Soil Microbial Biomass and Microarthropod Community Responses to Conventional and Biodegradable Plastics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mesocosm Set-Up
2.2. Sample Collection
2.3. Soil Abiotic Analyses
2.4. Soil Biological Analyses
2.5. Integrative Biological Response Index (IBR)
2.6. Soil Quality Index (SQI)
2.7. Statistical Analyses
3. Results
3.1. Soil Chemical and Physical Properties
3.2. Soil Microbial Biomass and Activities
3.3. Microarthropod Community Analyses
3.4. Soil Biological Indices
3.5. Effects of Treatment and Time on Soil Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, P.; Wei, T.; Han, Q.; Ren, X.; Jia, Z. Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China. Agr. Water Manag. 2020, 241, 106382. [Google Scholar] [CrossRef]
- Iqbal, R.; Raza, M.A.S.; Valipour, M.; Saleem, M.F.; Zaheer, M.S.; Ahmad, S.; Toleikiene, M.; Haider, I.; Aslam, M.U.; Nazar, M.A. Potential agricultural and environmental benefits of mulches—A review. Bull. Natl. Res. Cent. 2020, 44, 1–16. [Google Scholar] [CrossRef]
- Nachimuthu, G.; Halpin, N.V.; Bell, M.J. Productivity benefits from plastic mulch in vegetable production likely to limit adoption of alternate practices that deliver water quality benefits: An on-farm case study. Horticulturae 2017, 3, 42. [Google Scholar] [CrossRef]
- Changrong, Y.; Wenqing, H.; Neil, C. Plastic-film mulch in Chinese agriculture: Importance and problems. World Agric. 2014, 4, 32–36. [Google Scholar]
- Astner, A.F.; Hayes, D.G.; O’Neill, H.; Evans, B.R.; Pingali, S.V.; Urban, V.S.; Young, T.M. Mechanical formation of micro- and nano-plastic materials for environmental studies in agricultural ecosystems. Sci. Total Environ. 2019, 685, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Adams, C.A.; Wang, F.; Sun, Y.; Zhang, S. Interactions between microplastics and soil fauna: A critical review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 3211–3243. [Google Scholar] [CrossRef]
- Judy, J.D.; Williams, M.; Gregg, A.; Oliver, D.; Kumar, A.; Kookana, R.; Kirby, J.K. Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota. Environ. Pollut. 2019, 252, 522–531. [Google Scholar] [CrossRef]
- Almeida, M.P.D.; Gaylarde, C.; Pompermayer, F.C.; Lima, L.D.S.; Delgado, J.D.F.; Scott, D.; Neves, C.V.; Vieira, K.S.; Baptista Neto, J.A.; Fonseca, E.M. The complex dynamics of microplastic migration through different aquatic environments: Subsidies for a better understanding of its environmental dispersion. Microplastics 2023, 2, 62–77. [Google Scholar] [CrossRef]
- De Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Šimůnek, J.; Shi, H.; Hu, Q.; Zhang, Y. Evaluating the effects of biodegradable and plastic film mulching on soil temperature in a drip-irrigated field. Soil Tillage Res. 2021, 213, 105116. [Google Scholar] [CrossRef]
- Wan, Y.; Wu, C.X.; Xue, Q.; Hui, X.M.N. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 2019, 654, 576–582. [Google Scholar] [CrossRef]
- Liu, E.K.; He, W.Q.; Yan, C.R. ’White revolution’ to ’white pollution’-agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, B.; Li, Z.; Zhao, C.; Qian, R.; Huang, F.; Zhang, P.; Li, H.; Jia, Z. Ameliorating C and N balance without loss of productivity by applying mulching measures in rainfed areas. Agr. Ecosyst Environ. 2023, 343, 108267. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, Y.; Liang, B.; Liu, J.; Zong, H.; Guo, X.; Wang, X.; Song, N. Variations in soil aggregate distribution and associated organic carbon and nitrogen fractions in long-term continuous vegetable rotation soil by nitrogen fertilization and plastic film mulching. Sci. Total Environ. 