Effects of Long-Term Soil Management Under Alfalfa Cultivation on Soil Fertility and Salinity in Arid Agroecosystems of the Ziban Region, Algeria
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Laboratory Analyses
2.3. Soil Physicochemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics of Soil Fertility Indicators
3.2. Soil Texture and Bulk Density
3.3. Salinity and Sodicity Parameters
3.4. Soil Organic Carbon and Nitrogen Stocks Under Different Land Use Systems
3.5. Correlation Analysis
3.6. Principal Component Analysis of the Soil Properties
4. Discussion
4.1. Organic Matter, Carbon, Nitrogen, and Nutrient Accumulation Under Changing Land Use
4.2. Salinity and Sodicity Dynamics Under Contrasting Land Use
4.3. Soil Structural Quality and Bulk Density
4.4. Soil Organic Carbon and Nitrogen Stocks and C/N Ratio
4.5. Limitations and Practical Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Dewangana, S.K.; Singh, P.; Shrivastava, S.K.; Paul, A.C. Soil health assessment of Pampapur, Pratappur: A study on nutrient availability and environmental quality. Int. J. Sci. Res. Eng. Manag. 2025, 9, 1–11. [Google Scholar]
- Oueriemmi, H.; Zoghlami, R.I.; Le Guyader, E.; Mekki, F.; Suidi, Y.; Bennour, A.; Moussa, M.; Sbih, M.; Saidi, S.; Morvan, X.; et al. Addressing soil fertility challenges in arid agriculture: A two-year evaluation of combined soil organic amendments under saline irrigation. Soil Syst. 2025, 9, 16. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation as a reason for inadequate human nutrition. Food Secur. 2009, 1, 45–57. [Google Scholar] [CrossRef]
- Das, A.; Patel, D.P.; Lal, R.; Kumar, M.; Ramkrushna, G.I.; Layek, J.; Buragohain, J.; Ngachan, S.V.; Ghosh, P.K.; Choudhury, B.U.; et al. Impact of fodder grasses and organic amendments on productivity and soil and crop quality in a subtropical region of eastern Himalayas, India. Agric. Ecosyst. Environ. 2016, 216, 274–282. [Google Scholar] [CrossRef]
- Stavi, I.; Thevs, N.; Priori, S. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front. Environ. Sci. 2021, 9, 712831. [Google Scholar] [CrossRef]
- Boudibi, S. Modeling the Impact of Irrigation Water Quality on Soil Salinization in an Arid Region: Case of Biskra. Ph.D. Thesis, Université Mohamed Khider–Biskra, Biskra, Algeria, 2021. [Google Scholar]
- Naorem, A.; Jayaraman, S.; Dang, Y.P.; Dalal, R.C.; Sinha, N.K.; Rao, C.S.; Patra, A.K. Soil constraints in an arid environment—Challenges, prospects, and implications. Agronomy 2023, 13, 220. [Google Scholar] [CrossRef]
- Belghemmaz, S.; Fenni, M.; Afrasinei, G.M.; Louadj, Y.; Degui, N. Assessment of land degradation related to groundwater irrigation of oasis environments: Case study of the Zibans, Biskra, Algeria. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, EMCEI 2017; Advances in Science, Technology & Innovation; Kallel, A., Ksibi, M., Ben Dhia, H., Khélifi, N., Eds.; Springer: Cham, Switzerland, 2018; pp. 1289–1290. [Google Scholar] [CrossRef]
- Belghemmaz, S.; Fenni, M.; Chomontowski, C.; Louadj, Y.; Afrasinei, M.G.; Degui, N. Typology characterisation and monitoring of arid soils in an agroecosystem environment: Case of Ziban oasis, Algeria. J. Water Land Dev. 2024, 61, 213–226. [Google Scholar] [CrossRef]
- Ontl, T.A.; Schulte, L.A. Soil carbon storage. Nat. Educ. Knowl. 2012, 3, 35. [Google Scholar]
- Trivedi, P.; Singh, B.P.; Singh, B.K. Soil carbon: Introduction, importance, status, threat, and mitigation. In Soil Carbon Storage: Modulators, Mechanisms and Modeling; Singh, B.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–28. [Google Scholar] [CrossRef]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.-L.; Li, Q.; Zeng, X.-P.; Liu, Y.; Li, Y.-R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zhong, H.; Guo, X.; Li, H.; Xia, J.; Chen, Q. Nitrogen fertilization and soil nitrogen cycling: Unraveling the links among multiple environmental factors, functional genes, and transformation rates. Sci. Total Environ. 2024, 951, 175561. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Fang, C.; Yuan, Z.-Q.; Li, F.-M. Long-term growth of alfalfa increased soil organic matter accumulation and nutrient mineralization in a semi-arid environment. Front. Environ. Sci. 2021, 9, 649346. [Google Scholar] [CrossRef]
