The Effect of CaO in the Immobilization of Cd2+ and Pb2+ in Fly Ash-Based Geopolymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Geopolymer
2.3. Leaching Concentration and Solidification Efficiency Calculation for Heavy Metals
2.4. Unconfined Compressive Strength (UCS)
2.5. Phase and Microstructural Analyses
3. Results and Discussion
3.1. Effect of FA Content on the UCS of Geopolymers
3.2. The Effects of Oxidizing Agents on the UCS of Geopolymer Materials
3.2.1. Content of CaO
3.2.2. Effect of n(SiO2)/n(Al2O3) Ratio on UCS of Geopolymer
3.2.3. Effect of CaO-SiO2-Al2O3 on UCS of Geopolymer
3.3. Leaching Results
3.4. Immobilization Mechanisms of Heavy Mental
3.4.1. X-ray Diffraction (XRD) Analysis
3.4.2. Infrared Spectroscopy (IR) Analysis
3.4.3. Scanning Electron Microscope (SEM) Analysis
3.4.4. Solidification Mechanism of Geopolymer
4. Conclusions
- (i)
- The role of CaO in the geopolymerization process was systematically explored. The findings revealed a direct relationship between the CaO concentration and the UCS of the geopolymer samples. The highest UCS, reaching 24.8 MPa at 28 days, was achieved with a CaO content of approximately 31.5%. Additionally, the UCS of the geopolymer exceeded 20 MPa when the molar ratio of CaO/(SiO2 + Al2O3) was between 0.94 and 1.21. This comprehensive understanding provides a theoretical basis for optimizing geopolymer solidification technology.
- (ii)
- The investigation revealed that augmenting the CaO content in the geopolymer had a substantial impact on diminishing the leaching concentrations of heavy metals, specifically, Pb2+ and Cd2+. At a CaO content of 32%, the concentrations of Pb2+ and Cd2+ in the leaching solution fell to 0.02 mg/L and 0.01 mg/L, respectively. This decrease was achieved with a solidification/stabilization (S/S) rate of 93.6%.
- (iii)
- Research on geopolymers, including techniques such as FTIR, XRD, and SEM, has demonstrated that they undergo an intricate sequence of alkali activation processes. This process results in the formation of a unique 3D network that comprises zeolite-looking cage structures. These structures play a vital function in the process of solidifying heavy metal ions, thereby ensuring their stability and preventing their movement. The comprehensive structural analysis confirms the superior performance of geopolymers in heavy metal immobilization and proposes methods for optimizing geopolymer formulations in high-calcium environments.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, X.; Li, J.; Zhao, X.; Zhu, B.; Zhang, G. A Review on the Management of Municipal Solid Waste Fly Ash in American. Procedia Environ. Sci. 2016, 31, 535–540. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Ma, G.X.; Yuan, G.L. Content Analysis of Heavy Metals in Fly Ash from One Shanghai Municipal Solid Waste Incineration (MSWI) Plant. Adv. Mater. Res. 2012, 531, 272–275. [Google Scholar] [CrossRef]
- Wang, P.; Hu, Y.; Cheng, H. Municipal Solid Waste (MSW) Incineration Fly Ash as an Important Source of Heavy Metal Pollution in China. Environ. Pollut. 2019, 252, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, F.; Liu, X.; Han, M.; Zhang, R. A Mini-Review of Heavy Metal Recycling Technologies for Municipal Solid Waste Incineration Fly Ash. Waste Manag. Res. 2021, 39, 1135–1148. [Google Scholar] [CrossRef]
- Marieta, C.; Martín-Garin, A.; Leon, I.; Guerrero, A. Municipal Solid Waste Incineration Fly Ash: From Waste to Cement Manufacturing Resource. Materials 2023, 16, 2538. [Google Scholar] [CrossRef]
