Fractions of Organic Matter and Soil Carbon Balance in Different Phases of an Agroforestry System in the Cerrado: A Ten-Year Field Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area
2.2. History of Conducting the Experiment
2.3. Soil Sampling
2.4. Determination of Total Organic C Content and C in Fractions of Organic Matter and Other Soil Attributes
2.5. Statistical Analyses
3. Results and Discussions
3.1. Total Organic Carbon
3.2. Labile Fractions of Soil Organic Matter
3.3. Non-Labile Fractions of Soil Organic Matter
3.4. Soil Carbon Stocks and Balance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribeiro, F.P.; Gatto, A.; de Oliveira, A.D.; Pulrolnik, K.; Valadão, M.B.X.; Araújo, J.B.C.N.; de Carvalho, A.M.; Ferreira, E.A.B. Carbon Storage in Different Compartments in Eucalyptus Stands and Native Cerrado Vegetation. Plants 2023, 12, 2751. [Google Scholar] [CrossRef] [PubMed]
- Briedis, C.; de Moraes Sá, J.C.; Lal, R.; Tivet, F.; Franchini, J.C.; de Oliveira Ferreira, A.; da Cruz Hartman, D.; Schimiguel, R.; Bressan, P.T.; Inagaki, T.M.; et al. How Does No-till Deliver Carbon Stabilization and Saturation in Highly Weathered Soils? Catena 2018, 163, 13–23. [Google Scholar] [CrossRef]
- Costa, A.A.; Dias, B.d.O.; Fraga, V.d.S.; Santana, C.C.; da Silva, N. Carbon and Nitrogen Stocks in Soils under Different Forms of Use in the Cerrado. Rev. Bras. Eng. Agrícola Ambient. 2020, 24, 528–533. [Google Scholar] [CrossRef]
- Pereira, O.; Ferreira, L.; Pinto, F.; Baumgarten, L. Assessing Pasture Degradation in the Brazilian Cerrado Based on the Analysis of MODIS NDVI Time-Series. Remote Sens. 2018, 10, 1761. [Google Scholar] [CrossRef]
- Silva, T.R.; Rodrigues, S.B.; de Azevedo Bringel, J.B.; Sampaio, A.B.; Sano, E.E.; Vieira, D.L.M. Factors Affecting Savanna and Forest Regeneration in Pastures across the Cerrado. J. Environ. Manag. 2023, 330, 117185. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Bijalwan, A.; Singh, B.; Rawat, D.; Yewale, A.G.; Riyal, M.K.; Thakur, T.K. Comparison of Carbon Sequestration Potential of Quercus Leucotrichophora–Based Agroforestry Systems and Natural Forest in Central Himalaya, India. Water Air Soil Pollut. 2021, 232, 350. [Google Scholar] [CrossRef]
- Coser, T.R.; de Figueiredo, C.C.; Jovanovic, B.; Moreira, T.N.; Leite, G.G.; Cabral Filho, S.L.S.; Kato, E.; Malaquias, J.V.; Marchão, R.L. Short-Term Buildup of Carbon from a Low-Productivity Pastureland to an Agrisilviculture System in the Brazilian Savannah. Agric. Syst. 2018, 166, 184–195. [Google Scholar] [CrossRef]
- Ghale, B.; Mitra, E.; Sodhi, H.S.; Verma, A.K.; Kumar, S. Carbon Sequestration Potential of Agroforestry Systems and Its Potential in Climate Change Mitigation. Water Air Soil Pollut. 2022, 233, 228. [Google Scholar] [CrossRef]
- Yadav, G.S.; Kandpal, B.K.; Das, A.; Babu, S.; Mohapatra, K.P.; Devi, A.G.; Devi, H.L.; Chandra, P.; Singh, R.; Barman, K.K. Impact of 28 Year Old Agroforestry Systems on Soil Carbon Dynamics in Eastern Himalayas. J. Environ. Manag. 2021, 283, 111978. [Google Scholar] [CrossRef]
- de Oliveira, W.R.D.; Ramos, M.L.G.; de Carvalho, A.M.; Coser, T.R.; Silva, A.M.M.; Lacerda, M.M.; Souza, K.W.; Marchão, R.L.; Vilela, L.; Pulrolnik, K. Dynamics of Soil Microbiological Attributes under Integrated Production Systems, Continuous Pasture, and Native Cerrado. Pesqui. Agropecuária Bras. 2016, 51, 1501–1510. [Google Scholar] [CrossRef]
- de Souza Almeida, L.L.; Frazão, L.A.; Lessa, T.A.M.; Fernandes, L.A.; de Carvalho Veloso, Á.L.; Lana, A.M.Q.; de Souza, I.A.; Pegoraro, R.F.; Ferreira, E.A. Soil Carbon and Nitrogen Stocks and the Quality of Soil Organic Matter under Silvopastoral Systems in the Brazilian Cerrado. Soil Tillage Res. 2021, 205, 104785. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, H.B.; Song, M.W.; Guan, D.S. The Dynamics of Carbon Accumulation in Eucalyptus and Acacia Plantations in the Pearl River Delta Region. Ann. For. Sci. 2018, 75, 40. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Malone, B.P.; Wheeler, I. Digital Mapping of Soil Carbon. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2013; pp. 1–47. [Google Scholar]
- Gomes, L.C.; Faria, R.M.; de Souza, E.; Veloso, G.V.; Schaefer, C.E.G.R.; Filho, E.I.F. Modelling and Mapping Soil Organic Carbon Stocks in Brazil. Geoderma 2019, 340, 337–350. [Google Scholar] [CrossRef]
- Lim, S.S.; Baah-Acheamfour, M.; Choi, W.J.; Arshad, M.A.; Fatemi, F.; Banerjee, S.; Carlyle, C.N.; Bork, E.W.; Park, H.J.; Chang, S.X. Soil Organic Carbon Stocks in Three Canadian Agroforestry Systems: From Surface Organic to Deeper Mineral Soils. For. Ecol. Manag. 2018, 417, 103–109. [Google Scholar] [CrossRef]
- de Freitas, I.C.; Ribeiro, J.M.; Araújo, N.C.A.; Santos, M.V.; Sampaio, R.A.; Fernandes, L.A.; Azevedo, A.M.; Feigl, B.J.; Cerri, C.E.P.; Frazão, L.A. Agrosilvopastoral Systems and Well-Managed Pastures Increase Soil Carbon Stocks in the Brazilian Cerrado. Rangel. Ecol. Manag. 2020, 73, 776–785. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.L.; Coelho, M.R.; Almeida, J.A.; Araújo Filho, J.C.; Oliveira, J.B.; Cunha, T. Brazilian System of Soil Classification, 5th ed.; Embrapa: Brasília, Brazil, 2018; Available online: https://www.redeilpf.org.br/arquivos/SiBCS-2018-ISBN-9788570358219-english.pdf (accessed on 2 February 2024).