- Brahim, N.; Karbout, N.; Dhaouadi, L.; Bouajila, A. Global landscape of organic carbon and total nitrogen in the soils of oasis ecosystems in Southern Tunisia. Agronomy 2021, 11, 1903. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Cui, Z.; Fang, Y.; He, H.; Liu, B.-R.; Wu, G.-L. Soil water storage deficit of alfalfa (Medicago sativa) grasslands along ages in arid area (China). Field Crops Res. 2018, 221, 1–6. [Google Scholar] [CrossRef]
- Querné, A.; Battie-Laclau, P.; Dufour, L.; Wery, J.; Dupraz, C. Effects of walnut trees on biological nitrogen fixation and yield of intercropped alfalfa in a Mediterranean agroforestry system. Eur. J. Agron. 2017, 84, 35–46. [Google Scholar] [CrossRef]
- Wang, K.; Li, J.; Zhou, Z.; Zhang, X.J. Editorial: Soil degradation and restoration in arid and semi-arid regions. Front. Environ. Sci. 2023, 11, 1307500. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, J.; Zhu, H. Genetic and molecular mechanisms underlying symbiotic specificity in legume–rhizobium interactions. Front. Plant Sci. 2018, 9, 313. [Google Scholar] [CrossRef]
- Guan, X.; Turner, N.C.; Song, L.; Gu, Y.-J.; Wang, T.-C.; Li, F.-M. Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil. Biogeosciences 2016, 13, 527–534. [Google Scholar] [CrossRef]
- Xu, Y.; Duan, X.; Wu, Y.; Huang, H.; Fu, T.; Chu, H.; Xue, S. Carbon sequestration potential and its main drivers in soils under alfalfa (Medicago sativa L.). Sci. Total Environ. 2024, 935, 173338. [Google Scholar] [CrossRef]
- Li, A.; Wu, Y.; Tai, X.; Cao, S.; Gao, T. Effects of alfalfa crop rotation on soil nutrients and loss of soil and nutrients in semi-arid regions. Sustainability 2023, 15, 15164. [Google Scholar] [CrossRef]
- Wang, W.; Tian, T.; Li, M.-Y.; Wang, B.-Z.; Mei, F.-J.; Li, J.-Y.; Wang, N.; Yang, Y.-M.; Zhang, Q.; Tao, H.-Y.; et al. Carbon and nitrogen stoichiometry across plant–soil system accounts for the degradation of multi-year alfalfa grassland. Front. Plant Sci. 2024, 15, 1400261. [Google Scholar] [CrossRef]
- Novara, A.; Catania, V.; Tolone, M.; Gristina, L.; Laudicina, V.A.; Quatrini, P. Cover crop impact on soil organic carbon, nitrogen dynamics and microbial diversity in a Mediterranean semiarid vineyard. Sustainability 2020, 12, 3256. [Google Scholar] [CrossRef]
- Muscarella, S.M.; Alduina, R.; Badalucco, L.; Capri, F.C.; Di Leto, Y.; Gallo, G.; Laudicina, V.A.; Paliaga, S.; Mannina, G. Water reuse of treated domestic wastewater in agriculture: Effects on tomato plants, soil nutrient availability and microbial community structure. Sci. Total Environ. 2024, 928, 172259. [Google Scholar] [CrossRef]
- Paliaga, S.; Muscarella, S.M.; Alduina, R.; Badalucco, L.; Fischer, P.T.B.; Di Leto, Y.; Gallo, G.; Mannina, G.; Laudicina, V.A. The effects of enriched biochar and zeolite and treated wastewater irrigation on soil fertility and tomato growth. J. Environ. Manag. 2025, 380, 124990. [Google Scholar] [CrossRef] [PubMed]
- Direction des Services Agricoles (DSA). Rapport Annuel Sur La Production Agricole a Biskra; DSA: Biskra, Algeria, 2023. [Google Scholar]
- Masmoudi, A. Problèmes De La Salinité Liés à L’irrigation Dans La Région Saharienne: Cas Des Oasis Des Ziban. Ph.D. Thesis, Université Mohamed Khider–Biskra, Biskra, Algeria, 2012. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Burt, R. (Ed.) Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report No. 42, Version 4.0; USDA–NRCS: Lincoln, NE, USA, 2004; 735p.