- Guo, X.; Hu, W.; Shi, H. Microstructure and Self-Solidification/Stabilization (S/S) of Heavy Metals of Nano-Modified CFA–MSWIFA Composite Geopolymers. Constr. Build. Mater. 2014, 56, 81–86. [Google Scholar] [CrossRef]
- Luna Galiano, Y.; Fernández Pereira, C.; Vale, J. Stabilization/Solidification of a Municipal Solid Waste Incineration Residue Using Fly Ash-Based Geopolymers. J. Hazard. Mater. 2011, 185, 373–381. [Google Scholar] [CrossRef]
- Das, D.; Rout, P.K. Synthesis, Characterization and Properties of Fly Ash Based Geopolymer Materials. J. Mater. Eng. Perform. 2021, 30, 3213–3231. [Google Scholar] [CrossRef]
- Rożek, P.; Król, M.; Mozgawa, W. Geopolymer-Zeolite Composites: A Review. J. Clean. Prod. 2019, 230, 557–579. [Google Scholar] [CrossRef]
- He, P.; Wang, M.; Fu, S.; Jia, D.; Yan, S.; Yuan, J.; Xu, J.; Wang, P.; Zhou, Y. Effects of Si/Al Ratio on the Structure and Properties of Metakaolin Based Geopolymer. Ceram. Int. 2016, 42, 14416–14422. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer Technology: The Current State of the Art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Yip, C.K.; Van Deventer, J.S.J. Microanalysis of Calcium Silicate Hydrate Gel Formed within a Geopolymeric Binder. J. Mater. Sci. 2003, 38, 3851–3860. [Google Scholar] [CrossRef]
- Yip, C.; Lukey, G.; van Deventer, J. The Effect of Calcium Sulphate Hemihydrate on the Geopolymerisation of Metakaolin. In Chemeca 2003: Products and Processes for the 21st Century, Proceedings of the 31st Australasian Chemical Engineering Conference, Adelaide, Australia, 1 January 2003; Institution of Engineers: Barton, Australia, 2003; pp. 845–851. [Google Scholar]
- El-Eswed, B.I.; Yousef, R.I.; Alshaaer, M.; Hamadneh, I.; Al-Gharabli, S.I.; Khalili, F. Stabilization/Solidification of Heavy Metals in Kaolin/Zeolite Based Geopolymers. Int. J. Miner. Process. 2015, 137, 34–42. [Google Scholar] [CrossRef]
- Liu, J.; Xie, G.; Wang, Z.; Li, Z.; Fan, X.; Jin, H.; Zhang, W.; Xing, F.; Tang, L. Synthesis of Geopolymer Using Municipal Solid Waste Incineration Fly Ash and Steel Slag: Hydration Properties and Immobilization of Heavy Metals. J. Environ. Manag. 2023, 341, 118053. [Google Scholar] [CrossRef] [PubMed]
- Van Jaarsveld, J.G.S.; Van Deventer, J.S.J.; Schwartzman, A. The Potential Use of Geopolymeric Materials to Immobilise Toxic Metals: Part II. Material and Leaching Characteristics. Miner. Eng. 1999, 12, 75–91. [Google Scholar] [CrossRef]
- Xu, J.Z.; Zhou, Y.L.; Chang, Q.; Qu, H.Q. Study on the Factors of Affecting the Immobilization of Heavy Metals in Fly Ash-Based Geopolymers. Mater. Lett. 2006, 60, 820–822. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, C.; Zhang, Z.; Wang, H.; Zhou, S.; Zhou, W. A Comparative Study on Fly Ash, Geopolymer and Faujasite Block for Pb Removal from Aqueous Solution. Fuel 2016, 185, 181–189. [Google Scholar] [CrossRef]
- Baran, P.; Nazarko, M.; Włosińska, E.; Kanciruk, A.; Zarębska, K. Synthesis of Geopolymers Derived from Fly Ash with an Addition of Perlite. J. Clean. Prod. 2021, 293, 126112. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Inorganic Polymeric New Materials. J. Therm. Anal. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Xu, L.-Y.; Alrefaei, Y.; Wang, Y.-S.; Dai, J.-G. Recent Advances in Molecular Dynamics Simulation of the N-A-S-H Geopolymer System: Modeling, Structural Analysis, and Dynamics. Constr. Build. Mater. 2021, 276, 122196. [Google Scholar] [CrossRef]
- Kim, J.H.; Anwer, H.; Kim, Y.S.; Park, J.-W. Decontamination of Radioactive Cesium-Contaminated Soil/Concrete with Washing and Washing Supernatant—Critical Review. Chemosphere 2021, 280, 130419. [Google Scholar] [CrossRef]
