Impact of Aggregate-Associated Carbon on Soil Mechanical Properties: Stability and Compaction Indices in Pomegranate Orchards of Different Ages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Orchard Management:
2.2. Soil Sampling
2.3. Sample Analysis
2.4. Statistical Analysis
3. Results
3.1. Soil Mechanical and Physical Properties
3.2. Indicators of Soil Compaction
3.3. Soil Aggregate Size Distribution and Stability
3.4. Organic Carbon in Bulk Soil (SOC) and Different Aggregate Fractions (OC)
3.5. Principal Component Analysis (PCA) and Pearson Correlation
4. Discussions
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Declaration of Generative Artificial Intelligence (AI) Tools
References
- Abdel Kawy, W.A.M.; Ali, R.R. Assessment of soil degradation and resilience at northeast Nile Delta, Egypt: The impact on soil productivity. Egypt. J. Remote Sens. Sp. Sci. 2012, 15, 19–30. [Google Scholar] [CrossRef]
- El Nahry, A.H.; Ibraheim, M.M.; El Baroudy, A.A. Assessment of soil degradation in the northern part of Nile Delta, Egypt using remote sensing and GIS techniques. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2015, 40, 1461–1467. [Google Scholar] [CrossRef]
- Toledo, M.P.S.; Rolim, M.M.; de Lima, R.P.; Cavalcanti, R.Q.; Ortiz, P.F.S.; Cherubin, M.R. Strength, swelling and compressibility of unsaturated sugarcane soils. Soil. Tillage Res. 2021, 212, 105072. [Google Scholar] [CrossRef]
- Naderi-Boldaji, M.; Keller, T. Degree of soil compactness is highly correlated with the soil physical quality index S. Soil. Tillage Res. 2016, 159, 41–46. [Google Scholar] [CrossRef]
- Wei, B.; Li, Z.; Wang, Y. Study on soil compaction and its causative factors at apple orchards in the Weibei Dry Highland of China. Soil. Use Manag. 2022, 38, 790–801. [Google Scholar] [CrossRef]
- Cao, S.; Zhou, Y.; Zhou, Y.; Zhou, X.; Zhou, W. Soil organic carbon and soil aggregate stability associated with aggregate fractions in a chronosequence of citrus orchards plantations. J. Environ. Manag. 2021, 293, 112847. [Google Scholar] [CrossRef]
- Ramos, M.F.; da Silva Almeida, W.R.; do Amaral, R.D.L.; Suzuki, L.E.A.S. Degree of compactness and soil quality of peach orchards with different production ages. Soil Tillage Res. 2022, 219, 105324. [Google Scholar] [CrossRef]
- Andreu-Coll, L.; Cano-Lamadrid, M.; Lipan, L.; López-Lluch, D.; Sendra, E.; Hernández, F. Effects of Organic Farming on the Physicochemical, Functional, and Quality Properties of Pomegranate Fruit: A Review. Agriculture 2023, 13, 1167. [Google Scholar] [CrossRef]
- Cerdà, A.; Novara, A.; Moradi, E. Long-term non-sustainable soil erosion rates and soil compaction in drip-irrigated citrus plantation in Eastern Iberian Peninsula. Sci. Total Environ. 2021, 787, 147549. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Wang, L.; Zhao, J.S.; Niu, Y.H.; Xiao, H.B.; Wang, Z.; Yu, S.X.; Shi, Z.H. Forty-year-old orchards promote carbon storage by changing aggregate-associated enzyme activities and microbial communities. Catena 2022, 213, 106195. [Google Scholar] [CrossRef]
- Chen, R.; Chang, H.; Wang, Z.; Lin, H. Determining organic-inorganic fertilizer application threshold to maximize the yield and quality of drip-irrigated grapes in an extremely arid area of Xinjiang, China. Agric. Water Manag. 2023, 276, 108070. [Google Scholar] [CrossRef]
- Farag, A.; Eltaweel, A.; Abd-Elrahman, S.; Ali, A.; Ahmed, M. Irrigation Regime and Soil Conditioner to Improve Soil Properties and Pomegranate Production in Newly Reclaimed Sandy Soil. Asian J. Soil. Sci. Plant Nutr. 2017, 1, 1–18. [Google Scholar] [CrossRef]
- Abdollahi, L.; Schjønning, P.; Elmholt, S.; Munkholm, L.J. The effects of organic matter application and intensive tillage and traffic on soil structure formation and stability. Soil Tillage Res. 2014, 136, 28–37. [Google Scholar] [CrossRef]
- Cavalcanti, R.Q.; Rolim, M.M.; de Lima, R.P.; Tavares, U.E.; Pedrosa, E.M.R.; Gomes, I.F. Soil physical and mechanical attributes in response to successive harvests under sugarcane cultivation in Northeastern Brazil. Soil Tillage Res. 2019, 189, 140–147. [Google Scholar] [CrossRef]
