Biochar and Plant Growth-Promoting Bacteria Boost Chemical and Biological Properties of Semiarid Soil in Cowpea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Field Experiment and Experimental Design
OM | N | pH | P | Ca2+ | Mg2+ | K+ | Na+ | S (Bases) | Al3+ | |
---|---|---|---|---|---|---|---|---|---|---|
g kg−1 | (%) | (H2O) | mg dm−3 | cmolc dm−3 | ||||||
Soil | 5.5 | 0.13 | 5.37 | 15.5 | 1.04 | 0.60 | 0.14 | 0.02 | 1.80 | 0.08 |
Peat | 77.25 | - | 5.3 | 0.17 | - | - | 0.36 | - | - | - |
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, S.; Yin, K.; Yu, L. Factors influencing the farmer’s chemical fertilizer reduction behavior from the perspective of farmer differentiation. Heliyon 2022, 8, e11918. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.M.; Costa, M.K.L.; Rocha, S.M.B.; Leite, M.R.L.; de Alcantara Neto, F.; de Souza, H.A.; Pereira, A.P.A.; Melo, V.M.M.; de Medeiros, E.V.M.; Mendes, L.W.; et al. Soil management shapes bacterial and archaeal communities in soybean rhizosphere: Comparison of no-tillage and integrated crop-livestock systems. Rhizosphere 2024, 30, 100886. [Google Scholar] [CrossRef]
- Medeiros, E.V.; Costa, D.P.; Silva, E.L.D.; França, A.F.; Lima, J.R.S.; Hammecker, C.; Mendes, L.W.; Pereira, A.P.A.; Araujo, A.S.F. Biochar and Trichoderma as an eco-friendly and low-cost alternative to improve soil chemical and biological properties. Waste Biomass Valoriz. 2023, 15, 1439–1450. [Google Scholar] [CrossRef]
- Xiong, X.; He, M.; Dutta, S.; Tsang, D.C. Biochar and sustainable development goals. In Biochar in Agriculture for Achieving Sustainable Development Goals; Academic Press: Cambridge, MA, USA, 2022; pp. 15–22. [Google Scholar] [CrossRef]
- Ajeng, A.A.; Abdullah, R.; Ling, T.C. Biochar-Bacillus consortium for a sustainable agriculture: Physicochemical and soil stability analyses. Biochar 2023, 5, 17. [Google Scholar] [CrossRef]
- Anbuganesan, V.; Vishnupradeep, R.; Mehnaz, N.; Kumar, A.; Freitas, H.; Rajkumar, M. Synergistic effect of biochar and plant growth promoting bacteria improve the growth and phytostabilization potential of Sorghum bicolor in Cd and Zn contaminated soils. Rhizosphere 2024, 29, 100844. [Google Scholar] [CrossRef]
- Wang, Y.; Wenqing, L.I.; Binghai, D.U.; Hanhao, L.I. Effect of biochar applied with plant growth-promoting rhizobacteria (PGPR) on soil microbial community composition and nitrogen utilization in tomato. Pedosphere 2021, 31, 872–881. [Google Scholar] [CrossRef]
- Nwachukwu, B.C.; Babalola, O.O.; Hassen, A.I. Rhizosphere competence and applications of plant growth-promoting rhizobacteria in food production-a review. Sci. Afr. 2024, 23, e02081. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Z.; Liu, C.; Zhang, Z.; Liu, X. Biochar combined with Bacillus subtilis SL-44 as an eco-friendly strategy to improve soil fertility, reduce Fusarium wilt, and promote radish growth. Ecotoxicol. Environ. Saf. 2023, 251, 114509. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Manchanda, G.; Maurya, I.K.; Maheshwari, N.K.; Tiwari, P.K.; Rai, A.R. Streptomyces from rotten wheat straw endowed the high plant growth potential traits and agro-active compounds. Biocatal. Agric. Biotechnol. 2019, 17, 507–513. [Google Scholar] [CrossRef]
- Prajakta, B.M.; Suvarna, P.P.; Raghvendra, S.P.; Alok, R.R. Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35 (R11) of soybean (Glycine max) rhizosphere. SN Appl. Sci. 2019, 1, 1143. [Google Scholar] [CrossRef]
