Real-Driving Emissions of an Aging Biogas-Fueled City Bus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Vehicle
2.2. Portable Emissions Measurement System
2.3. Test Route
2.4. Fuel
2.5. Calculation Procedure
2.5.1. Calculation of Fuel Mass Flow
2.5.2. Calculation of Fuel Consumption
2.5.3. Calculation of Exhaust Mass Flow
2.5.4. Emissions Dry–Wet Correction
2.5.5. Calculation of Mass Emissions
2.5.6. Calculation of Cycle Work
2.5.7. Calculation of Effective Power of the Engine
3. Results and Discussion
3.1. Ambient Conditions
3.2. Gaseous Emissions
3.2.1. Hot-Start Emissions
3.2.2. Cold-Start Emissions
3.3. Well-to-Wheels Analysis
3.3.1. Fuel Consumption
3.3.2. Biogas Production Process
3.3.3. GHG Inventory
4. Conclusions
- The rapid changes in exhaust gas temperature and composition under transient driving conditions seemed to be a critical challenge to an efficient operation of the TWC.
- Unimpressive CH4 oxidation and NOx reduction were observed in the catalyst after its service life of 375,000 km–400,000 km. In contrast, CO emissions were low, indicating efficient oxidation of CO in the catalyst.
- The primary reason for deficient CH4 and NOx conversion over the TWC was assumed to be the low CH4 reactivity due to a partial deactivation of the catalyst. At low loads, common in a city bus’s driving profile, the exhaust gas temperature was too low to allow efficient CH4 oxidation. In addition to the low CH4 oxidation rate, low CH4 reactivity also means that methane-based reducing agents for NOx reduction do not work, leading to substantial NOx breakthrough from the catalyst.
- In addition, during the cold-start, CH4 emissions were 2.3 times and NOx emissions 1.4 times as high as those during the hot-start, highlighting the temperature sensitivity of catalytic emission control systems.
- Based on the above, deterioration of the exhaust after-treatment systems over time should be monitored as they are exposed to different aging processes resulting in elevated real-world emissions.
- Another critical issue was the fluctuating air-to-fuel ratio. Lambda was outside the optimal range for a significant part of the time, likely reducing the TWC efficiency. This highlights the need for precise lambda control to ensure high conversion rates throughout the vehicle’s lifetime.
- The WTW analysis showed an 80% GHG emission benefit by switching from diesel to biomethane, giving a strong environmental argument for biogas use. With more precise methane emission control, GHG emission savings would advance towards 90%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFR | air-to-fuel ratio |
CAN | controller area network |
CH4 | methane |
CO | carbon monoxide |
CO2 | carbon dioxide |
CBG | compressed biogas |
CNG | compressed natural gas |
ECU | engine control unit |
EGR | exhaust gas recirculation |
GPS | global positioning system |
HC | hydrocarbon |
HD | heavy-duty |
ISC | in-service conformity |
NDIR | non-dispersive infrared |
NO | nitrogen monoxide |
NO2 | nitrogen dioxide |
NOx | nitrogen oxides |
OBD | on-board diagnostics |
PEMS | portable emissions measurement system |
PM | particulate matter |
RDE | real-driving emissions |
THC | total hydrocarbons |
TWC | three-way catalyst |
WTW | well-to-wheels |
References
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Stepping up Europe’s 2030 Climate Ambition. Investing in a Climate-Neutral Future for the Benefit of Our People. EU COM/2020/562 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0562 (accessed on 14 May 2022).
- Finnish Government; Marin’s Government; Government Programme. Strategic Themes. 3.1 Carbon Neutral Finland that Protects Biodiversity. Available online: https://valtioneuvosto.fi/en/marin/government-programme/carbon-neutral-finland-that-protects-biodiversity (accessed on 2 May 2022).
- Liikennefakta. Liikenteen Kasvihuonekaasupäästöt ja Energiankulutus. Finnish Transport and Communications Agency Traficom. Available online: https://liikennefakta.fi/fi/ymparisto/liikenteen-kasvihuonekaasupaastot-ja-energiankulutus (accessed on 2 May 2022).
- Franco, V.; Kousoulidou, M.; Muntean, M.; Ntziachristos, L.; Hausberger, S.; Dilara, P. Road vehicle emission factors development: A review. Atmos. Environ. 2013, 70, 84–97. [Google Scholar] [CrossRef]
- Biernat, K.; Samson-Bręk, I.; Chłopek, Z.; Owczuk, M.; Matuszewska, A. Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines. Energies 2021, 14, 3356. [Google Scholar] [CrossRef]
- Biogenic Carbon Dioxide. The Finnish Innovation Fund Sitra. Available online: https://www.sitra.fi/en/dictionary/biogenic-carbon-dioxide/ (accessed on 2 May 2022).