- Franco, A.L.C.; Cherubin, M.R.; Cerri, C.E.P.; Six, J.; Wall, D.H.; Cerri, C.C. Linking soil engineers, structural stability, and organic matter allocation to unravel soil carbon responses to land-use change. Soil Biol. Biochem. 2020, 150, 107998. [Google Scholar] [CrossRef]
- Pernes-Debuyser, A.; Tessier, D. Soil physical properties affected by long-term fertilization. Eur. J. Soil. Sci. 2004, 55, 505–512. [Google Scholar] [CrossRef]
- Massah, J.; Azadegan, B. Effect of chemical fertilizers on soil compaction and degradation. Agric. Mech. Asia Afr. Lat. Am. 2016, 47, 44–50. [Google Scholar]
- Liao, Y.; Dong, L.; Li, A.; Lv, W.; Wu, J.; Zhang, H.; Bai, R.; Liu, Y.; Li, J.; Shangguan, Z.; et al. Soil physicochemical properties and crusts regulate the soil infiltration capacity after land-use conversions from farmlands in semiarid areas. J. Hydrol. 2023, 626, 130283. [Google Scholar] [CrossRef]
- Liao, Y.; Cao, H.X.; Liu, X.; Li, H.T.; Hu, Q.Y.; Xue, W.K. By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas. Agric. Water Manag. 2021, 253, 106936. [Google Scholar] [CrossRef]
- Cavalcanti, R.Q.; Rolim, M.M.; de Lima, R.P.; Tavares, U.E.; Pedrosa, E.M.R.; Cherubin, M.R. Soil physical changes induced by sugarcane cultivation in the Atlantic Forest biome, northeastern Brazil. Geoderma 2020, 370, 114353. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Telak, L.J.; Dugan, I.; Bogunovic, I. Soil management and slope impacts on soil properties, hydrological response, and erosion in hazelnut orchard. Soil. Syst. 2021, 5, 5. [Google Scholar] [CrossRef]
- Zhu, G.; Deng, L.; Shangguan, Z. Effects of soil aggregate stability on soil N following land use changes under erodible environment. Agric. Ecosyst. Environ. 2018, 262, 18–28. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K.; Elliott, E.T. Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Rabbi, S.M.F.; Minasny, B.; McBratney, A.B.; Young, I.M. Microbial processing of organic matter drives stability and pore geometry of soil aggregates. Geoderma 2020, 360, 114033. [Google Scholar] [CrossRef]
- Wang, S.; Li, T.; Zheng, Z. Effects of tea plantation age on soil aggregate-associated C- and N-cycling enzyme activities in the hilly areas of Western Sichuan, China. Catena 2018, 171, 145–153. [Google Scholar] [CrossRef]
- Xu, B.; Li, Y.; Liu, Y. Spatial Distribution of Soil Carbon and Nitrogen Content in the Danjiangkou Reservoir Area and Their Responses to Land-Use Types. Sustainability 2024, 16, 444. [Google Scholar] [CrossRef]
- Wang, S.; Yan, X.; Wang, D.; Siddique, I.A.; Chen, J.; Xu, Q.; Zhao, C.; Yang, L.; Miao, Y.; Han, S. Soil microbial community based on plfa profiles in an age sequence of pomegranate plantation in the middle yellow river floodplain. Diversity 2021, 13, 408. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Y.; Zhang, R.; Chen, P.; Jing, X.; Lyu, C.; Zhang, R.; Li, Y.; Liu, Y. Synergistic impacts of Landscape, Soil, and environmental factors on the spatial distribution of soil aggregates stability in the Danjiangkou reservoir area. Catena 2024, 237, 107840. [Google Scholar] [CrossRef]
- Choudhary, R.C.; Bairwa, H.L.; Kumar, U.; Javed, T.; Asad, M.; Lal, K.; Mahawer, L.N.; Sharma, S.K.; Singh, P.; Mohamed, M.H.; et al. Influence of organic manures on soil nutrient content, microbial population, yield and quality parameters of pomegranate (Punica granatum L.) cv. Bhagwa. PLoS ONE 2022, 17, e0266675. [Google Scholar] [CrossRef]
- Zhao, Y.; Krzic, M.; Bulmer, C.E.; Schmidt, M.G. Maximum Bulk Density of British Columbia Forest Soils from the Proctor Test: Relationships with Selected Physical and Chemical Properties. Soil Sci. Soc. Am. J. 2008, 72, 442–452. [Google Scholar] [CrossRef]
- Bareta Junior, E.; da Silva, A.A.P.; Sens, T.M.Z.G.; Colecha, K.; Rampim, L.; Pott, C.A. Soil physical properties in variable levels of soil compaction. Res. Soc. Dev. 2021, 10, e2341028686. [Google Scholar] [CrossRef]
- ASTM D1556-07; Standard Test Method for Density and Unit Weight of Soil in Place by The Sand-Cone Method. ASTM International: West Conshohocken, PA, USA, 2007.
