Early Peat Diagenesis Controls on Bromine Accumulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Location, Sampling and Sample Preparation
2.2. Peat Bromine Content Analysis
2.3. Vibrational Spectroscopy Analysis
2.4. Statistical Analysis
3. Results
3.1. Bromine Concentrations: Vertical and Spatial Distribution
3.2. Peat Molecular Composition: FTIR–ATR
3.3. Peat Molecular Composition and Br Concentrations
3.4. Modelling Br in Peat Using the Spectral Signal
4. Discussion
4.1. Depth and Spatial Changes of Peat Molecular Composition
4.2. Bromine Concentrations and Peat Decomposition
4.3. Peat OM Compounds Involved in Br Retention in Peat
4.4. Spatial Variations in Br Distribution in the CHL Peatland
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
| MIR Ratio | Absorbances (cm−1) | Meaning | References |
|---|---|---|---|
| AL/PS | 2920/1030 | Aliphatics/Polysaccharides: degree of peat decomposition | [59] |
| AR/PS | 1600/1030 | Aromatics/Polysaccharides: degree of peat decomposition | [21,63,64] |
| CCr | 1370/2920 | Crystallinity index: degree of crystallinity of the molecular structure of cellulose | [42] |
| G/S | 1265/1311 | Guaiacyl/Syringyl moieties: degree of evolution of lignin | [65,66] |
| LT/RM | (2920 + 2850)/(2960 + 2870) | Length/ramification of the aliphatic compounds | [67,68] |
| CBX | 1705/1730 | Carboxyl/carbonyl: production of carboxylic acids due to peat OM oxidation | Inferred from [36,39,44] |
| Band (cm−1) | Bond/Compound Assignment | References |
|---|---|---|
| 3300 | O-H groups in cellulose, alcohols, phenols, and water | [36,37] |
| 2920 | C-H asymmetric stretching of lipids, fats, waxes | [37] |
| 2850 | C-H asymmetric stretching of lipids, fats, waxes | [37] |
| 1730 | C=O stretching of carbonyl functions, as aldehydes, ketones and carboxyl groups | [36] |
| 1628 | C=C stretching in aromatic compounds and COO− groups | [36] |
| 1510 | Aromatic skeletal vibrations, conjugated C=N systems and amino functionalities, lignin or phenolic backbone | [36] |
| 1459 | Aromatic skeletal vibrations (of amide II), conjugated C=N systems and amino functionalities, lignin or phenolic backbone | [69] |
| 1420 | O-H deformation of phenolic and aliphatic groups | [36] |
| 1370 | O-H deformation of phenolic and aliphatic groups | [36] |
| 1265 | C-O stretching of ethers and/or carboxyl groups, indicative of lignin backbone | [36,37] |
| 1155 | C-O stretching in polysaccharides, and aromatic C-H deformation in syringyl lignin units | [70] |
| 1080 | C-O stretching of polysaccharides structures, cellulose | [36] |
| 1032 | C-O stretching of polysaccharides structures, cellulose | [36] |
| 894 | O-H deformation in carbohydrates | [21] |
| 833 | C-H out of plane of aromatics, lignin | [37,41] |
| 719 | CH2 wagging of aliphatic groups | [37,44] |
| a | b1 | b2 | r | Years | |
|---|---|---|---|---|---|
| CHL-01 | −2.517 | 0.027 | 0.978 ** | 93 | |
| CHL-03 | −4.500 | −0.004 | 0.092 | 0.987 ** | 75 |
| CHL-10 | −1.834 | 0.030 | 0.962 ** | 61 | |
| CHL-11 | −1.854 | 0.014 | 0.762 ** | 132 | |
| CHL-13 | −0.646 | 0.036 | 0.912 ** | 18 | |
| CHL-14 | −0.745 | 0.023 | 0.760 ** | 32 | |