- Richards, L.A. (Ed.) Diagnosis and Improvement of Saline and Alkali Soils; USDA Agriculture Handbook No. 60; U.S. Government Printing Office: Washington, DC, USA, 1954; 166p.
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Shamrikova, E.V.; Kondratenok, B.M.; Tumanova, E.A.; Vanchikova, E.V.; Lapteva, E.M.; Zonova, T.V.; Lu-Lyan-Min, E.I.; Davydova, A.P.; Libohova, Z.; Suvannang, N. Transferability between soil organic matter measurement methods for database harmonization. Geoderma 2022, 412, 115547. [Google Scholar] [CrossRef]
- Bremner, J.M. Total nitrogen. In Methods of Soil Analysis, Part 3: Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; ASA and SSSA: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Loeppert, R.H.; Suarez, D.L. Carbonate and gypsum. In Methods of Soil Analysis, Part 3: Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; ASA and SSSA: Madison, WI, USA, 1996; pp. 437–474. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis. Part 1—Physical and Mineralogical Methods; Klute, A., Ed.; ASA and SSSA: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Pearson, T.R.H.; Brown, S.L.; Birdsey, R.A. Measurement Guidelines for the Sequestration of Forest Carbon; USDA Forest Service: Newtown Square, PA, USA, 2007; 47p.
- Nie, Z.; Mitchell, M.; Clark, S.; Smith, K.; Burnett, V.; Zollinger, R.; Seymour, G. Distribution of Lucerne Roots in Summer-Dry Environments of Southern Australia. In Proceedings of the 17th ASA Conference, Hobart, Australia, 20–24 September 2015. [Google Scholar]
- Luo, Y.; Meyerhoff, P.A.; Loomis, R.S. Seasonal patterns and vertical distributions of fine roots of alfalfa (Medicago sativa L.). Field Crops Res. 1995, 40, 119–127. [Google Scholar] [CrossRef]
- Goins, G.D.; Russelle, M.P. Fine root demography in alfalfa (Medicago sativa L.). Plant Soil 1996, 185, 281–291. [Google Scholar] [CrossRef]
- Shahzad, T.; Chenu, C.; Genet, P.; Barot, S.; Perveen, N.; Mougin, C.; Fontaine, S. Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol. Biochem. 2015, 80, 146–155. [Google Scholar] [CrossRef]
- Zhu, B.; Gutknecht, J.L.M.; Herman, D.J.; Keck, D.C.; Firestone, M.K.; Cheng, W. Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol. Biochem. 2014, 76, 183–192. [Google Scholar] [CrossRef]
- Ali, G.; Wang, L.; Wang, Z. Responses of deep soil carbon and nitrogen contents to long-term retention of alfalfa pasture on infertile loess: A synthesis study. Agronomy 2023, 13, 1847. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, F.; Yuan, Z.-Q.; Li, F.-M. Alfalfa–livestock system promotes the accumulation of soil organic carbon in a semi-arid marginal land. Agric. Ecosyst. Environ. 2024, 375, 109200. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, Y.; Wei, F.; Hao, S.; Tian, J.; Yao, Y. Alfalfa powder affects soil nutrient and walnut dry matter accumulation under drought. Agron. J. 2019, 111, 2853–2863. [Google Scholar] [CrossRef]
- Dong, W.-H.; Zhang, S.; Rao, X.; Liu, C.-A. Newly reclaimed alfalfa forage land improved soil properties compared to farmland in wheat–maize cropping systems at the margins of oases. Ecol. Eng. 2016, 94, 57–64. [Google Scholar] [CrossRef]