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 659–740. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf (accessed on 16 May 2022).
- Stoian, M.; Rogé, V.; Lazar, L.; Maurer, T.; Védrine, J.C.; Marcu, I.C.; Fechete, I. Total Oxidation of Methane on Oxide and Mixed Oxide Ceria-Containing Catalysts. Catalysts 2021, 11, 427. [Google Scholar] [CrossRef]
- Pan, D.; Tao, L.; Sun, K.; Golston, L.M.; Miller, D.J.; Zhu, T.; Qin, Y.; Zhang, Y.; Mauzerall, D.L.; Zondlo, M.A. Methane emissions from natural gas vehicles in China. Nat. Commun. 2020, 11, 4588. [Google Scholar] [CrossRef]
- Di Maio, D.; Beatrice, C.; Fraioli, V.; Napolitano, P.; Golini, S.; Rutigliano, F.G. Modeling of Three-Way Catalyst Dynamics for a Compressed Natural Gas Engine during Lean–Rich Transitions. Appl. Sci. 2019, 9, 4610. [Google Scholar] [CrossRef] [Green Version]
- Rodman Oprešnik, S.; Seljak, T.; Vihar, R.; Gerbec, M.; Katrašnik, T. Real-World Fuel Consumption, Fuel Cost and Exhaust Emissions of Different Bus Powertrain Technologies. Energies 2018, 11, 2160. [Google Scholar] [CrossRef] [Green Version]
- Gis, M.; Pielecha, J.; Gis, W. Exhaust emissions of buses LNG and Diesel in RDE tests. Open Eng. 2021, 11, 356–364. [Google Scholar] [CrossRef]
- Lv, L.; Ge, Y.; Ji, Z.; Tan, J.; Wang, X.; Hao, L.; Wang, Z.; Zhang, M.; Wang, C.; Liu, H. Regulated emission characteristics of in-use LNG and diesel semi-trailer towing vehicles under real driving conditions using PEMS. J. Environ. Sci. 2020, 88, 155–164. [Google Scholar] [CrossRef]
- Rosero, F.; Fonseca, N.; López, J.M.; Casanova, J. Effects of passenger load, road grade, and congestion level on real-world fuel consumption and emissions from compressed natural gas and diesel urban buses. Appl. Energy 2021, 282, 116195. [Google Scholar] [CrossRef]
- Gallus, J.; Kirchner, U.; Vogt, R.; Benter, T. Impact of driving style and road grade on gaseous exhaust emissions of passenger vehicles measured by a Portable Emission Measurement System (PEMS). Transp. Res. D Transp. Environ. 2017, 52, 215–226. [Google Scholar] [CrossRef]
- Chen, C.; Huang, C.; Jing, Q.; Wang, H.; Pan, H.; Li, L.; Zhao, J.; Dai, Y.; Huang, H.; Schipper, L.; et al. On-road emission characteristics of heavy-duty diesel vehicles in Shanghai. Atmos. Environ. 2007, 41, 5334–5344. [Google Scholar] [CrossRef]
- Ozener, O.; Ozkan, M. Assessment of real driving emissions of a bus operating on a dedicated route. Therm. Sci. 2020, 24, 66–73. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Valverde, V.; Kontses, A.; Suarez-Bertoa, R.; Selleri, T.; Melas, A.; Otura, M.; Ferrarese, C.; Martini, G.; Balazs, A.; et al. Effect of Extreme Temperatures and Driving Conditions on Gaseous Pollutants of a Euro 6d-Temp Gasoline Vehicle. Atmosphere 2021, 12, 1011. [Google Scholar] [CrossRef]
- Reiter, M.S.; Kockelman, K.M. The problem of cold starts: A closer look at mobile source emissions levels. Transp. Res. D Transp. Environ. 2016, 43, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Faria, M.V.; Varella, R.A.; Duarte, G.O.; Farias, T.L.; Baptista, P.C. Engine Cold Start Analysis Using Naturalistic Driving Data: City Level Impacts on Local Pollutants Emissions and Energy Consumption. Sci. Total Environ. 2018, 630, 544–559. [Google Scholar] [CrossRef]
- Yusuf, A.A.; Inambao, F.L. Effect of cold start emissions from gasoline-fueled engines of light-duty vehicles at low and high ambient temperatures: Recent trends. Case Stud. Therm. Eng. 2019, 14, 100417. [Google Scholar] [CrossRef]
- Lassi, U. Deactivation Correlations of Pd/Rh Three-way Catalysts Designed for Euro IV Emission Limits. Effect of Ageing Atmosphere, Temperature and Time. Academic Dissertation, University of Oulu, Department of Process and Environmental Engineering, Oulu, Finland, 2003. Available online: http://jultika.oulu.fi/files/isbn9514269543.pdf (accessed on 8 June 2022).