2022, 835, 155420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xue, Y.; Jin, T.; Zhang, K.; Li, Z.; Sun, C.; Mi, Q.; Li, Q. Effect of long-term biodegradable film mulch on soil physicochemical and microbial properties. Toxics 2022, 10, 129. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Beriot, N.; Gort, G.; Lwanga, E.H.; Gooren, H.; Yang, X.; Geissen, V. Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environ. Pollut. 2020, 266, 115097. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Flury, M.; Narayan, R. Biodegradable plastic as an integral part of the solution to plastic waste pollution of the environment. Curr. Opin. Green Sustain. Chem. 2021, 30, 100490. [Google Scholar] [CrossRef]
- Ghimire, S.; Flury, M.; Scheenstra, E.J.; Miles, C.A. Sampling and degradation of biodegradable plastic and paper mulches in field after tillage incorporation. Sci. Total Environ. 2020, 703, 135577. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Martin-Closas, L.; Pelacho, A.M.; DeBruyn, J.M. Biodegradable plastic mulch films: Impacts on soil microbial communities and ecosystem functions. Front. Microbiol. 2018, 9, 819. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Xie, D.; Yang, C. Effects of a PLA/PBAT biodegradable film mulch as a replacement of polyethylene film and their residues on crop and soil environment. Agric. Water Manag. 2021, 255, 107053. [Google Scholar] [CrossRef]
- Mazzon, M.; Gioacchini, P.; Montecchio, D.; Rapisarda, S.; Ciavatta, C.; Marzadori, C. Biodegradable plastics: Effects on functionality and fertility of two different soils. Appl. Soil Ecol. 2022, 169, 104216. [Google Scholar] [CrossRef]
- Somanathan, H.; Sathasivam, R.; Sivaram, S.; Kumaresan, S.M.; Muthuraman, M.S.; Park, S.U. An update on polyethylene and biodegradable plastic mulch films and their impact on the environment. Chemosphere 2022, 307, 135839. [Google Scholar] [CrossRef]
- Zhou, J.; Gui, H.; Banfield, C.C.; Wen, Y.; Zang, H.; Dippold, M.A.; Charlton, A.; Jones, D.L. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol. Biochem. 2021, 156, 108211. [Google Scholar] [CrossRef]
- Inubushi, K.; Kakiuchi, Y.; Suzuki, C.; Sato, M.; Ushiwata, S.Y.; Matsushima, M.Y. Effects of biodegradable plastics on soil properties and greenhouse gas production. Soil Sci. Plant Nutr. 2022, 68, 183–188. [Google Scholar] [CrossRef]
- Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.E.; Singh, S.P. Compostability of bioplastic packaging materials: An overview. Macromol. Biosci. 2007, 7, 255–277. [Google Scholar] [CrossRef]
- Pathak, V.M. Review on the current status of polymer degradation: A microbial approach. Bioresour. Bioprocess. 2017, 4, 1–31. [Google Scholar] [CrossRef]
- Liu, L.; Zou, G.; Zuo, Q.; Li, S.; Bao, Z.; Jin, T.; Liu, D.; Du, L. It is still too early to promote biodegradable mulch film on a large scale: A bibliometric analysis. Environ. Technol. Innovat. 2022, 27, 102487. [Google Scholar] [CrossRef]
- Mo, F.; Yu, K.L.; Crowther, T.W.; Wang, J.Y.; Zhao, H.; Xiong, Y.C.; Liao, Y.C. How plastic mulching affects net primary productivity soil C fluxes and organic carbon balance in dry agroecosystems in China. J. Clean. Prod. 2020, 263, 121470. [Google Scholar] [CrossRef]
- Shan, X.; Zhang, W.; Dai, Z.; Li, J.; Mao, W.; Yu, F.; Ma, J.; Wang, S.; Zeng, X. Comparative analysis of the effects of plastic mulch films on soil nutrient yields and soil microbiome in three vegetable fields. Agronomy 2022, 12, 506. [Google Scholar] [CrossRef]