- Gao, G.; Qiu, C.; Liu, M.; Li, X.; Zhang, C.; Wu, M.; Li, Z. Natural fallow alleviates carbon and nitrogen limitation of microorganisms and plants in paddy fields. Funct. Ecol. 2025, 39, 1972–1981. [Google Scholar] [CrossRef]
- Aguilera, J.; Motavalli, P.; Valdivia, C.; Gonzales, M.A. Impacts of cultivation and fallow length on soil carbon and nitrogen availability in the Bolivian Andean highland region. Mt. Res. Dev. 2013, 33, 391–403. [Google Scholar] [CrossRef]
- Hong, S. Soil Salinity in Arid Non-Flooded Riparian Areas. Master’s Thesis, New Mexico Institute of Mining and Technology, Socorro, NM, USA, 2002. [Google Scholar]
- Liu, B.; Zhao, W.; Wen, Z.; Yang, Y.; Chang, X.; Yang, Q.; Meng, Y.; Liu, C. Mechanisms and feedbacks for evapotranspiration-induced salt accumulation and precipitation in an arid wetland of China. J. Hydrol. 2019, 568, 403–415. [Google Scholar] [CrossRef]
- Bui, E. Causes of soil salinization, sodification, and alkalinization. Oxf. Res. Encycl. Environ. Sci. 2017. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines. Agron. J. 2003, 95, 455–471. [Google Scholar] [CrossRef]
- Qadir, M.; Oster, J.D.; Schubert, S.; Noble, A.D.; Sahrawat, K.L. Phytoremediation of sodic and saline–sodic soils. Adv. Agron. 2007, 96, 197–247. [Google Scholar] [CrossRef]
- Qadir, M.; Noble, A.D.; Oster, J.D.; Schubert, S.; Ghafoor, A. Driving forces for sodium removal during phytoremediation of calcareous sodic and saline–sodic soils: A review. Soil Use Manag. 2005, 21, 173–180. [Google Scholar] [CrossRef]
- Cao, J.; Li, X.; Kong, X.; Zed, R.; Dong, L. Using alfalfa (Medicago sativa) to ameliorate salt-affected soils in Yingda irrigation district in Northwest China. Acta Ecol. Sin. 2012, 32, 68–73. [Google Scholar] [CrossRef]
- Yang, H.; An, F.; Yang, F.; Wang, Z. The impact of irrigation on yield of alfalfa and soil chemical properties of saline–sodic soils. PeerJ 2019, 7, e7148. [Google Scholar] [CrossRef]
- Lakhdar, A.; Rabhi, M.; Ghnaya, T.; Montemurro, F.; Jedidi, N.; Abdelly, C. Effectiveness of compost use in salt-affected soil. J. Hazard. Mater. 2009, 171, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Raychev, T.; Popandova, S.; Józefaciuk, G.; Hajnos, M.; Sokołowska, Z. Physicochemical reclamation of saline soils using coal powder. Int. Agrophys. 2001, 15, 51–54. [Google Scholar]
- Walker, D.J.; Clemente, R.; Bernal, M.P. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 2004, 57, 215–224. [Google Scholar] [CrossRef]
- Botha, P.B. The Effect of Long-Term Tillage Practices on Selected Soil Properties in the Swartland Wheat Production Area of the Western Cape. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2013. [Google Scholar]
- Stavi, I. On-site use of plant litter and yard waste as mulch in gardening and landscaping systems. Sustainability 2020, 12, 7521. [Google Scholar] [CrossRef]
- Chang, S.; Liu, N.; Wang, X.; Zhang, Y.; Xie, Y. Alfalfa carbon and nitrogen sequestration patterns and effects of temperature and precipitation in three agro-pastoral ecotones of northern China. PLoS ONE 2012, 7, e50544. [Google Scholar] [CrossRef]