| CHL-04 | −0.664 | 0.035 | 0.847 ** | 19 | |
| CHL-05 | −4.707 | −0.0003 | 0.102 | 0.984 ** | 58 |
| CHL-06 | −2.154 | 0.030 | 0.917 ** | 72 | |
| CHL-07 | −2.010 | 0.029 | 0.952 ** | 69 | |
| CHL-08 | −2.658 | 0.044 | 0.920 ** | 60 | |
| CHL-09 | −1.898 | −0.0005 | 0.086 | 0.983 ** | 24 |



References
- Albers, C.N.; Rosembom, A.E. Bromide reactivity in topsoil: Implications for use as a “conservative” tracer in assessing quantity and quality of water. Vadose Zone J. 2023, 22, e20260. [Google Scholar] [CrossRef]
- Sander, R.; Keene, W.; Pszenny, A.; Arimoto, R.; Ayers, G.; Baboukas, E. Inorganic Bromine in the marine boundary layer: A critical review. Atmos. Chem. 2003, 3, 1301–1336. [Google Scholar] [CrossRef]
- Leri, A.C.; Myneni, S.C.B. Natural organobromine in terrestrial ecosystems. Geochim. Cosmochim. Acta 2012, 77, 1–10. [Google Scholar] [CrossRef]
- Leri, A.; Ravel, B. Abiotic bromination of soil organic matter. Environ. Sci. Technol. 2015, 49, 13350–13359. [Google Scholar] [CrossRef]
- Guevara, S.R.; Rizzo, A.; Daga, R.; Williams, N.; Villa, S. Bromine as indicator of source of lacustrine sedimentary organic matter in paleolimnological studies. Quat. Res. 2019, 92, 257–271. [Google Scholar] [CrossRef]
- Moreno, F.; Moreno, J.; Fatela, F.; Guise, L.; Vieira, C.; Leira, M. Bromine biogeodynamics in the NE Atlantic: A perspective from natural wtlands of western Portugal. Sci. Total Environ. 2020, 722, 137649. [Google Scholar] [CrossRef]
- Moreno, J.; Fatela, F.; Leorri, E.; Araújo, M.F.; Moreno, F.; De la Rosa, J.; Freitas, M.C.; Valente, T.; Corbett, D.R. Bromine enrichment in marsh sediments as a marker of environmental changes driven by Grand Solar Minima and anthropogenic activity (Caminha, NW Portugal). Sci. Total Environ. 2015, 506–507, 554–566. [Google Scholar] [CrossRef] [PubMed]
- Orme, L.; Davies, S.J.; Duller, G.A.T. Reconstructed centennial variability of Late Holocene storminess from Cors Fochno, Wales, UK. J. Quat. Sci. 2015, 30, 478–488. [Google Scholar] [CrossRef]
- Stewart, H.; Bradwell, T.; Bullard, J.; Davies, S.J.; Golledge, N.; McCulloch, R.D. 8000 years of North Atlantic storminess reconstructed from a Scottish peat record: Implications for Holocene atmospheric circulation patterns in Western Europe. J. Quat. Sci. 2017, 32, 1075–1084. [Google Scholar] [CrossRef]
- Yamada, Y. Occurrence of bromine in plants and soils. Talanta 1968, 15, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Hjelm, O.; Johansson, M.; Öberg, G. Organically bound halogens in coniferous forest soil. Chemosphere 1995, 30, 2353–2364. [Google Scholar] [CrossRef]
- Biester, H.; Keppler, F.; Putschew, A.; Martínez Cortizas, A.; Petri, M. Halogenes, organohalogens and the role of organic matter decomposition on halogen enrichment in two peat bogs from Tierra del Fuego (Chile). Environ. Sci. Technol. 2004, 38, 1984–1991. [Google Scholar] [CrossRef]
- Biester, H.; Martínez Cortizas, A.; Keppler, F. Occurrence and fate of halogens in mires. Dev. Earth Surf. Process. 2006, 9, 449–464. [Google Scholar]
- Martínez Cortizas, A.; Biester, H.; Mighall, T.; Bindler, R. Climate-driven enrichment of pollutants in peatlands. Biogeosciences 2007, 4, 905–911. [Google Scholar] [CrossRef]