- Regulation No 595/2009 of the European Parliament and of the Council of 18 June 2009 on Type-Approval of Motor Vehicles and Engines with Respect to Emissions from Heavy Duty Vehicles (Euro VI) and Amending Regulation (EC) No 715/2007 and Directive 2007/46/EC and Repealing Directives 80/1269/EEC, 2005/55/EC and 2005/78/EC. EC 595/2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02009R0595-20200901&from=EN (accessed on 14 May 2022).
- ACEA. Facts and Figures. Average age of the EU Vehicle Fleet, by Country. Available online: https://www.acea.auto/figure/average-age-of-eu-vehicle-fleet-by-country/ (accessed on 20 June 2022).
- Regulation No 49 of the Economic Commission for Europe of the United Nations (UN/ECE)—Uniform Provisions Concerning the Measures to be Taken against the Emission of Gaseous and Particulate Pollutants from Compression-Ignition Engines and Positive Ignition Engines for Use in Vehicles. UN/ECE 49/2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:42013X0624(01)&from=EN (accessed on 12 May 2022).
- Mendoza Villafuerte, P.; Suarez Bertoa, R.; Giechaskiel, B.; Riccobono, F.; Bulgheroni, C.; Astorga, C.; Perujo, A. NOx, NH3, N2O and PN real driving emissions from a Euro VI heavy-duty vehicle. Impact of regulatory on-road test conditions on emissions. Sci. Total Environ. 2017, 609, 546–555. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 582/2011 of 25 May 2011, Implementing and Amending Regulation (EC) No 595/2009 of the European Parliament and of the Council with Respect to Emissions from Heavy Duty Vehicles (Euro VI) and Amending Annexes I and III to Directive 2007/46/EC of the European Parliament and of the Council. EU COM/582/2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32011R0582&from=EN#ntr4-L_2011167FI.01008101-E0004 (accessed on 6 May 2022).
- Van den Brink, P.J.; McDonald, C.M. Influence of the fuel hydrocarbon composition on nitric oxide conversion in 3-way catalysts: The NOx/aromatics effect. Appl. Catal. B Environ. 1995, 6, 97–103. [Google Scholar] [CrossRef]
- Matam, S.K.; Otal, E.H.; Aguirre, M.H.; Winkler, A.; Ulrich, A.; Ulrich, A.; Rentsch, D.; Weidenkaff, A.; Ferri, D. Thermal and chemical aging of model three-way catalyst Pd/Al2O3 and its impact on the conversion of CNG vehicle exhaust. Catal. Today 2012, 184, 237–244. [Google Scholar] [CrossRef]
- Winkler, A.; Dimopoulos, P.; Hauert, R.; Bach, C.; Aguirre, M. Catalytic activity and aging phenomena of three-way catalysts in a compressed natural gas/gasoline powered passenger car. Appl. Catal. B Environ. 2008, 84, 162–169. [Google Scholar] [CrossRef]
- Jääskeläinen, H. Three Way Catalysts for Methane. DieselNet Technology Guide. Revision 2017.12. Available online: https://dieselnet.com/tech/catalyst_methane_three-way.php (accessed on 21 June 2022).
