Seasonal and Land Use Effects on Soil Respiration and Its Controlling Factors in Arid Lands from Northeastern Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. Measurement of Soil Respiration, Environmental Variables, and Soil Properties
2.4. Data Analysis
3. Results
3.1. Soil Respiration, Environmental Variables, and Soil Properties
3.2. RS Controlling Factors
4. Discussion
4.1. RS Seasonal Dynamic
4.2. Land Use Effects on RS
4.3. Dynamics of RS Controlling Factors Across Land Uses and Seasons
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, R.; Monger, C.; Nave, L.; Smith, P. The role of soil in regulation of climate. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20210084. [Google Scholar] [CrossRef] [PubMed]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; DeFries, R.; Galloway, J.; Heimann, M.; et al. Carbon and Other Biogeochemical Cycles. In Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2014; pp. 465–570. [Google Scholar]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895. [Google Scholar] [CrossRef]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, J.; Zheng, Y.; Li, S.; Zhou, Y. Increased carbon uptake and water use efficiency in global semi-arid ecosystems. Environ. Res. Lett 2020, 15, 034022. [Google Scholar] [CrossRef]
- Lal, R. Carbon Sequestration in Dryland Ecosystems. Environ. Manag. 2004, 33, 528–544. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.W.; Tissue, D.T.; Loik, M.E.; Wallenstein, M.D.; Acosta-Martinez, V.; Erickson, R.A.; Zak, J.C. Soil microbial and nutrient responses to 7 years of seasonally altered precipitation in a Chihuahuan Desert grassland. Glob. Change Biol. 2014, 20, 1657–1673. [Google Scholar] [CrossRef] [PubMed]
- Carbone, M.S.; Still, C.J.; Ambrose, A.R.; Dawson, T.E.; Williams, A.P.; Boot, C.M.; Schaeffer, S.M.; Schimel, J.P. Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration. Oecologia 2011, 167, 265–278. [Google Scholar] [CrossRef]
- Tomar, U.; Baishya, R. Seasonality and moisture regime control soil respiration, enzyme activities, and soil microbial biomass carbon in a semi-arid forest of Delhi, India. Ecol. Process. 2020, 9, 50. [Google Scholar] [CrossRef]
- de Graaff, M.-A.; Throop, H.L.; Verburg, P.S.J.; Arnone, J.A.; Campos, X. A Synthesis of Climate and Vegetation Cover Effects on Biogeochemical Cycling in Shrub-Dominated Drylands. Ecosystems 2014, 17, 931–945. [Google Scholar] [CrossRef]
- Vargas, R.; Detto, M.; Baldocchi, D.D.; Allen, M.F. Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Glob. Change Biol. 2010, 16, 1589–1605. [Google Scholar] [CrossRef]
- Roby, M.C.; Scott, R.L.; Barron-Gafford, G.A.; Hamerlynck, E.P.; Moore, D.J.P. Environmental and Vegetative Controls on Soil CO2 Efflux in Three Semiarid Ecosystems. Soil Syst. 2019, 3, 6. [Google Scholar] [CrossRef]
- Salinas-Zavala, C.A.; Douglas, A.V.; Diaz, H.F. Interannual variability of NDVI in northwest Mexico. Associated climatic mechanisms and ecological implications. Remote Sens. Environ. 2002, 82, 417–430. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, X. Soil Respiration and the Environment; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Barba, J.; Cueva, A.; Bahn, M.; Barron-Gafford, G.A.; Bond-Lamberty, B.; Hanson, P.J.; Jaimes, A.; Kulmala, L.; Pumpanen, J.; Scott, R.L.; et al. Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil measurements. Agric. For. Meteorol. 2018, 249, 434–443. [Google Scholar] [CrossRef]
- Bell, T.W.; Menzer, O.; Troyo-Diéquez, E.; Oechel, W.C. Carbon dioxide exchange over multiple temporal scales in an arid shrub ecosystem near La Paz, Baja California Sur, Mexico. Glob. Change Biol. 2012, 18, 2570–2582. [Google Scholar] [CrossRef]
- Berryman, E.M.; Barnard, H.R.; Adams, H.R.; Burns, M.A.; Gallo, E.; Brooks, P.D. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient. J. Geophys. Res. 2015, 120, 707–723. [Google Scholar] [CrossRef]
- Thomas, C.K.; Law, B.E.; Irvine, J.; Martin, J.G.; Pettijohn, J.C.; Davis, K.J. Seasonal hydrology explains interannual and seasonal variation in carbon and water exchange in a semiarid mature ponderosa pine forest in central Oregon. J. Geophys. Res. 2009, 114, 1–22. [Google Scholar] [CrossRef]