- Su, Y.Z.; Liu, W.J.; Yang, R.; Chang, X.X. Changes in soil aggregate, carbon, and nitrogen storages following the conversion of cropland to alfalfa forage land in the marginal oasis of northwest China. Environ. Manag. 2009, 43, 1061–1070. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Ghimire, P.; Bhatta, B.; Pokhrel, B.; Kafle, G.; Paudel, P. Soil organic carbon stocks under different land uses in Chure region of Makawanpur district, Nepal. SAARC J. Agric. 2019, 16, 13–23. [Google Scholar] [CrossRef]
- Wang, L.; Ali, G.; Wang, Z. Deep soil water depletion and soil organic carbon and total nitrogen accumulation in a long-term alfalfa pasture. Land Degrad. Dev. 2023, 34, 2164–2176. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Allmaras, R.R.; Rohde, C.R.; Roager, N.C., Jr. Crop residue influences on soil carbon and nitrogen in a wheat–fallow system. Soil Sci. Soc. Am. J. 1980, 44, 596–600. [Google Scholar] [CrossRef]
- Campbell, C.A.; Souster, W. Loss of organic matter and potentially mineralizable nitrogen from Saskatchewan soils due to cropping. Can. J. Soil Sci. 1982, 62, 651–656. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Carter, M.R.; Angers, D.A.; Monreal, C.M.; Ellert, B.H. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci. 1994, 74, 367–385. [Google Scholar] [CrossRef]
- Benslama, A.; Lucas, I.G.; Jordan Vidal, M.M.; Almendro-Candel, M.B.; Navarro-Pedreño, J. Carbon and nitrogen stocks in topsoil under different land use/land cover types in the southeast of Spain. AgriEngineering 2024, 6, 396–408. [Google Scholar] [CrossRef]
- Hao, Z.; Zhao, Y.; Wang, X.; Wu, J.; Jiang, S.; Xiao, J.; Wang, K.; Zhou, X.; Liu, H.; Li, J.; et al. Thresholds in aridity and soil carbon-to-nitrogen ratio govern the accumulation of soil microbial residues. Commun. Earth Environ. 2021, 2, 236. [Google Scholar] [CrossRef]
- Voroney, R.P.; Van Veen, J.A.; Paul, E.A. Organic C dynamics in grassland soils. II. Model validation and simulation of long-term effects of cultivation and rainfall erosion. Can. J. Soil Sci. 1981, 61, 211–224. [Google Scholar] [CrossRef]
- Abdulraheem, M.; Xiong, Y.; Zhang, W.; Chen, H.; Zhang, H.; Hu, J. Recent applications of fiber Bragg grating sensors in humidity and water content detection in agriculture: A comprehensive review of development, challenges, and future trends. Int. J. Precis. Eng. Manuf. 2024, 25, 1499–1524. [Google Scholar] [CrossRef]




| Land Use Type | OM (%) | SOC (%) | SN (%) | pH | EC (dS/m) | CaCO3 (%) | |
|---|---|---|---|---|---|---|---|
| Cultivated | Min | 0.37 | 0.22 | 0.1 | 5.67 | 0.51 | 13.76 |
| Max | 1.95 | 1.13 | 0.2 | 7.92 | 4.77 | 52.32 | |
| Mean | 1.13 | 0.66 | 0.13 | 7.1 | 1.98 | 28.78 | |
| SD | 0.36 | 0.21 | 0.03 | 0.51 | 1.18 | 9.56 | |
| Uncultivated | Min | 0.26 | 0.15 | 0.03 | 6.03 | 0.42 | 17.65 |
| Max | 1.2 | 0.7 | 0.15 | 8.44 | 12.84 | 49.91 | |
| Mean | 0.62 | 0.37 | 0.06 | 7.48 | 3.32 | 27.71 | |
| SD | 0.18 | 0.11 | 0.03 | 0.4 | 3.17 | 6.96 | |
| (Mann–Whitney U) | p-value | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | 0.049 * | 0.781 ns |