- Pribyl, D.W. A Critical Review of the Conventional SOC to SOM Conversion Factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Memoli, V.; Eymar, E.; García-Delgado, C.; Esposito, F.; Panico, S.C.; De Marco, A.; Barile, R.; Maisto, G. Soil element fractions affect phytotoxicity, microbial biomass and activity in volcanic areas. Sci. Total. Environ. 2018, 636, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Chemidlin Prévost-Bouré, N.; Christen, R.; Dequiedt, S.; Mougel, C.; Lelievre, M.; Jolivet, C.; Shahbazkia, H.R.; Guillou, L.; Arrouays, D.; Ranjard, L. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE 2011, 6, e24166. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.D.; Chapman, S.J.; Cameron, C.M.; Davidson, M.S.; Potts, J.M. A Rapid Microtiter Plate Method to Measure Carbon Dioxide Evolved from Carbon Substrate Amendments so as To Determine the Physiological Profiles of Soil Microbial Communities by Using Whole Soil. Appl. Environ. Microbiol. 2003, 69, 3593–3599. [Google Scholar] [CrossRef] [PubMed]
- Adam, G.; Duncan, H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 2001, 33, 943–951. [Google Scholar] [CrossRef]
- Tabatabai, M.A. Soil Enzymes. In Methods of Soil Analysis, Part 2—Chemical and Microbiological Properties; Page, A.L., Ed.; Soil Science Society of America (SSSA): Madison, WI, USA, 1982; pp. 903–947. [Google Scholar]
- Kendeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Alef, K.; Nannipieri, P. Enzyme Activities. In Methods in Applied Soil Microbiology and Biochemistry; Academic Press: Cambridge, MA, USA, 1995; pp. 311–373. [Google Scholar]
- Macfadyen, A. Improved Funnel-Type Extractors for Soil Arthropods. J. Anim. Ecol. 1961, 30, 171–184. [Google Scholar] [CrossRef]
- Beliaeff, B.; Burgeot, T. Integrated biomarker response: A useful tool for ecological risk assessment. Environ. Toxicol. Chem. 2002, 21, 1316–1322. [Google Scholar] [CrossRef]
- Leitgib, L.; Kálmán, J.; Gruiz, K. Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere 2007, 66, 428–434. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The soil management assessment framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 2004, 68, 1942–1962. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Bandopadhyay, S.; English, M.E.; Bary, A.I.; DeBruyn, J.M.; Schaeffer, S.M.; Miles, C.A.; Reganold, J.P.; Flury, M. Impacts of biodegradable plastic mulches on soil health. Agric. Ecosyst. Environ. 2019, 273, 36–49. [Google Scholar] [CrossRef]
- Pedra, F.; Inácio, M.L.; Fareleira, P.; Oliveira, P.; Pereira, P.; Carranca, C. Long-Term Effects of Plastic Mulch in a Sandy Loam Soil Used to Cultivate Blueberry in Southern Portugal. Pollutants 2024, 4, 16–25. [Google Scholar] [CrossRef]
- Qi, Y.; Ossowicki, A.; Yang, X.; Lwanga, E.H.; Dini-Andreote, F.; Geissen, V.; Garbeva, P. Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J. Hazard. Mater. 2020, 387, 121711. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, G.; Guo, T.; Xing, Y.; Mo, F.; Wang, H.; Fan, J.; Zhang, F. Effects of plastic mulch and nitrogen fertilizer on the soil microbial community, enzymatic activity and yield performance in a dryland maize cropping system. Eur. J. Soil Sci. 2021, 72, 400–412. [Google Scholar] [CrossRef]
- Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv. Agron. 2019, 153, 121–173. [Google Scholar]
- Huang, F.; Liu, Z.; Mou, H.; Li, J.; Zhang, P.; Jia, Z. Impact of farmland mulching practices on the soil bacterial community structure in the semiarid area of the loess plateau in China. Eur. J. Soil Biol. 2019, 92, 8–15. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Dong, Q.; Feng, H.; Siddique, K.H. Plastic mulching significantly improves soil enzyme and microbial activities without mitigating gaseous N emissions in winter wheat-summer maize rotations. Field Crop. Res. 2022, 286, 108630. [Google Scholar] [CrossRef]