- Lai, L.; Zhao, X.; Jiang, L.; Wang, Y.; Luo, L.; Zheng, Y.; Chen, X.; Rimmington, G.M. Soil respiration in different agricultural and natural ecosystems in an arid region. PLoS ONE 2012, 7, e48011. [Google Scholar] [CrossRef]
- Phillips, C.L.; Nickerson, N. Soil Respiration. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Wang, B.; Zha, T.S.; Jia, X.; Wu, B.; Zhang, Y.Q.; Qin, S.G. Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem. Biogeosciences 2014, 11, 259–268. [Google Scholar] [CrossRef]
- Huxman, T.E.; Snyder, K.A.; Tissue, D.; Leffler, A.J.; Ogle, K.; Pockman, W.T.; Sandquist, D.R.; Potts, D.L.; Schwinning, S. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 2004, 141, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Balbuena, J.; Arredondo, J.T.; Loescher, H.W.; Pineda-Martínez, L.F.; Carbajal, J.N.; Vargas, R. Seasonal Precipitation Legacy Effects Determine the Carbon Balance of a Semiarid Grassland. J. Geophys. Res. 2019, 124, 987–1000. [Google Scholar] [CrossRef]
- de Sousa, J.R.L.; Silva, R.M.S.; dos Santos, E.S.; de Souza, E.S.; da Silva, J.E.O.; de Medeiros, É.V.; Medeiros, L.G.P.; Antonino, A.C.D.; Hammecker, C. Impacts of land-use changes on soil respiration in the semi-arid region of Brazil. Rev. Bras. De Cienc. Do Solo 2020, 44, e0200092. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, S.; Liu, Q.; Jiang, J.; Wang, R.; Li, N. Responses of soil respiration to land use conversions in degraded ecosystem of the semi-arid Loess Plateau. Ecol. Eng. 2015, 74, 196–205. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Sarikhani, M.R.; Safari Sinegani, A.A.; Ahmadi, A.; Keesstra, S. Estimating the soil respiration under different land uses using artificial neural network and linear regression models. Catena 2019, 174, 371–382. [Google Scholar] [CrossRef]
- Guillen-Cruz, G.; Campuzano, E.F.; Juárez-Altamirano, R.; López-García, K.L.; Torres-Arreola, R.; Flores-Rentería, D. Interannual Variation and Control Factors of Soil Respiration in Xeric Shrubland and Agricultural Sites from the Chihuahuan Desert, Mexico. Land 2023, 12, 1961. [Google Scholar] [CrossRef]
- Meena, A.; Hanief, M.; Dinakaran, J.; Rao, K.S. Soil moisture controls the spatio-temporal pattern of soil respiration under different land use systems in a semi-arid ecosystem of Delhi, India. Ecol. Process. 2020, 9, 15. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, Y.; Ruan, M.; Guo, J.; Chai, T. Land Subsidence in a Coal Mining Area Reduced Soil Fertility and Led to Soil Degradation in Arid and Semi-Arid Regions. Int. J. Environ. Res. Public Health 2019, 16, 3929. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, Y.; Li, W.; Zhao, R. Seasonal variation of soil respiration under different land use/land cover in arid region. Sci. China Earth Sci. 2007, 50, 76–85. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; Fu, L.; Zhao, C.; Jia, A. Land use conversion influences soil respiration across a desert-oasis ecoregion in Northwest China, with consideration of cold season CO2 efflux and its significance. Catena 2020, 188, 104460. [Google Scholar] [CrossRef]
- Fekadu, G.; Adgo, E.; Meshesha, D.T.; Tsunekawa, A.; Haregeweyn, N.; Peng, F.; Mulualem, T.; Tsubo, M.; Tassew, A.; Masunaga, T.; et al. Spatiotemporal variations of soil respiration under different land uses and their control in Northwestern Ethiopia. Model. Earth Syst. Environ. 2024, 10, 1157–1169. [Google Scholar] [CrossRef]
- Owusu-Prempeh, N.; Amekudzi, L.K.; Kyereh, B. Assessment of soil carbon dioxide efflux from contrasting land uses in a semi-arid savannah ecosystem, northeastern Ghana (West Africa). Sci. Afr. 2024, 26, e02420. [Google Scholar] [CrossRef]
- Rabbi, S.M.F.; Tighe, M.; Cowie, A.; Wilson, B.R.; Schwenke, G.; McLeod, M.; Badgery, W.; Baldock, J. The relationships between land uses, soil management practices, and soil carbon fractions in South Eastern Australia. Agric. Ecosyst. Environ. 2014, 197, 41–52. [Google Scholar] [CrossRef]
- CONAFOR-UACh. Línea Base Nacional de Degradación de Tierras y Desertificación. Informe Final; Comisión Nacional Forestal y Universidad Autónoma Chapingo: Zapopan, Jalisco, Mexico, 2013. [Google Scholar]
- CICESE. CLICOM. Obtenido de Base de Datos Climatológica Nacional. Available online: http://cucapa-clicom-mex.cicese.mx (accessed on 30 January 2024).