| Land Use Type | Sand (%) | Clay (%) | Silt (%) | BD (g/cm3) | |
|---|---|---|---|---|---|
| Cultivated | Min | 38.19 | 1.98 | 10.57 | 1.28 |
| Max | 85.16 | 18.4 | 51.37 | 1.44 | |
| Mean | 59.02 | 9.5 | 31.47 | 1.37 | |
| SD | 13.02 | 4.12 | 10.36 | 0.05 | |
| Uncultivated | Min | 35.13 | 1.96 | 8.0 | 1.35 |
| Max | 86.85 | 19.27 | 47.59 | 1.56 | |
| Mean | 59.02 | 9.5 | 31.47 | 1.46 | |
| SD | 13.33 | 4.0 | 10.44 | 0.06 | |
| Mann–Whitney U | p-value | 0.997 ns | 0.875 ns | 0.900 ns | <0.001 ** |
| Land Use Type | Ca2+ (meq/L) | Mg2+ (meq/L) | Na+ (meq/L) | K+ (meq/L) | SO42− (meq/L) | SAR | |
|---|---|---|---|---|---|---|---|
| Cultivated | Min | 2.13 | 0.17 | 0.53 | 0.14 | 8.45 | 1.92 |
| Max | 13.65 | 21.03 | 8.45 | 0.77 | 95.57 | 19.49 | |
| Mean | 5.26 | 7.02 | 2.54 | 0.37 | 37.49 | 6.26 | |
| SD | 3.38 | 5.9 | 2.14 | 0.14 | 27.11 | 5.05 | |
| Uncultivated | Min | 2.12 | 1.13 | 0.38 | 0.06 | 9.81 | 1.21 |
| Max | 15.78 | 60.11 | 34.91 | 3.18 | 92.5 | 29.53 | |
| Mean | 7.69 | 19.06 | 9.99 | 0.96 | 40.23 | 8.81 | |
| SD | 4.3 | 19.8 | 11.41 | 0.82 | 25.23 | 8.29 | |
| Mann–Whitney U | p-value | 0.007 ** | 0.009 ** | <0.001 ** | <0.001 ** | 0.373 ns | 0.311 ns |
| Land Use | C/N | SOC Stock t ha−1 | SN Stock t ha−1 |
|---|---|---|---|
| Cultivated soil | 5.1867 | 26.7333 | 5.3562 |
| Uncultivated soil | 7.142 | 16.0835 | 2.6382 |
| p-value | <0.001 ** | <0.001 ** | <0.001 ** |
| SOC (%) | SN (%) | pH | EC (dS/m) | CaCO3 (%) | BD (g/cm3) | Ca2+ (meq/L) | Mg2+ (meq/L) | Na+ (meq/L) | SO42− (meq/L) | Sand (%) | Clay (%) | Silt (%) | K+ (meq/L) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SN (%) | 0.635 | |||||||||||||
| pH | 0.069 | −0.258 | ||||||||||||
| EC (dS/m) | −0.03 | −0.246 | 0.290 | |||||||||||
| CaCO3 (%) | 0.249 | 0.239 | 0.437 | 0.285 | ||||||||||
| BD (g/cm3) | −0.29 | −0.152 | −0.6 | −0.252 | −0.637 | |||||||||
| Ca2+ (meq/L) | 0.117 | −0.090 | 0.147 | 0.856 | 0.212 | −0.030 | ||||||||
| Mg2+ (meq/L) | −0.23 | −0.170 | 0.106 | 0.832 | 0.211 | −0.119 | 0.723 | |||||||
| Na+ (meq/L) | 0.024 | −0.180 | 0.498 | 0.733 | 0.469 | −0.456 | 0.576 | 0.500 | ||||||
| SO42− (meq/L) | 0.233 | −0.072 | 0.562 | 0.736 | 0.602 | −0.558 | 0.685 | 0.598 | 0.718 | |||||
| Sand (%) | −0.3 | −0.145 | −0.55 | −0.370 | −0.624 | 0.890 | −0.153 | −0.279 | −0.430 | −0.660 | ||||
| Clay (%) | 0.460 | 0.418 | 0.336 | 0.195 | 0.572 | −0.731 | 0.167 | 0.062 | 0.183 | 0.444 | −0.72 | |||
| Silt (%) | 0.185 | 0.079 | 0.537 | 0.370 | 0.565 | −0.813 | 0.157 | 0.348 | 0.446 | 0.638 | −0.95 | 0.526 | ||
| K+ (meq/L) | −0.03 | −0.145 | −0.001 | 0.671 | −0.004 | −0.117 | 0.575 | 0.663 | 0.155 | 0.383 | −0.26 | 0.186 | 0.254 | |
| SAR | 0.064 | −0.118 | 0.467 | 0.462 | 0.570 | −0.443 | 0.310 | 0.191 | 0.899 | 0.548 | −0.34 | 0.195 | 0.310 | −0.140 |
| SOC (%) | SN (%) | pH | EC (dS/m) | CaCO3 (%) | BD (g/cm3) | Ca2+ (meq/L) | Mg2+ (meq/L) | Na+ (meq/L) | K+ (meq/L) | SO42− (meq/L) | SAR | Sand (%) | Clay (%) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SN (%) | −0.003 | |||||||||||||
| pH | 0.035 | 0.115 | ||||||||||||
| EC (dS/m) | −0.147 | 0.430 | 0.080 | |||||||||||
| CaCO3 (%) | −0.248 | 0.320 | −0.003 | 0.442 | ||||||||||