- Salama, M.; Mazrou, Y.; Elmorsy, A.; Omar, A.E.-D.; Elbasuiny, R. Using Agro-Chemical Treatments for Controling Fruit Defects and Improving Fruit Quality and Marketability of ”Wonderful” Pomegranate. FRESENIUS Environ. Bull. 2022, 31, 1649–1655. [Google Scholar]
- El-zawahry, A.M.I.; Hassan, M.I. Occurrence, Population Density and Biological Control of Root-Knot Nematode, Meloidogyne javanica Infecting Pomegranate Orchards in Assiut Governorate, Egypt. Assiut J. Agric. Sci. 2019, 50, 90–91. [Google Scholar] [CrossRef]
- El-Salhy, A.F.; Abou-Zaid, E.; El-Bolok, T.; Ali, M. Effect of Soil Conditioners on Growth and Fruiting of Manfalouty Pomegranate Trees Grown in New Reclaimed Region. Assiut J. Agric. Sci. 2023, 54, 93–106. [Google Scholar] [CrossRef]
- Andrews, E.M.; Kassama, S.; Smith, E.E.; Brown, P.H.; Khalsa, S.D.S. A review of potassium-rich crop residues used as organic matter amendments in tree crop agroecosystems. Agriculture 2021, 11, 580. [Google Scholar] [CrossRef]
- Page, A.L. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; ISBN 0891180729. [Google Scholar]
- Loeppert, R.H.; Suarez, D.L. Carbonate and Gypsum. In Methods of Soil Analysis: Part 3 Chemical Methods; Soil Science Society of America: Madison, WI, USA, 1996; Volume 5, pp. 437–474. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Flint, A.L.; Flint, L.E. 2.2 Particle Density. Methods of Soil Analysis: Part 4 Physical Methods; Soil Science Society of America: Madison, WI, USA, 2002; Volume 5, pp. 229–240. [Google Scholar]
- Elliott, E. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil. Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Li, Y.; He, X.; Lin, D.; Wei, P.; Zhou, L.; Zeng, L.; Qian, S.; Zhao, L.; Yang, Y.; Zhu, G. Effects of Fractal Dimension and Soil Erodibility on Soil Quality in an Erodible Region: A Case Study from Karst Mountainous Areas. Forests 2023, 14, 1609. [Google Scholar] [CrossRef]
- Hu, W.; Tabley, F.; Beare, M.; Tregurtha, C.; Gillespie, R.; Qiu, W.; Gosden, P. Short-Term Dynamics of Soil Physical Properties as Affected by Compaction and Tillage in a Silt Loam Soil. Vadose Zo. J. 2018, 17, 1–13. [Google Scholar] [CrossRef]
- Dou, Y.; Yang, Y.; An, S.; Zhu, Z. Effects of different vegetation restoration measures on soil aggregate stability and erodibility on the Loess Plateau, China. Catena 2020, 185, 104294. [Google Scholar] [CrossRef]
- Butzer, K.W. Contributions to the Pleistocene geology of the Nile Valley. Erdkunde 1959, 13, 46–67. [Google Scholar] [CrossRef]
- Badawy, W.M.; Ghanim, E.H.; Duliu, O.G.; El Samman, H.; Frontasyeva, M.V. Major and trace element distribution in soil and sediments from the Egyptian central Nile Valley. J. Afr. Earth Sci. 2017, 131, 53–61. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, S.; Xue, S.; Hu, Y.; Wang, X. Long-term tillage and cropping systems affect soil organic carbon components and mineralization in aggregates in semiarid regions. Soil Tillage Res. 2023, 231, 105742. [Google Scholar] [CrossRef]