- Food and Agriculture Organization of the United Nations. World Reference Base for Soil Resources 2015; FAO: Rome, Italy, 2015; Volume 106, p. 203. [Google Scholar]
- Encina-Domínguez, J.A.; Arévalo-Sierra, J.R.; Villarreal-Quintanilla, J.A.; Estrada-Castillón, E.A. Composition, structure and richness of vascular plants of the desert scrub in the north of Coahuila, Mexico. Bot. Sci. 2020, 98, 1–15. [Google Scholar] [CrossRef]
- Flores-Rentería, D.; Delgado-Balbuena, J.; Campuzano, E.F.; Curiel Yuste, J. Seasonal controlling factors of CO2 exchange in a semiarid shrubland in the Chihuahuan Desert, Mexico. Sci. Total Environ. 2023, 858, 159918. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, E.F.; Delgado-Balbuena, J.; Flores-Renteria, D. Controlling factors of the ecosystem and soil respiration in a xeric shrubland in the Chihuahuan Desert, Mexico. Terra Latinoam. 2021, 39, e1251. [Google Scholar] [CrossRef]
- Heinemeyer, A.; Di Bene, C.; Lloyd, A.R.; Tortorella, D.; Baxter, R.; Huntley, B.; Gelsomino, A.; Ineson, P. Soil respiration: Implications of the plant-soil continuum and respiration chamber collar-insertion depth on measurement and modelling of soil CO2 efflux rates in three ecosystems. Eur. J. Soil Sci. 2011, 62, 82–94. [Google Scholar] [CrossRef]
- Gregorich, E.; Wen, G.; Voroney, R.; Kachanoski, R. Calibration of a rapid direct chloroform extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1990, 22, 1009–1011. [Google Scholar] [CrossRef]
- Lamptey, S.; Li, L.; Xie, J. Impact of nitrogen fertilization on soil respiration and net ecosystem production in maize. Plant Soil Environ. 2018, 64, 353–360. [Google Scholar] [CrossRef]
- Senthamarai Kannan, K.; Manoj, K.; Arumugam, S. Labeling Methods for Identifying Outliers. Int. J. Stat. Syst. 2015, 10, 231–238. [Google Scholar]
- Stekhoven, D.J.; Bühlmann, P. MissForest--non-parametric missing value imputation for mixed-type data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef] [PubMed]
- R-Core-Team. R: A Language and Environment for Statistical Computing, R 4.2.1; Scientific Research: Vienna, Austria, 2021. [Google Scholar]
- Gao, L.; Zhao, P.; Kang, S.; Li, S.; Tong, L.; Ding, R.; Lu, H. Surface soil water content dominates the difference between ecosystem and canopy water use efficiency in a sparse vineyard. Agric. Water Manag. 2019, 226, 105817. [Google Scholar] [CrossRef]
- Huang, N.; Wang, L.; Guo, Y.; Hao, P.; Niu, Z. Modeling Spatial Patterns of Soil Respiration in Maize Fields from Vegetation and Soil Property Factors with the Use of Remote Sensing and Geographical Information System. PLoS ONE 2014, 9, e105150. [Google Scholar] [CrossRef] [PubMed]
- Matías, L.; Castro, J.; Zamora, R. Effect of simulated climate change on soil respiration in a Mediterranean-type ecosystem: Rainfall and habitat type are more important than temperature or the soil carbon pool. Ecosystems 2012, 15, 299–310. [Google Scholar] [CrossRef]
- Vargas-Terminel, M.L.; Flores-Rentería, D.; Sánchez-Mejía, Z.M.; Rojas-Robles, N.E.; Sandoval-Aguilar, M.; Chávez-Vergara, B.; Robles-Morua, A.; Garatuza-Payan, J.; Yépez, E.A. Chronological dataset of soil respiration fluxes from a seasonally dry forest in Northwest México. Data Brief 2023, 51, 109716. [Google Scholar] [CrossRef] [PubMed]
- Curiel Yuste, J.; Flores-Rentería, D.; García-Angulo, D.; Hereş, A.-M.; Bragă, C.; Petritan, A.M.; Petritan, I.C. Cascading effects associated with climate-change-induced conifer mortality in mountain temperate forests result in hot-spots of soil CO2 emissions. Soil Biol. Biochem. 2019, 133, 50–59. [Google Scholar] [CrossRef]