- Auvinen, P.; Nevalainen, P.; Suvanto, M.; Oliva, F.; Llamas, X.; Barciela, B.; Sippula, O.; Kinnunen, N.M. A detailed study on regeneration of SO2 poisoned exhaust gas after-treatment catalysts: In pursuance of high durability and low methane, NH3 and N2O emissions of heavy-duty vehicles. Fuel 2021, 291, 120223. [Google Scholar] [CrossRef]
- Zheng, Q.; Farrauto, R.; Deeba, M.; Valsamakis, I. Part I: A Comparative Thermal Aging Study on the Regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as Model Catalysts for Automotive Three Way Catalysts. Catalysts 2015, 5, 1770–1796. [Google Scholar] [CrossRef]
- Lou, D.; Ren, Y.; Li, X.; Zhang, Y.; Sun, X. Effect of Operating Conditions and TWC Parameters on Emissions Characteristics of a Stoichiometric Natural Gas Engine. Energies 2020, 13, 4905. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2016/1718 of 20 September 2016 Amending Regulation (EU) No 582/2011 with Respect to Emissions from Heavy-Duty Vehicles as Regards the Provisions on Testing by Means of Portable Emission Measurement Systems (PEMS) and the Procedure for the Testing of the Durability of Replacement Pollution Control Devices. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R1718&from=EN (accessed on 12 May 2022).
- Systemic. Stormossen Ab/Oy (Vaasa/Korsholm, Finland). SYSTEMIC Circular Solutions for Biowaste. Available online: https://systemicproject.eu/wp-content/uploads/Stormossen_fact-sheet-Associated-plants_20191003.pdf (accessed on 2 May 2022).
- Stormossen. Annual Report 2020. Available online: https://ar2020.stormossen.fi/annual_report/vuosikertomus-2020/tulostus/ (accessed on 2 May 2022).
- TUV. Biogas to Biomethane Technology Review. Contract Number: IEE/10/130, Deliverable Reference: Task 3.1. TUV—Vienna University of Technology. Institute of Chemical Engineering, Research Division Thermal Process Engineering and Simulation. 2012. Available online: https://www.membran.at/downloads/2012_BioRegions_BiogasUpgradingTechnologyReview_ENGLISH.pdf (accessed on 2 May 2022).
- Ardolino, F.M.; Cardamone, G.F.; Parrillo, F.; Arena, U. Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective. Renew. Sustain. Energy Rev. 2021, 139, 110588. [Google Scholar] [CrossRef]
- Uusitalo, V.; Havukainen, J.; Manninen, K.; Höhn, J.; Lehtonen, E.; Rasi, S.; Soukka, R.; Horttanainen, M. Carbon footprint of selected biomass to biogas production chains and GHG reduction potential in transportation use. Renew. Energy 2014, 66, 90–98. [Google Scholar] [CrossRef]
- JRC. Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Well-to-Tank Report Version 4.a; European Commission Joint Research Centre (JRC): Brussels, Belgium, January 2014. [Google Scholar] [CrossRef]
- StatFin. Fuel Classification. Statistics Finland. 2021. Available online: https://www.stat.fi/tup/khkinv/khkaasut_polttoaineluokitus.html (accessed on 3 May 2022).
- Majer, S.; Oehmichen, K.; Kircshmeyr, F.; Scheidl, S. Calculation of GHG Emission Caused by Biomethane. Biosurf. Fuelling Biomethane. Deliverable 5.3; European Union: Brussels, Belgium, 2016. [Google Scholar] [CrossRef]
- Bauer, F.; Hulteberg, C.; Persson, T.; Tamm, D. Biogas Upgrading—Review of Commercial Technologies. Swedish Gas Technology Centre, SGC Report 2013:270. Available online: https://www.sgc.se/ckfinder/userfiles/files/SGC270.pdf (accessed on 20 May 2022).
- EEA. Indicators. Greenhouse Gas Emission Intensity of Electricity Generation in Europe. European Environment Agency. 2021. Available online: https://www.eea.europa.eu/ims/greenhouse-gas-emission-intensity-of-1 (accessed on 2 May 2022).
- Söderena, P.; Nylund, N.-O.; Mäkinen, R. City Bus Performance Evaluation. VTT Technical Research Centre of Finland. VTT Report No. VTT-CR-00544-19. 2019. Available online: https://cris.vtt.fi/ws/portalfiles/portal/26400446/City_bus_performance_evaluation.pdf (accessed on 10 June 2022).