- Wang, W.; Ingwersen, J.; Yang, G.; Wang, Z.; Alimu, A. Effects of Farmland Conversion to Orchard or Agroforestry on Soil Organic Carbon Fractions in an Arid Desert Oasis Area. Forests 2022, 13, 181. [Google Scholar] [CrossRef]
- Yang, F.; Huang, M.; Li, C.; Wu, X.; Guo, T.; Zhu, M. Changes in soil moisture and organic carbon under deep-rooted trees of different stand ages on the Chinese Loess Plateau. Agric. Ecosyst. Environ. 2022, 328, 107855. [Google Scholar] [CrossRef]
- Xin, X.; Zhang, J.; Zhu, A.; Zhang, C. Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil Tillage Res. 2016, 156, 166–172. [Google Scholar] [CrossRef]
- González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Benítez, C.; Lozano-García, B. Effects of land management change on soil aggregates and organic carbon in Mediterranean olive groves. Catena 2020, 195, 104840. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Gioacchini, P.; Baldi, E.; Montecchio, D.; Mazzon, M.; Quartieri, M.; Toselli, M.; Marzadori, C. Effect of long-term compost fertilization on the distribution of organic carbon and nitrogen in soil aggregates. Catena 2024, 240, 107968. [Google Scholar] [CrossRef]
- Özbolat, O.; Sánchez-Navarro, V.; Zornoza, R.; Egea-Cortines, M.; Cuartero, J.; Ros, M.; Pascual, J.A.; Boix-Fayos, C.; Almagro, M.; de Vente, J.; et al. Long-term adoption of reduced tillage and green manure improves soil physicochemical properties and increases the abundance of beneficial bacteria in a Mediterranean rainfed almond orchard. Geoderma 2023, 429, 116218. [Google Scholar] [CrossRef]
- Abdelrhman, A.A.; Gao, L.; Li, S.; Lu, J.; Song, X.; Zhang, M.; Zheng, F.; Wu, H.; Wu, X. Long-term application of organic wastes improves soil carbon and structural properties in dryland affected by coal mining activity. Sustainabilty 2021, 13, 5686. [Google Scholar] [CrossRef]
- Schweizer, S.A.; Bucka, F.B.; Graf-Rosenfellner, M.; Kögel-Knabner, I. Soil microaggregate size composition and organic matter distribution as affected by clay content. Geoderma 2019, 355, 113901. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, X.; Wu, J.; Li, W.; Tan, C.; Chen, Y.; Zhang, F.; Duan, J.; Li, Z.; Liu, Y. Long-term impacts of extensive terracing on soil aggregates and associated C–N–P in the Camellia oleifera orchard of southern China. Catena 2023, 233, 107512. [Google Scholar] [CrossRef]
- Liu, M.; Han, G. Assessing soil degradation under land-use change: Insight from soil erosion and soil aggregate stability in a small karst catchment in southwest China. PeerJ 2020, 2020, e8908. [Google Scholar] [CrossRef]