- García-Camacho, R.; Iriondo, J.M.; Escudero, A. Seedling dynamics at elevation limits: Complex interactions beyond seed and microsite limitations. Am. J. Bot. 2010, 97, 1791–1797. [Google Scholar] [CrossRef]
- Maccallum, R.C.; Browne, M.W.; Sugawara, H.M. Power analysis and determination of sample size for covariance structure modeling. Phychol. Methods 1996, 1, 130–149. [Google Scholar] [CrossRef]
- Iriondo, J.M.; Albert, M.a.J.; Escudero, A. Structural equation modelling: An alternative for assessing causal relationships in threatened plant populations. Biol. Conserv. 2003, 113, 367–377. [Google Scholar] [CrossRef]
- Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference; Cambridge University Press: Cambridge, UK, 2002; p. 332. [Google Scholar]
- Leon, E.; Vargas, R.; Bullock, S.; Lopez, E.; Panosso, A.R.; La Scala, N. Hot spots, hot moments, and spatio-temporal controls on soil CO2 efflux in a water-limited ecosystem. Soil Biol. Biochem. 2014, 77, 12–21. [Google Scholar] [CrossRef]
- Yu, S.; Mo, Q.; Chen, Y.; Li, Y.; Li, Y.; Zou, B.; Xia, H.; Jun, W.; Li, Z.; Wang, F. Effects of seasonal precipitation change on soil respiration processes in a seasonally dry tropical forest. Ecol. Evol. 2020, 10, 467–479. [Google Scholar] [CrossRef]
- Campos, A.C. Response of soil surface CO2–C flux to land use changes in a tropical cloud forest (Mexico). For. Ecol. Manag. 2006, 234, 305–312. [Google Scholar] [CrossRef]
- Covaleda, S.; Prat, C.; García-Oliva, F.; Etchevers, J.; Gallardo Lancho, J. Flujos de CO2 edáfico en un transecto de bosques de pino-encino afectados por actividad antrópica en la microcuenca de Atécuaro (Michoacán, Méjico). In Emisiones de Gases con Efecto Invernadero en Ecosistemas Iberoamericanos; Sociedad Iberoamericana de Física y Química Ambiental: Salamanca, Spain, 2009. [Google Scholar]
- Moyes, A.B.; Bowling, D.R. Interannual variation in seasonal drivers of soil respiration in a semi-arid Rocky Mountain meadow. Biogeochemistry 2013, 113, 683–697. [Google Scholar] [CrossRef]
- Han, G.; Sun, B.; Chu, X.; Xing, Q.; Song, W.; Xia, J. Precipitation events reduce soil respiration in a coastal wetland based on four-year continuous field measurements. Agric. For. Meteorol. 2018, 256–257, 292–303. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Y.-P.; Hui, D.; Su, F.; Yan, J. Significant effects of precipitation frequency on soil respiration and its components—A global synthesis. Glob. Change Biol. 2023, 29, 1188–1205. [Google Scholar] [CrossRef] [PubMed]
- Doetterl, S.; Abramoff, R. Understanding Soil Organic Carbon Dynamics at Larger Scales; Burleigh Dodds Science Publishing: Cambridge, UK, 2022. [Google Scholar]
- Cueva, A.; Robles Zazueta, C.A.; Garatuza Payan, J.; Yépez, E.A. Soil respiration in Mexico: Advances and future directions. Terra Latinoam. 2016, 34, 253–269. [Google Scholar]
- Montaño, N.; Ayala, F.; Bullock, S.; Briones, O.; García Oliva, F.; García Sánchez, R.; Maya, Y.; Perroni, Y.; Siebe, C.; Tapia Torres, Y. Carbon stocks and fluxes in arid and semiarid ecosystems of Mexico: Synthesis and prospects. Terra Latinoam. 2016, 34, 39–59. [Google Scholar]
- Pontifes, P.A.; García-Meneses, P.M.; Gómez-Aíza, L.; Monterroso-Rivas, A.I.; Caso-Chávez, M. Land use/land cover change and extreme climatic events in the arid and semi-arid ecoregions of Mexico. Atmósfera 2018, 31, 355–372. [Google Scholar] [CrossRef]