- Zaccone, C.; Cocozza, C.; Shotyk, W.; Miano, T.M. Humic acids role in Br accumulation along two ombrotrophic peat bog profiles. Geoderma 2008, 146, 26–31. [Google Scholar] [CrossRef]
- Keppler, F.; Elden, R.; Niedan, V.; Pracht, J.; Schöler, H.F. Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 2000, 403, 298–300. [Google Scholar] [CrossRef] [PubMed]
- Martínez Cortizas, A.; Vázquez, C.F.; Kaal, J.; Biester, H.; Casais, M.C.; Rodríguez, T.T.; Lado, L.R. Bromine accumulation in acidic black colluvial soils. Geochim. Cosmochim. Acta 2016, 174, 143–155. [Google Scholar] [CrossRef]
- Guédron, S.; Sarret, G.; Tolu, J.; Ledru, M.-P.; Campillo, S. Pre-hispanic wetland irrigation and metallurgy in the South Andean Altiplano (Intersalar Region, Bolivia, XIVth and XVth century CE). Quat. Sci. Rev. 2024, 338, 108826. [Google Scholar] [CrossRef]
- Shotyk, W. Atmospheric deposition and mass balance of major and trace elements in two oceanic peat bog profiles, northern Scotland and the Shetlands Islands. Chem. Geol. 1997, 138, 55–72. [Google Scholar] [CrossRef]
- Roos-Barraclough, F.; Martinez-Cortizas, A.; García-Rodeja, E.; Shotyk, W. A 14500 years record of the accumulation of atmospheric mercury in peat: Volcanic signals, anthropogenic influences and a correlation to bromine accumulation. Earth Planet. Sci. Lett. 2002, 202, 435–451. [Google Scholar] [CrossRef]
- Biester, H.; Knorr, K.-H.; Schellekens, J.; Basler, A.; Hermanns, Y.-M. Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences 2014, 11, 2691–2707. [Google Scholar] [CrossRef]
- Zaccone, C.; Rein, G.; D’Orazio, V.; Hadden, R.M.; Belcher, C.M.; Miano, T.M. Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions. Geochim. Cosmochim. Acta 2014, 137, 134–146. [Google Scholar] [CrossRef]
- Broder, T.; Blodau, C.; Biester, H.; Knorr, K.H. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 2012, 9, 1479–1491. [Google Scholar] [CrossRef]
- Kylander, M.E.; Söderlinh, J.; Schenk, F.; Gyllencreutz, R.; Rydberg, J.; Bindler, R.; Martínez Cortizas, A.; Skelton, A. It’s in your glass: A history of sea level and storminess from the Laphroaig bog, Islay (southwestern Scotland). Boreas 2020, 49, 152–167. [Google Scholar] [CrossRef]
- Martínez Cortizas, A.; Peiteado Varela, E.; Bindler, R. Reconstructing historical Pb and Hg pollution in NW Spain using multiple cores from the Chao de Lamoso bog (Xistral Mountains). Geochim. Cosmochim. Acta 2012, 82, 68–78. [Google Scholar] [CrossRef]
- NIST 1568b; Rice Flour. National Institute of Standards and Technology, U.S. Department of Commerce: Gaitherburg, MD, USA, 2021.
- NIST 1648a; Urban Particulate Matter. National Institute of Standards and Technology, U.S. Department of Commerce: Gaitherburg, MD, USA, 2020.
- NIST 1649a; Urban Dust. National Institute of Standards and Technology, U.S. Department of Commerce: Gaitherburg, MD, USA, 2020.
- Quevauvillier, P.; Andersen, K.; Merry, J.; Van de Jagt, H. Certified Reference Materials Catalogue of the JCR; GROUND WATER (Br, Low Level); GROUND WATER (Br, High Level). 1998. Available online: https://crm.jrc.ec.europa.eu/en (accessed on 3 July 2025).