- Martínez-Murillo, J.F.; Remond, R.; Ruiz-Sinoga, J.D. Validation of RUSLE K factor using aggregate stability in contrasted mediterranean eco-geomorphological landscapes (southern Spain). Environ. Res. 2020, 183, 109160. [Google Scholar] [CrossRef]
- Arshad, M.A.; Lowery, B.; Grossman, B. Physical tests for monitoring soil quality. Methods Assess. Soil. Qual. 1997, 49, 123–141. [Google Scholar]
- Topa, D.; Cara, I.G.; Jităreanu, G. Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis. Catena 2021, 199, 105102. [Google Scholar] [CrossRef]
- Usaborisut, P.; Ampanmanee, J. Compaction properties of silty soils in relation to soil texture, moisture content and organic matter. Am. J. Agric. Biol. Sci. 2015, 10, 178–185. [Google Scholar] [CrossRef]
Soil Properties | 3 Y | 10 Y | 20 Y | 30 Y | 3 Y | 10 Y | 20 Y | 30 Y | |
---|---|---|---|---|---|---|---|---|---|
0.00–0.20 m | 0.20–0.40 m | ||||||||
Silt | % | 57.62 ± 0.21 a | 55.01 ± 0.27 b | 56.92 ± 0.56 a | 57.00 ± 0.52 a | 55.55 ± 0.37 a | 54.51 ± 0.62 a | 54.72 ± 0.54 a | 55.48 ± 0.32 a |
Clay | 37.68 ± 0.56 a | 39.13 ± 0.36 a | 38.43 ± 0.40 a | 38.83 ± 0.65 a | 38.77 ± 0.64 a | 39.86 ± 0.55 a | 40.47 ± 0.32 a | 39.67 ± 0.60 a | |
Sand | 4.70 ± 0.56 a | 5.86 ± 0.49 a | 4.65 ± 0.53 a | 4.20 ± 0.50 a | 5.69 ± 0.67 a | 5.63 ± 0.55 a | 4.81 ± 0.57 a | 4.85 ± 0.62 a | |
EC | mS cm−1 | 251 | 227 | 270 | 271 | 280 | 265 | 303 | 321 |
pH | 8.25 | 8.40 | 8.61 | 8.59 | 8.30 | 8.34 | 8.50 | 8.33 | |
CaCO3 | % | 2.65 | 1.52 | 2.47 | 2.53 | 2.78 | 1.31 | 3.48 | 1.46 |
Soil Properties | 3 Y | 10 Y | 20 Y | 30 Y | 3 Y | 10 Y | 20 Y | 30 Y | |
---|---|---|---|---|---|---|---|---|---|
0.00–0.20 m | 0.20–0.40 m | ||||||||
Pd | Mg m−3 | 2.35 ± 0.05 a | 2.36 ± 0.02 a | 2.28 ± 0.02 a | 2.27 ± 0.03 a | 2.30 ± 0.01 a | 2.34 ± 0.02 a | 2.37 ± 0.04 a | 2.39 ± 0.01 a |
Bd | 0.93 ± 0.01 d | 1.01 ± 0.03 c | 1.04 ± 0.0 b | 1.26 ± 0.01 a | 1.15 ± 0.01 d | 1.38 ± 0.01 a | 1.28 ± 0.02 b | 1.21 ± 0.01 c | |
TP | % | 60.59 ± 0.02 a | 57.18 ± 0.02 b | 54.47 ± 0.02 c | 44.77 ± 0.02 d | 49.76 ± 0.02 a | 41.29 ± 0.02 c | 45.93 ± 0.02 b | 49.36 ± 0.02 a |
BMax | Mg m−3 | 1.85 ± 0.02 a | 1.65 ± 0.03 c | 1.68 ± 0.01 bc | 1.70 ± 0.02 b | 1.80 ± 0.01 ab | 1.81 ± 0.02 a | 1.76 ± 0.03 b | 1.67 ± 0.01 c |
DC | % | 49.87 ± 0.75 c | 61.15 ± 0.68 b | 61.54 ± 0.36 b | 73.72 ± 0.69 a | 64.20 ± 0.57 c | 76.33 ± 0.93 a | 72.56 ± 0.78 b | 72.72 ± 0.55 b |
Composition of Aggregates (%) | 3 Y | 10 Y | 20 Y | 30 Y | 3 Y | 10 Y | 20 Y | 30 Y |
---|---|---|---|---|---|---|---|---|
0.00–0.20 m | 0.20–0.40 m | |||||||
Composition of aggregates (%) | ||||||||
>2 mm | 4.93 ± 0.40 c | 7.77 ± 0.28 a | 4.32 ± 0.34 c | 6.24 ± 0.81 b | 1.71 ± 0.16 b | 1.58 ± 0.47 b | 1.89 ± 0.30 b | 3.43 ± 0.54 a |