- Villarreal-Quintanilla, J.; Encina-Domínguez, J.A. Plantas vasculares endémicas de Coahuila y algunas áreas adyacentes, México. Acta Botánica Mex. 2005, 70, 1–46. [Google Scholar] [CrossRef]
- Schimel, J.P. Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes. Annu. Rev. Ecol., Evol. Syst. 2018, 49, 409–432. [Google Scholar] [CrossRef]
- Salazar, A.; Sulman, B.N.; Dukes, J.S. Microbial dormancy promotes microbial biomass and respiration across pulses of drying-wetting stress. Soil Biol. Biochem. 2018, 116, 237–244. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Carrillo, Y.; Pendall, E.; Morgan, J.A. Rhizosphere priming: A nutrient perspective. Front. Microbiol. 2013, 4, 216. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhao, C.; Zhao, Z.; Yu, B.; Zhou, T. Soil respiration and the contribution of root respiration of cotton (Gossypium hirsutum L.) in arid region. Acta Ecol. Sin. 2015, 35, 17–21. [Google Scholar] [CrossRef]
- Hernández-Becerra, N.; Tapia-Torres, Y.; Beltrán-Paz, O.; Blaz, J.; Souza, V.; García-Oliva, F. Agricultural land-use change in a Mexican oligotrophic desert depletes ecosystem stability. PeerJ 2016, 4, e2365. [Google Scholar] [CrossRef] [PubMed]
- Yáñez Díaz, I.; Silva, I.; González-Rodríguez, H.; Marmolejo, J.; Jurado, E.; Gómez-Meza, M. Soil respiration in four land use systems. Rev. Mex. Cienc. For. 2017, 8, 123–149. [Google Scholar]
- Chen, S.; Huang, Y.; Zou, J.; Shen, Q.; Hu, Z.; Qin, Y.; Chen, H.; Pan, G. Modeling interannual variability of global soil respiration from climate and soil properties. Agric. For. Meteorol. 2010, 150, 590–605. [Google Scholar] [CrossRef]
- Guillen-Cruz, G.; Rodríguez-Sánchez, A.L.; Fernández-Luqueño, F.; Flores-Rentería, D. Influence of vegetation type on the ecosystem services provided by urban green areas in an arid zone of northern Mexico. Urban For. Urban Green. 2021, 62, 127135. [Google Scholar] [CrossRef]
- Guillen-Cruz, G.; Torres-Arreola, R.; Sanchez-Mejia, Z.; Flores-Renteria, D. The effect of conventional and sustainable agricultural management practices on carbon and water fluxes in a Mexican semi-arid region. PeerJ 2022, 10, e14542. [Google Scholar] [CrossRef] [PubMed]
- Jardim, A.M.d.R.F.; Morais, J.E.F.d.; Souza, L.S.B.d.; Marin, F.R.; Moura, M.S.B.d.; Morellato, L.P.C.; Montenegro, A.A.d.A.; Ometto, J.P.H.B.; de Lima, J.L.M.P.; Dubeux Júnior, J.C.B.; et al. Sink or carbon source? how the Opuntia cactus agroecosystem interacts in the use of carbon, nutrients and radiation in the Brazilian semi-arid region. J. Hydrol. 2023, 625, 130121. [Google Scholar] [CrossRef]
- Wang, R.; Sun, Q.; Wang, Y.; Liu, Q.; Du, L.; Zhao, M.; Gao, X.; Hu, Y.; Guo, S. Temperature sensitivity of soil respiration: Synthetic effects of nitrogen and phosphorus fertilization on Chinese Loess Plateau. Sci. Total Environ. 2017, 574, 1665–1673. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Z.; Sun, Q.; Zhao, M.; Du, L.; Wu, D.; Li, R.; Gao, X.; Guo, S. Effects of crop types and nitrogen fertilization on temperature sensitivity of soil respiration in the semi-arid Loess Plateau. Soil Till. Res. 2016, 163, 1–9. [Google Scholar] [CrossRef]
- McLauchlan, K. The Nature and Longevity of Agricultural Impacts on Soil Carbon and Nutrients: A Review. Ecosystems 2006, 9, 1364–1382. [Google Scholar] [CrossRef]
- Bilandžija, D.; Zgorelec, Ž.; Kisić, I. Influence of Tillage Practices and Crop Type on Soil CO2 Emissions. Sustainability 2016, 8, 90. [Google Scholar] [CrossRef]