- Demšar, J.; Curk, T.; Erjavec, A.; Gorup, C.; Hocevar, T.; Milutinovic, M.; Možina, M.; Polajnar, M.; Toplak, M.; Staric, A. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Martínez Cortizas, A.; Francos Golán, A.; Traoré, M.; López-Costas, O. A Two-Part Harmony: Changes in Peat Molecular Composition in Two Cores from an Ombrotrophic Peatland (Tremoal do Pedrido, Xistral Mountains, NW Spain). Soil Syst. 2025, 9, 14. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 3. SmartPLS GmbH, Boenningstedt. 2015. Available online: http://www.smartpls.com (accessed on 3 July 2025).
- Garson, D. Partial Least Squares: Regression and Structural Equation Models; Statistical Publishing associates: Asheboro, NC, USA, 2016; pp. 1–262. Available online: http://www.statisticalassociates.com (accessed on 3 July 2025).
- Martínez Cortizas, A.; Horák-Terra, I.; Perez-Rodriguez, M.; Bindler, R.; Cooke, C.A.; Kylander, M. Structural equation modeling of long-term controls on mercury and bromine accumulation in Pinheiro mire (Minas Gerais, Brazil). Sci. Total Environ. 2021, 757, 143940. [Google Scholar] [CrossRef]
- Olid, C.; García-Orellana, J.; Masqué, P.; Martínez-Cortizas, A.; Sanchez-Cabeza, J.A.; Bindler, R. Improving the 210Pb-chronology of Pb deposition in peat cores from Chao de Lamoso (NW Spain). Sci. Total Environ. 2013, 443, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Chapman, S.J.; Campbell, C.D.; Fraser, A.R.; Puri, G. FTIR spectroscopy of peat in and bordering Scots pine woodland: Relationship with chemical and biological properties. Soil Biol. Biochem. 2001, 33, 1193–1200. [Google Scholar] [CrossRef]
- Cocozza, C.; D’Orazio, V.; Miano, T.M.; Shotyk, W. Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR, and comparison with physical properties. Org. Geochem. 2003, 34, 49–60. [Google Scholar] [CrossRef]
- Artz, R.R.E.; Chapman, S.J.; Robertson, A.H.J.; Potts, J.M.; Laggoun-Défarge, F.; Gogo, S.; Comont, L.; Disnar, J.R.; Francez, A.J. FT-IR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. Soil Biol. Biochem. 2008, 40, 515–527. [Google Scholar] [CrossRef]
- Kuhry, P.; Vitt, D.H. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 1996, 77, 271–275. [Google Scholar] [CrossRef]
- Zaccone, C.; Sanei, H.; Outridge, P.M.; Miano, T.M. Studying the humification degree and evolution of peat down a Holocene bog profile (Inuvik, NW Canada): A petrological and chemical perspective. Org. Geochem. 2011, 42, 399–408. [Google Scholar] [CrossRef]
- Silamikele, I.; Nikodemus, O.; Kalnina, L.; Purnalis, O.; Sire, J. Properties of Peat in Ombrotrophic Bogs Depending on the Humification Process; Klavins, M., Ed.; Mires and Peat; University of Latvia Press: Riga, Latvia, 2012; pp. 71–95. [Google Scholar]
- Pipes, G.T.; Yavitt, J.B. Biochemical components of Sphagnum and persistence in peat soil. Can. J. Soil Sci. 2022, 102, 785–795. [Google Scholar] [CrossRef]
- Carrillo, F.; Colom, X.; Sunol, J.J.; Saurina, J. Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur. Polym. J. 2004, 40, 2229–2234. [Google Scholar] [CrossRef]
- Martínez Cortizas, A.; Sjöström, J.K.; Ryberg, E.E.; Kylander, M.E.; Kaal, J.; López-Costas, O.; Álvarez Fernández, N.; Bindler, R. 9000 years of changes in peat organic matter composition in Store Mosse (Sweden) traced using FTIR-ATR. Boreas 2021, 50, 1161–1178. [Google Scholar] [CrossRef]