- Liu, X.; Dong, W.; Si, P.; Zhang, Z.; Chen, B.; Yan, C.; Zhang, Y.; Liu, E. Linkage between soil organic carbon and the utilization of soil microbial carbon under plastic film mulching in a semi-arid agroecosystem in China. Arch. Agron. Soil Sci. 2019, 65, 1788–1801. [Google Scholar] [CrossRef]
- Nazir, A.; Laila, U.-E.; Bareen, F.-E.; Hameed, E.; Shafiq, M. Sustainable Management of Peanut Shell through Biochar and Its Application as Soil Ameliorant. Sustainability 2021, 13, 13796. [Google Scholar] [CrossRef]
- Siepel, H. Life-history tactics of soil microarthropods. Biol. Fertil. Soils 1994, 18, 263–278. [Google Scholar] [CrossRef]
- Coulson, S.J.; Convey, P.; Schuuring, S.; Lang, S.I. Interactions between winter temperatures and duration of exposure may structure Arctic microarthropod communities. J. Therm. Biol. 2023, 114, 103499. [Google Scholar] [CrossRef] [PubMed]
- Aupic-Samain, A.; Baldy, V.; Delcourt, N.; Krogh, P.H.; Gauquelin, T.; Fernandez, C.; Santonja, M. Water availability rather than temperature control soil fauna community structure and prey–predator interactions. Funct. Ecol. 2021, 35, 1550–1559. [Google Scholar] [CrossRef]
- Santorufo, L.; Van Gestel, C.A.; Maisto, G. Sampling season affects conclusions on soil arthropod community structure responses to metal pollution in Mediterranean urban soils. Geoderma 2014, 226, 47–53. [Google Scholar] [CrossRef]
- Lakshmi, G.; Okafor, B.N.; Visconti, D. Soil microarthropods and nutrient cycling. In Environment, Climate, Plant and Vegetation Growth; Springer: Berlin/Heidelberg, Germany, 2020; pp. 453–472. [Google Scholar]
- Santini, G.; Maisto, G.; Memoli, V.; Di Natale, G.; Trifuoggi, M.; Santorufo, L. Does the element availability change in soils exposed to bioplastics and plastics for six months? Int. J. Environ. Res. Public Health 2022, 19, 9610. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Q.; Yan, C.; Mancl, K.; Gong, D.; He, J.; Mei, X. Macro-and/or microplastics as an emerging threat effect crop growth and soil health. Resour. Conserv. Recycl. 2022, 186, 106549. [Google Scholar] [CrossRef]
- Santorufo, L.; Memoli, V.; Panico, S.C.; Santini, G.; Barile, R.; Giarra, A.; Di Natale, G.; Trifuoggi, M.; De Marco, A.; Maisto, G. Combined Effects of Wildfire and Vegetation Cover Type on Volcanic Soil (Functions and Properties) in a Mediterranean Region: Comparison of Two Soil Quality Indices. Int. J. Environ. Res. Public Health 2021, 18, 5926. [Google Scholar] [CrossRef]
Time | Treatment | Interaction Time × Treatment | |
---|---|---|---|
pH | 143.6 *** | 30.13 *** | 23.45 *** |
WC | 397.5 *** | 0.55 | 2.40 |
C | 36.62 *** | 1.20 | 0.23 |
N | 46.23 *** | 0.44 | 2.43 * |
Corg | 148.8 *** | 1.37 | 1.39 |
Time | Treatment | Interaction Time × Treatment | |
---|---|---|---|
DNA yield | 7.13 *** | 0.71 | 1.45 |
Resp | 176.1 *** | 4.21 * | 1.72 |
Hydrolase | 69.54 *** | 0.29 | 0.58 |
Dehydrogenase | 4.48 | 0.24 | 2.43 |
β-glucosidase | 260.7 *** | 3.15 | 1.12 * |
Urease | 8107.8 *** | 0.05 | 3.38 ** |
Time | Treatment | Interaction Time × Treatment | |
---|---|---|---|
Density | 0.96 | 0.19 | 0.62 |
Richness | 0.64 | 0.82 | 1.14 |
Collembola | 2.46 | 0.26 | 0.13 |
Gamasida | 5.51 | 0.08 | 1.06 |
Oribatida | 3.89 | 0.2 | 0.44 |
Prostigmata | 2.03 | 1.57 | 3.45 ** |
Coleoptera larva | 0.44 | 0.18 | 1.24 |
Diptera | 0.62 | 1.59 | 0.65 |
Diptera larva | 1.87 | 2.66 | 1.17 |
Hemiptera | 0.84 | 0.88 | 0.88 |
Time within Treatment | |||||||||
---|---|---|---|---|---|---|---|---|---|