2–0.250 mm | 58.39 ± 1.23 c | 57.89 ± 0.65 c | 63.17 ± 1.00 b | 67.52 ± 1.16 a | 51.07 ± 1.3 c | 57.80 ± 1.38 b | 64.44 ± 0.69 a | 65.99 ± 0.25 a |
0.250–0.063 mm | 23.23 ± 0.95 a | 20.17 ± 0.40 b | 20.85 ± 0.38 b | 16.77 ± 0.55 c | 28.65 ± 1.25 a | 24.44 ± 0.41 b | 21.71 ± 0.43 c | 18.90 ± 0.37 d |
<0.063 mm | 12.08 ± 0.26 a | 13.05 ± 0.25 a | 10.18 ± 0.33 b | 8.01 ± 0.44 c | 18.13 ± 0.30 a | 13.72 ± 0.21 b | 10.91 ± 0.39 c | 10.69 ± 0.26 c |
R0.25 | 64.20 ± 0.54 c | 66.41 b ± 0.18 c | 68.50 ± 0.30 b | 74.84 ± 0.75 a | 53.01 ± 0.78 d | 60.87 ± 0.46 c | 67.03 ± 0.41 b | 70.11 ± 0.31 a |
Aggregation stability index | ||||||||
MWD (mm) | 0.95 ± 0.01 b | 1.09 ± 0.01 a | 0.98 ± 0.01 b | 1.11 ± 0.01 a | 0.72 ± 0.01 c | 0.79 ± 0.01 b | 0.84 ± 0.01 b | 0.95 ± 0.02 a |
GMD (mm) | 0.74 ± 0.001 c | 0.76 ± 0.001 bc | 0.77 ± 0.001 b | 0.84 ± 0.01 a | 0.63 ± 0.003 d | 0.69 ± 0.002 c | 0.74 ± 0.004 b | 0.77 ± 0.004 a |
D | 2.30 ± 0.01 b | 2.33 ± 0.01 a | 2.26 ± 0.01 c | 2.26 ± 0.01 c | 2.23 ± 0.01 a | 2.19 ± 0.03 a | 2.19 ± 0.003 a | 2.24 ± 0.01 a |
K | 0.056 ± 0.00 a | 0.055 ± 0.00 b | 0.055 ± 0.00 b | 0.052 ± 0.00 c | 0.063 ± 0.00 a | 0.059 ± 0.00 b | 0.056 ± 0.00 c | 0.055 ± 0.00 d |
Bulk Soil (OC) + Soil Aggregates (C) | 3 Y | 10 Y | 20 Y | 30 Y | 3 Y | 10 Y | 20 Y | 30 Y |
---|---|---|---|---|---|---|---|---|
0.00–0.20 m | 0.20–0.40 m | |||||||
OC (g kg−1) | ||||||||
>2 mm | 11.87 ± 0.19 c | 12.67 ± 0.10 b | 14.84 ± 0.23 a | 15.30 ± 0.10 a | 11.87 ± 0.20 b | 10.80 ± 0.16 b | 10.85 ± 0.12 b | 11.26 ± 0.31 a |
2–0.250 mm | 10.65 ± 0.24 c | 11.15 ± 0.28 c | 13.42 ± 0.30 b | 14.83 ± 0.17 a | 10.65 ± 0.24 b | 10.50 ± 0.17 b | 10.19 ± 0.10 b | 10.55 ± 0.17 a |
0.250–0.063 mm | 10.09 ± 0.25 b | 10.16 ± 0.33 b | 11.15 ± 0.25 a | 12.03 ± 0.25 a | 10.09 ± 0.27 b | 9.48 ± 0.33 b | 10.05 ± 0.16 a | 10.97 ± 0.11 a |
<0.063 mm | 11.39 ± 0.29 a | 10.33 ± 0.20 b | 10.27 ± 0.43 b | 11.17 ± 0.29 ab | 10.69.39 ± 0.29 c | 11.22 ± 0.29 bc | 11.66 ± 0.31 b | 13.02 ± 0.14 a |
Bulk soil | 13.76 ± 0.21 c | 14.47 ± 0.21 b | 15.30 ± 0.28 a | 15.67 ± 0.33 a | 12.89 ± 0.15 c | 13.76 ± 0.25 b | 13.83 ± 0.18 b | 15.22 ± 0.17 a |
Soil Attributes | 0.00–0.20 m | 0.20–0.40 m | |||
---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | |
BMax | −0.318 | −0.45 | 0.792 | −0.702 | −0.563 |
Bd | 0.923 | 0.358 | 0.014 | 0.285 | −0.83 |
DC | 0.862 | 0.439 | −0.227 | 0.679 | −0.579 |
MWD | 0.455 | 0.878 | −0.109 | 0.95 | 0.278 |
GMD | 0.925 | 0.322 | 0.008 | 0.992 | 0.007 |
R0.25 | 0.955 | 0.236 | −0.024 | 0.992 | −0.007 |
K | −0.922 | −0.34 | 0.021 | −0.994 | 0.046 |
D | −0.784 | 0.601 | −0.093 | 0.002 | 0.757 |
>2 mm | −0.145 | 0.973 | −0.111 | 0.637 | 0.639 |
2–0.250 mm | 0.974 | −0.09 | 0.045 | 0.969 | −0.043 |
0.250–0.063 mm | −0.835 | −0.474 | 0.06 | −0.985 | −0.074 |