| BD(g/cm3) | −0.465 | −0.215 | −0.162 | −0.284 | −0.084 | |||||||||
| Ca2+ (meq/L) | −0.493 | −0.127 | −0.136 | −0.103 | −0.056 | 0.624 | ||||||||
| Mg2+ (meq/L) | −0.323 | −0.014 | −0.190 | 0.220 | 0.309 | 0.200 | 0.341 | |||||||
| Na+ (meq/L) | −0.285 | 0.282 | −0.365 | 0.355 | 0.269 | 0.190 | 0.513 | 0.496 | ||||||
| K+ (meq/L) | 0.000 | 0.248 | 0.015 | 0.389 | −0.348 | −0.018 | −0.031 | 0.263 | 0.197 | |||||
| SO42− (meq/L) | −0.286 | 0.216 | 0.127 | 0.693 | 0.500 | −0.140 | −0.125 | −0.059 | 0.025 | −0.140 | ||||
| SAR | −0.241 | 0.060 | −0.208 | −0.268 | 0.072 | 0.554 | 0.527 | −0.280 | 0.360 | −0.321 | −0.093 | |||
| Sand (%) | −0.431 | −0.202 | −0.189 | −0.227 | −0.125 | 0.955 | 0.604 | 0.283 | 0.282 | 0.084 | −0.152 | 0.484 | ||
| Clay (%) | 0.380 | 0.072 | 0.094 | 0.122 | 0.211 | −0.742 | −0.631 | −0.065 | −0.260 | −0.186 | 0.114 | −0.578 | −0.757 | |
| Silt (%) | 0.439 | 0.197 | 0.191 | 0.233 | 0.086 | −0.930 | −0.561 | −0.300 | −0.252 | −0.057 | 0.142 | −0.435 | −0.973 | 0.630 |
| Soil Factors | PC1 | PC2 |
|---|---|---|
| EC | 0.8761 | 0.3949 |
| BD | −0.6404 | 0.5592 |
| Ca2+ | 0.8238 | 0.2902 |
| Mg2+ | 0.7203 | 0.2139 |
| Na+ | 0.5239 | 0.6239 |
| SO42− | 0.9197 | −0.0058 |
| Sand % | −0.7601 | 0.5666 |
| Silt % | 0.7484 | −0.5375 |
| K+ | 0.612 | 0.0032 |
| SAR | 0.215 | 0.5974 |
| Eigenvalue | 5.054 | 1.9546 |
| % of variance | 50.5404 | 19.5457 |
| Cumulative variance (%) | 50.5404 | 70.086 |
| Soil Factors | PC1 | PC2 |
|---|---|---|
| EC | −0.7079 | 0.6608 |
| Ca2+ | 0.6283 | 0.398 |
| Mg2+ | −0.1392 | 0.7262 |
| Na+ | −0.3147 | 0.7785 |
| K+ | −0.5018 | 0.7163 |
| BD | 0.9557 | 0.2171 |
| Sand % | 0.8879 | 0.4081 |
| Silt % | −0.8647 | −0.4087 |
| Eigenvalue | 3.7155 | 2.6224 |
| % of variance | 46.4442 | 32.7799 |
| Cumulative variance (%) | 46.4442 | 79.2241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touati, F.Z.B.; Boumadda, A.; Benbrahim, F.; Benslama, A.; Navarro-Pedreño, J. Effects of Long-Term Soil Management Under Alfalfa Cultivation on Soil Fertility and Salinity in Arid Agroecosystems of the Ziban Region, Algeria. Soil Syst. 2025, 9, 132. https://doi.org/10.3390/soilsystems9040132
Touati FZB, Boumadda A, Benbrahim F, Benslama A, Navarro-Pedreño J. Effects of Long-Term Soil Management Under Alfalfa Cultivation on Soil Fertility and Salinity in Arid Agroecosystems of the Ziban Region, Algeria. Soil Systems. 2025; 9(4):132. https://doi.org/10.3390/soilsystems9040132
Chicago/Turabian StyleTouati, Fatima Zohra Batoul, Abdelbasset Boumadda, Fouzi Benbrahim, Abderraouf Benslama, and Jose Navarro-Pedreño. 2025. "Effects of Long-Term Soil Management Under Alfalfa Cultivation on Soil Fertility and Salinity in Arid Agroecosystems of the Ziban Region, Algeria" Soil Systems 9, no. 4: 132. https://doi.org/10.3390/soilsystems9040132
APA StyleTouati, F. Z. B., Boumadda, A., Benbrahim, F., Benslama, A., & Navarro-Pedreño, J. (2025). Effects of Long-Term Soil Management Under Alfalfa Cultivation on Soil Fertility and Salinity in Arid Agroecosystems of the Ziban Region, Algeria. Soil Systems, 9(4), 132. https://doi.org/10.3390/soilsystems9040132