Parameter | Value |
---|---|
Model name | Scania Citywide LE |
Model year | 2016 |
Gross vehicle weight (kg) | 19,100 |
Curb weight (kg) | 12,960 |
Max passenger number | 75 |
Axle configuration | 4 × 2 |
Gearbox | 6-speed automatic transmission |
Accumulated mileage (km) | 375,000 (Test 1), 400,000 (Test 2) |
After-treatment system | TWC |
Other systems | EGR |
Exhaust emission norm | Euro VI-C |
Parameter | Value |
---|---|
Model | Scania OC09 101 |
Engine type | Spark ignition engine |
Fuel | CNG/CBG |
Number of cylinders | 5 |
Compression ratio | 12.6:1 |
Total displacement (L) | 9.3 |
Maximum power (kW@rpm) | 206 kW@1900 rpm |
Engine peak torque (Nm@rpm) | 1350 Nm@1000–1400 rpm |
Parameter | Measurement Method | Accuracy |
---|---|---|
CH4 | NDIR—Non-dispersive infrared, range 0–10,000 ppm | ±2% |
CO | NDIR—Non-dispersive infrared, range 0–10% | ±0.03% or * ±3% reading |
CO2 | NDIR—Non-dispersive infrared, range 0–30% | ±0.05% or * ±3% reading |
NO | electrochemical, range 0–1000 ppm | ±5 ppm or * 5% reading |
NO2 | electrochemical, range 0–200 ppm | ±5 ppm or * 5% reading |
O2 | electrochemical, range 0–10% | ±0.2 Vol-% abs. |
Sampling | 1 Hz |
Speed Range | Time (min) | % | Mean Velocity | |
---|---|---|---|---|
Urban driving | 0–30 km/h | 102 | 56 | 12 |
Urban driving | 30–50 km/h | 65 | 36 | 38 |
Rural driving | 50–75 km/h | 16 | 9 | 57 |
Total | 182 | 25 |
Ambient Condition | Test 1 | Test 2 |
---|---|---|
March 2022 | June 2022 | |
Temperature (°C) | −5 °C | +18 °C |
Pressure (kPa) | 102.5 | 100.5 |
Humidity (%) | 65.5 | 54.7 |
Parameter | Value | Unit | g CH4/MJbio-CH4 | g CO2-Equivalent /MJbio-CH4 | Source |
---|---|---|---|---|---|
Feedstock collection and transportation | |||||
Diesel trucks, diesel fuel biocomponent 7% | 40 | km | 1.95 | [41,42] | |
Biogas production and refining | |||||
Total biogas production | 2,716,000 | Nm3 | [37] | ||
52% of raw gas for upgrading | 1,412,320 | Nm3 | [37] | ||
Methane content (62%) | 875,638 | Nm3 | [37] | ||
Total biomethane production | 31,522,982 | MJ | |||
Heat demand *
| 0.19 0.110 | kWh/Nm3raw gas kWh/kWhbio-CH4 | [43] | ||
Electricity demand *
| 0.14 0.0136 | kWh/Nm3raw gas kWh/kWhbio-CH4 | [43] | ||
Methane losses
| 6368 630 | kg kg | 0.202 0.020 | 5.66 0.56 | [43] [39] |
Compression | |||||
Electricity demand | 0.25 | kWh/m3 (NTP) | 0.48 | [44,45] | |
CBG well-to-tank GHG emissions | 8.65 |
CBG | CNG | Diesel B7 | |
---|---|---|---|
GHG emissions | |||
Well-to-tank (g/MJfuel) | 8.65 | 13.0 | 14.7 |
Tank-to-wheels | |||
| 46.6 | 68.4 | |
| 0.1708 | 0.1708 | |
Total GHG (g CO2-eq./MJfuel) | 13.4 | 64.4 | 83.1 |
Fuel consumption (MJ/km) | 20.8 | 20.8 | 16.7 |
Specific GHG (g CO2-eq./km) | 279 | 1342 | 1385 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spoof-Tuomi, K.; Arvidsson, H.; Nilsson, O.; Niemi, S. Real-Driving Emissions of an Aging Biogas-Fueled City Bus. Clean Technol. 2022, 4, 954-971. https://doi.org/10.3390/cleantechnol4040059
Spoof-Tuomi K, Arvidsson H, Nilsson O, Niemi S. Real-Driving Emissions of an Aging Biogas-Fueled City Bus. Clean Technologies. 2022; 4(4):954-971. https://doi.org/10.3390/cleantechnol4040059
Chicago/Turabian StyleSpoof-Tuomi, Kirsi, Hans Arvidsson, Olav Nilsson, and Seppo Niemi. 2022. "Real-Driving Emissions of an Aging Biogas-Fueled City Bus" Clean Technologies 4, no. 4: 954-971. https://doi.org/10.3390/cleantechnol4040059
APA StyleSpoof-Tuomi, K., Arvidsson, H., Nilsson, O., & Niemi, S. (2022). Real-Driving Emissions of an Aging Biogas-Fueled City Bus. Clean Technologies, 4(4), 954-971. https://doi.org/10.3390/cleantechnol4040059