<0.063 mm | −0.941 | 0.129 | −0.11 | −0.955 | 0.183 |
>2 mm OC | 0.939 | −0.102 | −0.282 | 0.758 | 0.568 |
2–0.250 mm OC | 0.961 | −0.011 | −0.115 | 0.665 | 0.7 |
0.250–0.063 mm OC | 0.955 | −0.058 | 0.043 | 0.946 | 0.155 |
<0.063 mm OC | 0.11 | 0.011 | 0.939 | 0.885 | 0.408 |
SOC | 0.899 | 0.05 | −0.242 | 0.966 | 0.075 |
Total | 11.594 | 3.098 | 1.44 | 12.093 | 3.106 |
% of Variance | 68.202 | 18.225 | 8.473 | 71.134 | 18.271 |
Cumulative % | 68.202 | 86.427 | 94.9 | 71.134 | 89.405 |
Soil Properties | BM | Bd | DC | MWD | GMD | R0.25 | K | D |
---|---|---|---|---|---|---|---|---|
>2 mm | −0.481 ** | −0.547 ** | −0.376 * | 0.921 ** | 0.641 ** | 0.536 ** | −0.644 ** | 0.856 ** |
2–0.250 mm | −0.492 ** | 0.225 | 0.392 * | 0.559 ** | 0.869 ** | 0.929 ** | −0.561 ** | −0.109 |
0.250–0.063 mm | 0.646 ** | −0.015 | −0.235 | −0.842 ** | −0.958 ** | −0.971 ** | 0.734 ** | −0.27 |
<0.063 mm | 0.415 * | −0.056 | −0.200 | −0.709 ** | −0.936 ** | −0.949 ** | 0.617 ** | −0.099 |
>2 mm OC | −0.608 ** | −0.193 | 0.014 | 0.791 ** | 0.827 ** | 0.784 ** | −0.794 ** | 0.353 * |
2–0.250 mm OC | −0.597 ** | 0.017 | 0.22 | 0.668 ** | 0.777 ** | 0.758 ** | −0.784 ** | 0.197 |
0.250–0.063 mm OC | −0.465 ** | 0.238 | 0.392 * | 0.578 ** | 0.832 ** | 0.867 ** | −0.627 ** | −0.035 |
<0.063 mm OC | 0.017 | 0.353 * | 0.361 * | −0.059 | 0.163 | 0.258 | −0.223 | −0.258 |
SOC | −0.620 ** | 0.179 | 0.379 * | 0.620 ** | 0.854 ** | 0.902 ** | −0.611 ** | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelrhman, A.A.; Sayed, Y.A.; Fadl, M.E.; Casucci, C.; Drosos, M.; Scopa, A.; Moftah, H. Impact of Aggregate-Associated Carbon on Soil Mechanical Properties: Stability and Compaction Indices in Pomegranate Orchards of Different Ages. Soil Syst. 2025, 9, 20. https://doi.org/10.3390/soilsystems9010020
Abdelrhman AA, Sayed YA, Fadl ME, Casucci C, Drosos M, Scopa A, Moftah H. Impact of Aggregate-Associated Carbon on Soil Mechanical Properties: Stability and Compaction Indices in Pomegranate Orchards of Different Ages. Soil Systems. 2025; 9(1):20. https://doi.org/10.3390/soilsystems9010020
Chicago/Turabian StyleAbdelrhman, Ahmed Ali, Yasser A. Sayed, Mohamed E. Fadl, Cristiano Casucci, Marios Drosos, Antonio Scopa, and Hussein Moftah. 2025. "Impact of Aggregate-Associated Carbon on Soil Mechanical Properties: Stability and Compaction Indices in Pomegranate Orchards of Different Ages" Soil Systems 9, no. 1: 20. https://doi.org/10.3390/soilsystems9010020
APA StyleAbdelrhman, A. A., Sayed, Y. A., Fadl, M. E., Casucci, C., Drosos, M., Scopa, A., & Moftah, H. (2025). Impact of Aggregate-Associated Carbon on Soil Mechanical Properties: Stability and Compaction Indices in Pomegranate Orchards of Different Ages. Soil Systems, 9(1), 20. https://doi.org/10.3390/soilsystems9010020