- Schellekens, J.; Bindler, R.; Martínez-Cortizas, A.; McClymont, E.L.; Abbott, G.D.; Biester, H.; Pontevedra-Pombal, X.; Buurman, P. Preferential degradation of polyphenols from Sphagnum–4-Isopropenylphenol as a proxy for past hydrological conditions in Sphagnum-dominated peat. Geochim. Cosmochim. Acta 2015, 150, 74–89. [Google Scholar] [CrossRef]
- Li, M.; Pu, Y.; Ragauskas, A.J. Current understanding of the correlation of lignin structure with biomass recalcitrance. Front. Chem. 2016, 4, 45. [Google Scholar] [CrossRef]
- Duce, R.A.; Winshester, J.W.; Van Nahl, T.W. Iodine, bromine, and chlorine in the Hawaiian marine atmosphere. J. Geophys. Res. 1965, 70, 1775–1799. [Google Scholar] [CrossRef]
- Sadasivan, S. Trace constituents in cloud water, rainwater, and aerosol samples collected near the west coast of India during the southwest monsoon. Atmos. Environ. 1980, 14, 33–38. [Google Scholar] [CrossRef]
- Modanová, J.; Ljunström, E. Sea-salt aerosol chemistry in coastal areas: A model study. J. Geophys. Res. 2001, 106, 1271–1296. [Google Scholar] [CrossRef]
- Maw, G.A.; Kempton, R.J. Bromine in soils and peats. Plant Soil 1982, 65, 103–109. [Google Scholar] [CrossRef]
- Gribble, G.W. The diversity of naturally produced organohalogens. Chemosphere 2003, 52, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Gribble, G.W. Naturally Occurring Organohalogen Compounds—A Comprehensive Update; Springer: Vienna, Austria, 2010; pp. 1–613. [Google Scholar]
- Keppler, F.; Biester, H. Peatlands: A major source of naturally produced organic chlorine. Chemosphere 2003, 52, 451–453. [Google Scholar] [CrossRef]
- Leri, A.; Mayer, L.M.; Thornton, K.R.; Ravel, B. Bromination of marine particulate organic matter through oxidative mechanisms. Geochim. Cosmochim. Acta 2014, 142, 53–63. [Google Scholar] [CrossRef]
- Myneni, S.C. Formation of stable chlorinated hydrocarbons in weathering plant material. Science 2002, 295, 1039–1041. [Google Scholar] [CrossRef]
- Van Pée, K.H.; Unversucht, S. Biological dehalogenation and halogenation reactions. Chemosphere 2003, 52, 299–312. [Google Scholar] [CrossRef]
- García-Seoane, R.; Antelo, J.; Fiol, S.; Fernández, J.A.; Aboal, J.R. Unravelling the metal uptake process in mosses: Comparison of aquatic and terrestrial species as air pollution biomonitors. Environ. Pollut. 2023, 333, 122069. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, P.; Zheng, G. Cellular and subcellular distribution and factors influencing the accumulation of atmospheric Hg in illandsia usneoides leaves. J. Hazard. Mater. 2021, 414, 125529. [Google Scholar] [CrossRef]
- Terkhi, M.C.; Taleb, F.; Gossart, P.; Semmoud, A.; Addou, A. Fourier transform infrared study of mercury interaction with carboxyl groups in humic acids. J. Photochem. Photobiol. A 2008, 108, 205–214. [Google Scholar] [CrossRef]
- Enrico, M.; Roux, G.L.; Marusczak, N.; Heimburger, L.E.; Claustres, A.; Fu, X.; Sun, R.; Sonke, J.E. Atmospheric mercury transfer to peat bogs dominated by gaseous elemental mercury dry deposition. Environ. Sci. Technol. 2016, 50, 2405–2412. [Google Scholar] [CrossRef] [PubMed]