- Ma, G.; Bai, C.; Wang, M.; He, P. Effects of Si/Al Ratios on the Bulk-Type Zeolite Formation Using Synthetic Metakaolin-Based Geopolymer with Designated Composition. Crystals 2021, 11, 1310. [Google Scholar] [CrossRef]
- Luo, Y.; Brouwers, H.J.H.; Yu, Q. Understanding the Gel Compatibility and Thermal Behavior of Alkali Activated Class F Fly Ash/Ladle Slag: The Underlying Role of Ca Availability. Cem. Concr. Res. 2023, 170, 107198. [Google Scholar] [CrossRef]
- Hassan, H.S.; Abdel-Gawwad, H.A.; García, S.R.V.; Israde-Alcántara, I. Fabrication and Characterization of Thermally-Insulating Coconut Ash-Based Geopolymer Foam. Waste Manag. 2018, 80, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Pan, Y.; Bai, Y.; Sasaki, K. Immobilization of Strontium in Geopolymers Activated by Different Concentrations of Sodium Silicate Solutions. Environ. Sci. Pollut. Res. 2022, 29, 24298–24308. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Nakama, S.; Sasaki, K. Immobilization of Cesium in Fly Ash-Silica Fume Based Geopolymers with Different Si/Al Molar Ratios. Sci. Total Environ. 2019, 687, 1127–1137. [Google Scholar] [CrossRef] [PubMed]
- Provis, J.L. Alkali-Activated Materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Mallow, W.A. Fixation of Haxardous Wastes and Related Products. U.S. Patent No. 5,976,244, 2 November 1999. [Google Scholar]
- Tian, Q.; Chen, C.; Wang, M.; Guo, B.; Zhang, H.; Sasaki, K. Effect of Si/Al Molar Ratio on the Immobilization of Selenium and Arsenic Oxyanions in Geopolymer. Environ. Pollut. 2021, 274, 116509. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Wang, F.; He, X.; Hu, X. Resistance and Durability of Fly Ash Based Geopolymer for Heavy Metal Immobilization: Properties and Mechanism. RSC Adv. 2024, 14, 12580–12592. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Zhang, W.; Li, Z.; Zhang, Y.; Li, Y.; Ren, Y. Effects of Si/Al Ratio on the Efflorescence and Properties of Fly Ash Based Geopolymer. J. Clean. Prod. 2020, 244, 118852. [Google Scholar] [CrossRef]
- Yunsheng, Z.; Wei, S.; Qianli, C.; Lin, C. Synthesis and Heavy Metal Immobilization Behaviors of Slag Based Geopolymer. J. Hazard. Mater. 2007, 143, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Y.; Zhou, S.; Lei, X. Reduction/Immobilization Processes of Hexavalent Chromium Using Metakaolin-Based Geopolymer. J. Environ. Chem. Eng. 2017, 5, 373–380. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Yan, F. Synthesis and Mechanical Properties of Metakaolinite-Based Geopolymer. Colloids Surf. A Physicochem. Eng. Asp. 2005, 268, 1–6. [Google Scholar] [CrossRef]
- Lee, W.K.W.; Van Deventer, J.S.J. Structural Reorganisation of Class F Fly Ash in Alkaline Silicate Solutions. Colloids Surf. A Physicochem. Eng. Asp. 2002, 211, 49–66. [Google Scholar] [CrossRef]
- Van Jaarsveld, J.G.S.; Van Deventer, J.S.J.; Lorenzen, L. Factors Affecting the Immobilization of Metals in Geopolymerized Flyash. Met. Mater. Trans. B 1998, 29, 283–291. [Google Scholar] [CrossRef]
- Van Jaarsveld, J.G.S.; Van Deventer, J.S.J. The Effect of Metal Contaminants on the Formation and Properties of Waste-Based Geopolymers. Cem. Concr. Res. 1999, 29, 1189–1200. [Google Scholar] [CrossRef]
- Luna-Galiano, Y.; Leiva, C.; Arenas, C.; Fernández-Pereira, C. Fly Ash Based Geopolymeric Foams Using Silica Fume as Pore Generation Agent. Physical, Mechanical and Acoustic Properties. J. Non-Cryst. Solids 2018, 500, 196–204. [Google Scholar] [CrossRef]
- Fernández Pereira, C.; Luna, Y.; Querol, X.; Antenucci, D.; Vale, J. Waste Stabilization/Solidification of an Electric Arc Furnace Dust Using Fly Ash-Based Geopolymers. Fuel 2009, 88, 1185–1193. [Google Scholar] [CrossRef]