- Flores-Rentería, D.; Rincón, A.; Valladares, F.; Curiel Yuste, J. Agricultural matrix affects differently the alpha and beta structural and functional diversity of soil microbial communities in a fragmented Mediterranean holm oak forest. Soil Biol. Biochem. 2016, 92, 79–90. [Google Scholar] [CrossRef]
- Raich, J.W.; Tufekciogul, A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Yvon-Durocher, G.; Caffrey, J.M.; Cescatti, A.; Dossena, M.; Giorgio, P.d.; Gasol, J.M.; Montoya, J.M.; Pumpanen, J.; Staehr, P.A.; Trimmer, M.; et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 2012, 487, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Rey, A.; Pegoraro, E.; Oyonarte, C.; Were, A.; Escribano, P.; Raimundo, J. Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semi-arid ecosystem in the SE of Spain. Soil Biol. Biochem. 2011, 43, 393–403. [Google Scholar] [CrossRef]
- Tapia-Torres, Y.; Elser, J.J.; Souza, V.; García-Oliva, F. Ecoenzymatic stoichiometry at the extremes: How microbes cope in an ultra-oligotrophic desert soil. Soil Biol. Biochem. 2015, 87, 34–42. [Google Scholar] [CrossRef]
- Tapia-Torres, Y.; López-Lozano, N.E.; Souza, V.; García-Oliva, F. Vegetation-soil system controls soil mechanisms for nitrogen transformations in an oligotrophic Mexican desert. J. Arid Environ. 2015, 114, 62–69. [Google Scholar] [CrossRef]
- García Oliva, F.; Elser, J.; Souza, V. Ecosystem Ecology and Geochemistry of Cuatro Cienegas; Springer: Berlin, Germany, 2018. [Google Scholar]
- Toberman, H.; Evans, C.D.; Freeman, C.; Fenner, N.; White, M.; Emmett, B.A.; Artz, R.R.E. Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland Calluna heathland. Soil Biol. Biochem. 2008, 40, 1519–1532. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y. Temporal dynamics of soil oxidative enzyme activity across a simulated gradient of nitrogen deposition in the Gurbantunggut Desert, Northwestern China. Geoderma 2014, 213, 261–267. [Google Scholar] [CrossRef]
- Gülser, F.; Erdoğan, E. The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environ. Monit. Assess. 2008, 145, 127–133. [Google Scholar] [CrossRef]
- Shaofei, J.; Wang, H. Relationships between soil pH and soil carbon in China’s carbonate soils. Fresenius Environ. Bull. 2018, 27, 605–611. [Google Scholar]
- Zhou, W.; Han, G.; Liu, M.; Li, X. Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand. PeerJ 2019, 7, e7880. [Google Scholar] [CrossRef]
- Moore, J.M.; Klose, S.; Tabatabai, M.A. Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biol. Fertil. Soils 2000, 31, 200–210. [Google Scholar] [CrossRef]
- Yan, P.; Peng, H.; Yan, L.; Zhang, S.; Chen, A.; Lin, K. Spatial variability in soil pH and land use as the main influential factor in the red beds of the Nanxiong Basin, China. PeerJ 2019, 7, e6342. [Google Scholar] [CrossRef] [PubMed]
- Balogh, J.; Pintér, K.; Fóti, S.; Cserhalmi, D.; Papp, M.; Nagy, Z. Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands. Soil Biol. Biochem. 2011, 43, 1006–1013. [Google Scholar] [CrossRef]
- Grandy, A.S.; Strickland, M.S.; Lauber, C.L.; Bradford, M.A.; Fierer, N. The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma 2009, 150, 278–286. [Google Scholar] [CrossRef]
- Kögel-Knabner, I.; Amelung, W. Soil organic matter in major pedogenic soil groups. Geoderma 2021, 384, 114785. [Google Scholar] [CrossRef]
Land Use | Altitude (m.a.s.l.) | Climatic Variables and Soil Group | General Characteristics |
---|---|---|---|