- Haynes, K.M.; Kane, E.S.; Potvin, L.; Lilleskov, E.A.; Kolka, R.K.; Mitchell, C.P. Gaseous mercury fluxes in peatlands and the potential influence of climate change. Atmos. Environ. 2017, 154, 247–259. [Google Scholar] [CrossRef]
- Zhou, J.; Obrist, D.; Dastoor, A.; Jiskra, M.; Ryjkov, A. Vegetation uptake of mercury and impacts on global cycling. Nat. Rev. Earth Environ. 2021, 2, 269–284. [Google Scholar] [CrossRef]
- Tfaily, M.M.; Cooper, W.T.; Kostra, J.E.; Chanton, P.R.; Schadt, C.W.; Hanson, P.J.; Iversen, C.M.; Chanton, J.P. Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification. J. Geophys. Res.-Biogeosciences 2014, 119, 661–675. [Google Scholar] [CrossRef]
- Artz, R.R.E.; Chapman, S.J.; Campbell, C.D. Substrate utilisation profiles of microbial communities in peat are depth dependent and correlate with whole soil FTIR profiles. Soil Biol. Biochem. 2006, 38, 2958–2962. [Google Scholar] [CrossRef]
- Nelson, M.L.; O’Connor, R.T. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J. Appl. Polym. Sci. 1964, 8, 1325–1341. [Google Scholar] [CrossRef]
- Popescu, C.M.; Singurel, G.; Popescu, M.C.; Vasile, C.; Argyropoulos, D.S.; Willför, S. Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydr. Polym. 2009, 77, 851–857. [Google Scholar] [CrossRef]
- Rana, R.; Langenfeld-Heyser, R.; Finkeldey, R.; Polle, A. FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci. Technol. 2010, 44, 225–242. [Google Scholar] [CrossRef]
- Matrajt, G.; Muñoz Carro, G.M.; Dartois, E.; d’Hendecourt, L.; Deboffle, D.; Borg, J. FTIR analysis of the organics in IDPs: Comparison with the IR spectra of the diffuse interstellar medium. Astron. Astrophys. 2005, 433, 979–995. [Google Scholar] [CrossRef]
- Yao, S.; Cao, J.; Zhang, K.; Jiao, K.; Ding, H.; Hu, W. Artificial bacterial degradation and hydrous pyrolysis of suberin: Implications for hydrocarbon generation of suberine. Org. Geochem. 2012, 47, 22–33. [Google Scholar] [CrossRef]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]







| AR/PS | AL/PS | CCr | G/S | LT/RM | CBX | |
|---|---|---|---|---|---|---|
| Br | 0.62 ** | 0.61 ** | 0.46 ** | −0.74 ** | 0.52 ** | 0.72 ** |
| AR/PS | 0.96 ** | 0.85 ** | −0.42 ** | 0.67 ** | 0.87 ** | |
| AL/PS | 0.80 ** | −0.42 ** | 0.80 ** | 0.85 ** | ||
| CCr | −0.17 * | 0.64 ** | 0.72 ** | |||
| G/S | −0.38 ** | −0.51 ** | ||||
| LT/RM | 0.68 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez Cortizas, A.; Traoré, M.; López-Costas, O.; Sarret, G.; Guédron, S. Early Peat Diagenesis Controls on Bromine Accumulation. Soil Syst. 2025, 9, 120. https://doi.org/10.3390/soilsystems9040120
Martínez Cortizas A, Traoré M, López-Costas O, Sarret G, Guédron S. Early Peat Diagenesis Controls on Bromine Accumulation. Soil Systems. 2025; 9(4):120. https://doi.org/10.3390/soilsystems9040120
Chicago/Turabian StyleMartínez Cortizas, Antonio, Mohamed Traoré, Olalla López-Costas, Géraldine Sarret, and Stéphane Guédron. 2025. "Early Peat Diagenesis Controls on Bromine Accumulation" Soil Systems 9, no. 4: 120. https://doi.org/10.3390/soilsystems9040120
APA StyleMartínez Cortizas, A., Traoré, M., López-Costas, O., Sarret, G., & Guédron, S. (2025). Early Peat Diagenesis Controls on Bromine Accumulation. Soil Systems, 9(4), 120. https://doi.org/10.3390/soilsystems9040120