- Arenas, C.; Luna-Galiano, Y.; Leiva, C.; Vilches, L.F.; Arroyo, F.; Villegas, R.; Fernández-Pereira, C. Development of a Fly Ash-Based Geopolymeric Concrete with Construction and Demolition Wastes as Aggregates in Acoustic Barriers. Constr. Build. Mater. 2017, 134, 433–442. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, F.; Zhou, F.; Lu, M.; Hou, H.; Li, J.; Liu, D.; Wang, T. Early Solidification/Stabilization Mechanism of Heavy Metals (Pb, Cr and Zn) in Shell Coal Gasification Fly Ash Based Geopolymer. Sci. Total Environ. 2022, 802, 149905. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, Y.; Li, Z.; Wang, C. Pb2+ and Cr3+ Immobilization Efficiency and Mechanism in Red-Mud-Based Geopolymer Grouts. Chemosphere 2023, 321, 138129. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Ji, Y.; Zhang, L.; Hou, Z.; Zhang, L.; Wu, S. Influence of Calcium Content on Structure and Strength of MSWI Bottom Ash-Based Geopolymer. Mag. Concr. Res. 2019, 71, 362–372. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J. Facile Preparation of Slag or Fly Ash Geopolymer Composite Coatings with Flame Resistance. Constr. Build. Mater. 2019, 203, 655–661. [Google Scholar] [CrossRef]
- Sun, S.; Lin, J.; Fang, L.; Ma, R.; Ding, Z.; Zhang, X.; Zhao, X.; Liu, Y. Formulation of Sludge Incineration Residue Based Geopolymer and Stabilization Performance on Potential Toxic Elements. Waste Manag. 2018, 77, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Guo, B.; Sasaki, K. Immobilization Mechanism of Se Oxyanions in Geopolymer: Effects of Alkaline Activators and Calcined Hydrotalcite Additive. J. Hazard. Mater. 2020, 387, 121994. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Wang, H.; Pan, Y.; Bai, Y.; Chen, C.; Yao, S.; Guo, B.; Zhang, H. Immobilization Mechanism of Cesium in Geopolymer: Effects of Alkaline Activators and Calcination Temperature. Environ. Res. 2022, 215, 114333. [Google Scholar] [CrossRef]
- Zhu, W.; Rao, X.H.; Liu, Y.; Yang, E.-H. Lightweight Aerated Metakaolin-Based Geopolymer Incorporating Municipal Solid Waste Incineration Bottom Ash as Gas-Forming Agent. J. Clean. Prod. 2018, 177, 775–781. [Google Scholar] [CrossRef]
No. | Type | n(SiO2)/n(Al2O3) | 7 d USC | 14 d USC | 28 d USC |
---|---|---|---|---|---|
1 | Low | 3.4 | 1.6 | 3.0 | 3.6 |
2 | 3.7 | 2.4 | 4.1 | 5.8 | |
3 | 4 | 4.3 | 5.3 | 6.9 | |
4 | 4.3 | 5.0 | 6.6 | 8.1 | |
5 | 4.6 | 4.0 | 5.9 | 7.2 | |
6 | Medium | 4.2 | 5.0 | 8.7 | 8.7 |
7 | 4.3 | 5.8 | 10.2 | 10.5 | |
8 | 4.4 | 5.3 | 9.2 | 10.2 | |
9 | 4.5 | 4.3 | 5.8 | 7.5 | |
10 | 4.6 | 4.0 | 5.4 | 7.3 | |
11 | High | 4.5 | 8.9 | 9.2 | 11.1 |
12 | 4.6 | 9.1 | 11.7 | 12.9 | |
13 | 4.7 | 11.7 | 14.1 | 15.2 | |
14 | 4.8 | 10.4 | 12.9 | 13.3 | |
15 | 4.9 | 8.8 | 10.0 | 11.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Wang, F.; He, X.; Hu, X. The Effect of CaO in the Immobilization of Cd2+ and Pb2+ in Fly Ash-Based Geopolymer. Clean Technol. 2024, 6, 1057-1075. https://doi.org/10.3390/cleantechnol6030053
Ren X, Wang F, He X, Hu X. The Effect of CaO in the Immobilization of Cd2+ and Pb2+ in Fly Ash-Based Geopolymer. Clean Technologies. 2024; 6(3):1057-1075. https://doi.org/10.3390/cleantechnol6030053
Chicago/Turabian StyleRen, Xupicheng, Fan Wang, Xiang He, and Xiaomin Hu. 2024. "The Effect of CaO in the Immobilization of Cd2+ and Pb2+ in Fly Ash-Based Geopolymer" Clean Technologies 6, no. 3: 1057-1075. https://doi.org/10.3390/cleantechnol6030053
APA StyleRen, X., Wang, F., He, X., & Hu, X. (2024). The Effect of CaO in the Immobilization of Cd2+ and Pb2+ in Fly Ash-Based Geopolymer. Clean Technologies, 6(3), 1057-1075. https://doi.org/10.3390/cleantechnol6030053