C | CP | BP | |||||||
T1 vs. T2 | T2 vs. T3 | T1 vs. T3 | T1 vs. T2 | T2 vs. T3 | T1 vs. T3 | T1 vs. T2 | T2 vs. T3 | T1 vs. T3 | |
Collembola | 3.21 | 3.05 | 3.05 | 0.57 | <0.001 | 1.02 | 0.14 | 0.57 | 1.02 |
Gamasida | <0.001 | 2.29 | 2.29 | 1.82 | 0.78 | 1.03 | 0.68 | 2.05 | 2.74 |
Oribatida | 1.69 | 1.69 | <0.001 | 0.50 | 1.01 | 0.50 | 2.64 | 2.64 | <0.001 |
Prostigmata | 2.95 * | 2.95 * | <0.001 | <0.001 | 2.97 * | 2.97 * | <0.001 | <0.001 | <0.001 |
Coleoptera larva | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 1.03 | <0.001 | 2.06 | 2.06 |
Diptera | <0.001 | <0.001 | <0.001 | 1.05 | 2.09 | 1.05 | <0.001 | <0.001 | <0.001 |
Diptera larva | 2.44 | 0.61 | 1.83 | <0.001 | 1.23 | 1.23 | <0.001 | <0.001 | <0.001 |
Hemiptera larva | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 2.34 | 2.34 |
Treatment within Time | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | |||||||||
C | CP | BP | C | CP | BP | C | CP | BP | |||
Collembola | C | - | - | - | - | - | - | - | - | - | |
CP | 1.59 | - | - | 0.07 | - | - | 0.07 | - | - | ||
BP | 0.91 | 0.72 | - | 0.07 | 0.14 | - | 0.34 | 0.26 | - | ||
Gamasida | C | - | - | - | - | - | - | - | - | - | |
CP | <0.001 | - | - | 1.72 | - | - | 1.45 | - | - | ||
BP | <0.001 | <0.001 | - | 0.64 | 1.14 | - | 0.16 | 1.71 | - | ||
Oribatida | C | - | - | - | - | - | - | - | - | - | |
CP | 0.47 | - | - | 0.83 | - | - | <0.001 | - | - | ||
BP | <0.001 | 0.50 | - | 0.71 | 1.64 | - | <0.001 | <0.001 | - | ||
Prostigmata | C | - | - | - | - | - | - | - | - | - | |
CP | <0.001 | - | - | 3.11 * | - | - | 2.8 ** | - | - | ||
BP | <0.001 | <0.001 | - | 3.11 * | <0.001 | - | <0.001 | 2.97 * | - | ||
Coleoptera larva | C | - | - | - | - | - | - | - | - | - | |
CP | 0.97 | - | - | <0.001 | - | - | <0.001 | - | - | ||
BP | <0.001 | 1.03 | - | <0.001 | <0.001 | - | 1.94 | 2.06 | - | ||
Diptera | C | - | - | - | - | - | - | - | - | - | |
CP | 0.99 | - | - | 1.84 | - | - | 4.06 | - | - | ||
BP | <0.001 | 2.71 | - | 4.06 | 1.60 | - | 4.06 | 3.83 | - | ||
Diptera larva | C | - | - | - | - | - | - | - | - | - | |
CP | <0.001 | - | - | 2.57 | - | - | 0.77 | - | - | ||
BP | <0.001 | <0.001 | - | 2.57 | <0.001 | - | 1.92 | 1.23 | - | ||
Hemiptera larva | C | - | - | - | - | - | - | - | - | - | |
CP | <0.001 | - | - | <0.001 | - | - | <0.001 | - | - | ||
BP | <0.001 | <0.001 | - | <0.001 | <0.001 | - | 2.21 | 2.34 | - |
Time | Treatment | Interaction Time × Treatment | |
---|---|---|---|
SQI | 0.81 | 0.01 | 0.07 |
IBR | 0.99 | 0.03 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santini, G.; Zizolfi, M.; Santorufo, L.; Memoli, V.; D’Ascoli, R.; Maisto, G. Soil Microbial Biomass and Microarthropod Community Responses to Conventional and Biodegradable Plastics. Soil Syst. 2024, 8, 92. https://doi.org/10.3390/soilsystems8030092
Santini G, Zizolfi M, Santorufo L, Memoli V, D’Ascoli R, Maisto G. Soil Microbial Biomass and Microarthropod Community Responses to Conventional and Biodegradable Plastics. Soil Systems. 2024; 8(3):92. https://doi.org/10.3390/soilsystems8030092
Chicago/Turabian StyleSantini, Giorgia, Monica Zizolfi, Lucia Santorufo, Valeria Memoli, Rosaria D’Ascoli, and Giulia Maisto. 2024. "Soil Microbial Biomass and Microarthropod Community Responses to Conventional and Biodegradable Plastics" Soil Systems 8, no. 3: 92. https://doi.org/10.3390/soilsystems8030092
APA StyleSantini, G., Zizolfi, M., Santorufo, L., Memoli, V., D’Ascoli, R., & Maisto, G. (2024). Soil Microbial Biomass and Microarthropod Community Responses to Conventional and Biodegradable Plastics. Soil Systems, 8(3), 92. https://doi.org/10.3390/soilsystems8030092