Agricultural crops | 1300–1700 | MAT: 17.5–18.4 °C MAP: 268–493 mm SG: Calcisol, Leptosol, and Regosol | Intensity gradient from fallow fields to fields with three annual crops. Main crops: corn (Zea mayz), sorghum (Sorghum spp.), and oatmeal (Avena sativa). Irrigation systems: seasonal and flood. |
Industrial influence | 1240–1860 | MAT: 17.5–18.5 °C MAP: 268–485 mm SG: Calcisol, Leptosol, and Regosol | Induced grassland (Aristida adscensionis, Bouteloua gracilis) with residual vegetation of microphile and rosetophile desert scrub (Opuntia spp. Larrea tridentata, Cylindropuntia spp.). Placed roughly 100 m from industries with emissions. No management. |
Livestock farming | 1369–1780 | MAT: 16.7–18.5 °C MAP: 374–493 mm SG: Calcisol, Kastanozem, Leptosol, and Regosol | Intensity gradient from semi-confined conditions, semi-confined with grown sorghum (50 head/ha), from intensive exploitation (700 to 1500 head/ha). Cattle with occasional sheep. |
Natural shrublands | 1240–1850 | MAT: 16.7–18.5 °C MAP: 268–493 mm SG: Calcisol, Kastanozem, Leptosol, and Regosol | Microphile and rosetophile desert scrub of variable high (50 to 180 cm). No evident land use changes. Species such as Fouquieria splendens, Larrea tridentata, Yucca spp., Dasylirion cedrosanum, and several Cactecaea species, such as Echinocactus spp., Echinocereus spp., Mammillaria spp., Opuntia spp., etc. |
Walnut orchards | 1369–1780 | MAT: 17.5–18.5 °C MAP: 268–493 mm SG: Calcisol, Leptosol, and Regosol | Walnuts trees (Juglans spp. and Carya spp.) with a productivity gradient from commercial to local exploitation. Irrigation systems: seasonal, drip, and sprinkler. |
AC | II | LF | NS | WOs | Average | |
---|---|---|---|---|---|---|
Dry season | ||||||
RS | 1.67 ± 0.1 aB | 0.36 ± 0.03 bB | 1.74 ± 0.1 aB | 0.58 ± 0.06 bB | 1.73 ± 0.08 aB | 1.22 ± 0.04 B |
PAR | 988.36 ± 45.6 bB | 1220.44 ± 44.92 aB | 966.23 ± 44.92 bB | 1222.53 ± 47.24 aA | 983.36 ± 53.37 bA | 1076.18 ± 21.6 B |
Tair | 31.82 ± 0.37 bB | 33.22 ± 0.31 aB | 30.03 ± 0.3 cB | 31.88 ± 0.33 bB | 32.35 ± 0.33 abB | 31.86 ± 0.15 AB |
RH | 26.07 ± 0.59 abB | 22.58 ± 0.44 cB | 27 ± 0.44 aB | 24.77 ± 0.55 bB | 24.56 ± 0.57 bcB | 24.99 ± 0.24 B |
Tsoil | 28.96 ± 0.35 bcB | 31.87 ± 0.32 aB | 28.69 ± 0.32 cB | 30.09 ± 0.33 bB | 29.15 ± 0.29 bcB | 29.75 ± 0.15 B |
SWC | 12.08 ± 0.71 aA | 4.06 ± 0.29 cB | 9.03 ± 0.58 bB | 2.95 ± 0.23 cB | 11.07 ± 0.59 aB | 7.84 ± 0.27 B |
EC | 1268.03 ± 74.79 aA | 721.83 ± 32.87 bA | 1059.83 ± 59.05 aA | 814.6 ± 49.19 bA | 1139.12 ± 53.91 aA | 1000.68 ± 28.16 A |
pH | 8.04 ± 0.05 aA | 8.21 ± 0.05 aA | 7.8 ± 0.05 bA | 8.16 ± 0.04 aA | 8.11 ± 0.05 aA | 8.07 ± 0.02 A |
MBC | 38.49 ± 4.29 abB | 20.36 ± 1.13 cB | 51.31 ± 5.02 aB | 28.98 ± 3.07 bcB | 42.34 ± 3.62 abB | 36.3 ± 1.78 B |
SOM | 6.15 ± 0.32 aA | 3.61 ± 0.24 bA | 6.91 ± 0.66 aA | 3.7 ± 0.21 bA | 6.78 ± 0.29 aA | 5.43 ± 0.16 A |
Wet season | ||||||
RS | 2.56 ± 0.11 aA | 0.81 ± 0.06 bA | 2.53 ± 0.11 aA | 1.11 ± 0.09 bA | 2.62 ± 0.11 aA | 1.93 ± 0.05 A |
PAR | 1426.62 ± 61.14 aA | 1434.36 ± 48.93 aA | 1355.37 ± 54.82 aA | 1374.08 ± 60.95 aA | 637.62 ± 56.55 bB | 1245.61 ± 27.9 A |
Tair | 35.34 ± 0.34 aA | 34.62 ± 0.32 aA | 34.74 ± 0.27 aA | 35.61 ± 0.3 aA | 35.26 ± 0.29 aA | 35.11 ± 0.14 A |
RH | 37.68 ± 0.68 aA | 34.28 ± 0.6 bA | 37.13 ± 0.57 aA | 34.32 ± 0.59 bA | 38.24 ± 0.63 aA | 36.33 ± 0.28 A |
Tsoil | 33.78 ± 0.35 abA | 34.68 ± 0.28 aA | 33.13 ± 0.32 bA | 34.94 ± 0.28 aA | 32.61 ± 0.31 bA | 33.83 ± 0.14 A |
SWC | 13.4 ± 0.6 aA | 6.63 ± 0.34 bA | 13.49 ± 0.7 aA | 6.43 ± 0.44 bA | 13.08 ± 0.6 aA | 10.61 ± 0.28 A |