- Gou, Z.; Zheng, H.; He, Z.; Su, Y.; Chen, S.; Chen, H.; Sun, Y. The combined action of biochar and nitrogen-fixing bacteria on microbial and enzymatic activities of soil N cycling. Environ. Pollut. 2023, 317, 120790. [Google Scholar] [CrossRef]
- da França, R.F.; de Medeiros, E.V.; Silva, R.O.; Fausto, R.A.d.S.; de Souza, C.A.F.; de Oliveira, J.B.; Lima, J.R.d.S.; Araújo, A.P. Perspectives for Biochar as a vehicle for inoculation of phosphate solubilizing bacteria: A review. Res. Soc. Dev. 2022, 11, e36211124885. [Google Scholar] [CrossRef]
- Malik, L.; Sanaullah, M.; Mahmood, F.; Hussain, S.; Siddique, M.H.; Anwar, F.; Shahzad, T. Unlocking the potential of co-applied biochar and plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture under stress conditions. Chem. Biol. Technol. Agric. 2022, 9, 58. [Google Scholar] [CrossRef]
- Hardy, K.; Knight, J.D. Evaluation of biochars as carriers for Rhizobium leguminosarum. Can. J. Microbiol. 2021, 67, 53–63. [Google Scholar] [CrossRef]
- Jabborova, D.; Wirth, S.; Kannepalli, A.; Narimanov, A.; Desouky, S.; Davranov, K.; Sayyed, R.Z.; El Enshasy, H.; Malek, R.A.; Syed, A.; et al. Co-inoculation of rhizobacteria and biochar application improves growth and nutrients in soybean and enriches soil nutrients and enzymes. Agronomy 2020, 10, 1142. [Google Scholar] [CrossRef]
- Sarfraz, R.; Hussain, A.; Sabir, A.; Fekih, I.B.; Ditta, A.; Xing, S. Biochar has the potential to alter the soil pH which can affect microbial biomass in soil. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration-a review. Environ. Monit. Assess. 2019, 191, 251. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- Santos, A.B.D.; Fracetto, G.G.M.; Fracetto, F.J.C.; Lira Junior, M.A. Rhizobial diversity in shrub-tree legume-based silvopastoral systems. Bragantia 2019, 81, e2622. [Google Scholar] [CrossRef]
- Wollum, A.G. Cultural methods for soil microorganisms. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982; Volume 9, pp. 781–802. [Google Scholar]
- Silva, F.D. (Ed.) Análises Químicas para Avaliação da Fertilidade do solo, Manual de Análise Química de Solos, Plantas e Fertilizantes; Embrapa: Brasília, Brazil, 1999; pp. 75–166. [Google Scholar]
- Eivazi, F.; Tabatabai, M.A. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 1988, 20, 601–606. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Ajeng, A.A.; Abdullah, R.; Ling, T.C.; Ismail, S.; Lau, B.F.; Ong, H.C.; Chew, K.W.; Show, P.L.; Chang, J.S. Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture. Environ. Technol. Innov. 2020, 20, 101168. [Google Scholar] [CrossRef]
- Bolan, S.; Hou, D.; Wang, L.; Hale, L.; Egamberdieva, D.; Tammeorg, P.; Li, R.; Wang, B.; Xu, J.; Wang, T.; et al. The potential of biochar as a microbial carrier for agricultural and environmental applications. Sci. Total Environ. 2024, 886, 163968. [Google Scholar] [CrossRef] [PubMed]
- Kuramae, E.E.; Derksen, S.; Schlemper, T.R.; Dimitrov, M.R.; Costa, O.Y.A.; Silveira, A.P.D.D. Sorghum Growth Promotion by Paraburkholderia tropica and Herbaspirillum frisingense: Putative Mechanisms Revealed by Genomics and Metagenomics. Microorganisms 2020, 8, 725. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, M.D.A.; España, M.; Aguirre, C.; Kojima, K.; Ohkama-Ohtsu, N.; Sekimoto, H.; Yokoyama, T. Burkholderia and Paraburkholderia are predominant soybean rhizobial genera in Venezuelan soils in different climatic and topographical regions. Microbes Environ. 2019, 34, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Xing, P.; Zhao, Y.; Guan, D.; Li, L.; Zhao, B.; Ma, M.; Jiang, X.; Tian, C.; Cao, F.; Li, J. Effects of Bradyrhizobium Co-Inoculated with Bacillus and Paenibacillus on the Structure and Functional Genes of Soybean Rhizobacteria Community. Genes 2022, 13, 1922. [Google Scholar] [CrossRef] [PubMed]
