10.3390/cleantechnol7010007