EC | 482.76 ± 49.54 aB | 452.72 ± 57.44 aB | 458.92 ± 80.66 aB | 351.69 ± 52.6 aB | 495.19 ± 68.14 aB | 448.26 ± 28 B |
pH | 7.56 ± 0.07 bB | 7.9 ± 0.04 aB | 7.6 ± 0.06 bB | 7.86 ± 0.04 aB | 7.73 ± 0.05 abB | 7.73 ± 0.02 B |
MBC | 75.93 ± 5.53 aA | 49.05 ± 3 bA | 78.37 ± 5.45 aA | 57.58 ± 6.47 bA | 77.35 ± 2.79 aA | 67.66 ± 2.13 A |
SOM | 4.27 ± 0.32 bB | 3.21 ± 0.25 bA | 6.15 ± 0.35 aA | 3.36 ± 0.22 bA | 6.42 ± 0.32 aA | 4.68 ± 0.16 B |
One sampling event variables | ||||||
BD | 1.11 ± 0.012 b | 1.19 ± 0.015 a | 1 ± 0.02 c | 1.18 ± 0.015 a | 1.04 ± 0.011 c | 1.11 ± 0.01 |
Sand | 26.09 ± 1.48 b | 33.41 ± 1.77 b | 45 ± 2.58 a | 44.56 ± 2.18 a | 32.76 ± 1.77 b | 36.36 ± 1.01 |
Silt | 68.59 ± 1.3 a | 63.11 ± 1.6 a | 52.55 ± 2.21 b | 53.42 ± 2.08 b | 63.15 ± 1.43 a | 60.16 ± 0.88 |
Clay | 5.21 ± 0.36 a | 3.47 ± 0.29 bc | 2.25 ± 0.4 cd | 1.63 ± 0.17 d | 3.6 ± 0.36 b | 3.23 ± 0.17 |
CT | 5.1 ± 0.28 c | 5.43 ± 0.29 c | 7.63 ± 0.45 a | 5.68 ± 0.38 bc | 6.88 ± 0.38 ab | 6.15 ± 0.17 |
NT | 0.27 ± 0.02 b | 0.19 ± 0.01 c | 0.47 ± 0.03 a | 0.21 ± 0.01 bc | 0.4 ± 0.02 a | 0.31 ± 0.01 |
Factor | ||||
---|---|---|---|---|
Variable | S | LU | S × LU | |
df | 1 | 4 | 4 | |
RS (μmol CO2 m−2 s−1) | F | 163.42 *** | 161.18 *** | 2.74 * |
PAR (mmol m−2 s−1) | F | 26.34 *** | 31.48 *** | 17.81 *** |
Tair (°C) | F | 262.91 *** | 7.86 *** | 7.43 *** |
RH (%) | F | 989.03 *** | 15.71 *** | 3.98 ** |
Tsoil (°C) | F | 416.24 *** | 22.58 *** | 4.08 ** |
SWC (%) | F | 67.32 *** | 105.99 *** | 2.68 * |
df | 1 | 4 | 4 | |
EC (mS cm−1) | F | 217 *** | 10.15 *** | 5.45 *** |
pH | F | 109.55 *** | 16.96 *** | 2.12 |
MBC (mg C glucosa kg −1) | F | 147.92 *** | 18.91 *** | 0.63 |
SOM (%) | F | 16.43 *** | 57.24 *** | 2.59 * |
df | – | 4 | – | |
BD (g cm −3) | F | – | 30.44 *** | – |
Sand (%) | F | – | 16.92 *** | – |
Silt (%) | F | – | 15.46 *** | – |
Clay (%) | F | – | 17.85 *** | – |
TC (%) | F | – | 8.81 *** | – |
TN (%) | F | – | 44.73 *** | – |
Effect | SOM | SWC | Tsoil | pH | MBC | Silt | |
---|---|---|---|---|---|---|---|
Dry season | Direct | 0.2 | 0.526 | 0.059 | --- | 0.135 | −0.155 |
Indirect | 0.253 | −0.004 | 0.011 | −0.042 | --- | 0.157 | |
Total | 0.453 | 0.522 | 0.07 | −0.042 | 0.135 | 0.003 | |
Wet season | Direct | 0.228 | 0.502 | −0.056 | --- | 0.037 | −0.001 |
Indirect | 0.2 | −0.001 | 0.003 | −0.012 | 0 | 0.069 | |
Total | 0.428 | 0.501 | −0.053 | −0.012 | 0.037 | 0.067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campuzano, E.F.; Guillen-Cruz, G.; Juárez-Altamirano, R.; Flores-Rentería, D. Seasonal and Land Use Effects on Soil Respiration and Its Controlling Factors in Arid Lands from Northeastern Mexico. Soil Syst. 2025, 9, 12. https://doi.org/10.3390/soilsystems9010012
Campuzano EF, Guillen-Cruz G, Juárez-Altamirano R, Flores-Rentería D. Seasonal and Land Use Effects on Soil Respiration and Its Controlling Factors in Arid Lands from Northeastern Mexico. Soil Systems. 2025; 9(1):12. https://doi.org/10.3390/soilsystems9010012
Chicago/Turabian StyleCampuzano, Emmanuel F., Gabriela Guillen-Cruz, René Juárez-Altamirano, and Dulce Flores-Rentería. 2025. "Seasonal and Land Use Effects on Soil Respiration and Its Controlling Factors in Arid Lands from Northeastern Mexico" Soil Systems 9, no. 1: 12. https://doi.org/10.3390/soilsystems9010012
APA StyleCampuzano, E. F., Guillen-Cruz, G., Juárez-Altamirano, R., & Flores-Rentería, D. (2025). Seasonal and Land Use Effects on Soil Respiration and Its Controlling Factors in Arid Lands from Northeastern Mexico. Soil Systems, 9(1), 12. https://doi.org/10.3390/soilsystems9010012