- Glaser, B.; Lehr, V.I. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Sci. Rep. 2019, 9, 9338. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.A.; Martins, C.C.; Araújo, T.C.; Marciano, C.R.; Barcelos, J.G.; Ribeiro, R.M.S.; Silva, M.G.; Barroso, D.G. Biochar decreases nutrient leaching in KCl-fertilized Podzols grown with black Mucuna. Rev. Bras. Ciênc. Solo 2023, 47, e0220086. [Google Scholar] [CrossRef]
- Cyle, K.T.; Klein, A.R.; Aristilde, L.; Martínez, C.E. Ecophysiological Study of Paraburkholderia sp. Strain 1N under Soil Solution Conditions: Dynamic Substrate Preferences and Characterization of Carbon Use Efficiency. Appl. Environ. Microbiol. 2020, 86, e01851-20. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, R.C.; DeRito, C.M.; Shapleigh, J.P.; Madsen, E.L.; Buckley, D.H. Phenolic acid-degrading Paraburkholderia prime decomposition in forest soil. ISME Commun. 2021, 1, 4. [Google Scholar] [CrossRef] [PubMed]
Bean Husk Biochar (BHB) | Grape Fermentation Biochar (GFB) | |
---|---|---|
EC * (dS m−1) | 8.04 | 9.84 |
pH | 10.28 | 10.28 |
OM (dag kg−1) | 32.8 | 31.0 |
P (g kg−1) | 14.0 | 7.6 |
K+ (g kg−1) | 72.0 | 51.9 |
Na+ (g kg−1) | 7.0 | 4.5 |
Ca2+ (g kg−1) | 14.7 | 6.8 |
Mg2+ (g kg−1) | 21.4 | 2.0 |
N (g kg−1) | 25.3 | 21.7 |
CEC (mmol dm−3) | 46.89 | 107.9 |
Corg (g kg−1) | 151.1 | 142.8 |
C:N (ratio) | 6.0 | 6.6 |
Cu2+ (mg kg−1) | 32.5 | 29.9 |
Fe2+ (mg kg−1) | 5683.8 | 796.0 |
Mn2+ (mg kg−1) | 174.6 | 57.00 |
Zn2+ (mg kg−1) | 411.6 | 263.2 |
B (mg kg−1) | 38.6 | 20.1 |
S (g kg−1) | 510.4 | 2374.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo, I.d.S.; Martins Filho, A.P.; da Costa, D.P.; Silva, A.O.; da França, R.F.; Lira Junior, M.d.A.; Duda, G.P.; Lima, J.R.d.S.; da Silva, M.M.; Araujo, A.S.F.; et al. Biochar and Plant Growth-Promoting Bacteria Boost Chemical and Biological Properties of Semiarid Soil in Cowpea. Soil Syst. 2025, 9, 19. https://doi.org/10.3390/soilsystems9010019
Araujo IdS, Martins Filho AP, da Costa DP, Silva AO, da França RF, Lira Junior MdA, Duda GP, Lima JRdS, da Silva MM, Araujo ASF, et al. Biochar and Plant Growth-Promoting Bacteria Boost Chemical and Biological Properties of Semiarid Soil in Cowpea. Soil Systems. 2025; 9(1):19. https://doi.org/10.3390/soilsystems9010019
Chicago/Turabian StyleAraujo, Inara da Silva, Argemiro Pereira Martins Filho, Diogo Paes da Costa, Aline Oliveira Silva, Rafaela Felix da França, Mario de Andrade Lira Junior, Gustavo Pereira Duda, José Romualdo de Sousa Lima, Mairon Moura da Silva, Ademir Sergio Ferreira Araujo, and et al. 2025. "Biochar and Plant Growth-Promoting Bacteria Boost Chemical and Biological Properties of Semiarid Soil in Cowpea" Soil Systems 9, no. 1: 19. https://doi.org/10.3390/soilsystems9010019
APA StyleAraujo, I. d. S., Martins Filho, A. P., da Costa, D. P., Silva, A. O., da França, R. F., Lira Junior, M. d. A., Duda, G. P., Lima, J. R. d. S., da Silva, M. M., Araujo, A. S. F., Hammecker, C., & Medeiros, E. V. d. (2025). Biochar and Plant Growth-Promoting Bacteria Boost Chemical and Biological Properties of Semiarid Soil in Cowpea. Soil Systems, 9(1), 19. https://doi.org/10.3390/soilsystems9010019