- IUSS Working Group WRB. World Reference Base for Soil Resources. In World Soil Resources Report 103; FAO: Rome, Italy, 2006. [Google Scholar]
- de Sousa, D.M.G.; Lobato, E. Cerrado Correção do Solo e Adubação, 2nd ed.; Embrapa: Brasília, Brazil, 2004. [Google Scholar]
- Cambardella, C.A.; Elliott, E.T. Participate Soil Organic-Matter Changes across a Grassland Cultivation Sequence. Soil Sci. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1958. [Google Scholar]
- Jantalia, C.P.; Resck, D.V.S.; Alves, B.J.R.; Zotarelli, L.; Urquiaga, S.; Boddey, R.M. Tillage Effect on C Stocks of a Clayey Oxisol under a Soybean-Based Crop Rotation in the Brazilian Cerrado Region. Soil Tillage Res. 2007, 95, 97–109. [Google Scholar] [CrossRef]
- Shang, C.; Tiessen, H. Organic matter lability in a tropical oxisol: Evidence from shifting cultivation, chemical oxidation, particle size, density, and magnetic fractionations. Soil Sci. 1997, 162, 795–805. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- Ottoy, S.; Van Meerbeek, K.; Sindayihebura, A.; Hermy, M.; Van Orshoven, J. Assessing Top- and Subsoil Organic Carbon Stocks of Low-Input High-Diversity Systems Using Soil and Vegetation Characteristics. Sci. Total Environ. 2017, 589, 153–164. [Google Scholar] [CrossRef]
- Crespo, C.M.G.; Piscoya, V.C.; Filho, R.N.d.A.; Lima, S.B.; Moraes, A.S.; de França, M.V.; Fernandes, M.M.; Filho, M.C.; Filho, R.R.G.; Cavalcante, N.L.d.L.; et al. Soil Carbon Stocks and Labile Fractions of Organic Matter under Agroforestry System in Breast of Pernambucan Altitude. Cienc. Florest. 2022, 32, 2180–2198. [Google Scholar] [CrossRef]
- Guillemot, J.; le Maire, G.; Munishamappa, M.; Charbonnier, F.; Vaast, P. Native Coffee Agroforestry in the Western Ghats of India Maintains Higher Carbon Storage and Tree Diversity Compared to Exotic Agroforestry. Agric. Ecosyst. Environ. 2018, 265, 461–469. [Google Scholar] [CrossRef]
- Suárez, J.C.; Segura, M.; Andrade, H.J. Agroforestry Systems Affect Soil Organic Carbon Stocks and Fractions in Deforested Landscapes of Amazonia. Agrofor. Syst. 2024, 1–13. [Google Scholar] [CrossRef]
- Maier, R.; Schack-Kirchner, H.; Nyoka, B.I.; Lang, F. Gliricidia Intercropping Supports Soil Organic Matter Stabilization at Makoka Research Station, Malawi. Geoderma Reg. 2023, 35, e00730. [Google Scholar] [CrossRef]
- Beedy, T.L.; Snapp, S.S.; Akinnifesi, F.K.; Sileshi, G.W. Impact of Gliricidia Sepium Intercropping on Soil Organic Matter Fractions in a Maize-Based Cropping System. Agric. Ecosyst. Environ. 2010, 138, 139–146. [Google Scholar] [CrossRef]
- Marçal, M.F.M.; de Souza, Z.M.; Tavares, R.L.M.; Farhate, C.V.V.; Júnior, R.E.M.; Lima, E.d.S.; Lovera, L.H. Potential Use of Quartzipisamment under Agroforestry and Silvopastoral System for Large-Scale Production in Brazil. Agronomy 2022, 12, 905. [Google Scholar] [CrossRef]
- Sarto, M.V.M.; Borges, W.L.B.; Sarto, J.R.W.; Rice, C.W.; Rosolem, C.A. Deep Soil Carbon Stock, Origin, and Root Interaction in a Tropical Integrated Crop–Livestock System. Agrofor. Syst. 2020, 94, 1865–1877. [Google Scholar] [CrossRef]
- Kopecký, M.; Peterka, J.; Kolář, L.; Konvalina, P.; Maroušek, J.; Váchalová, R.; Herout, M.; Strunecký, O.; Batt, J.; Tran, D.K. Influence of Selected Maize Cultivation Technologies on Changes in the Labile Fraction of Soil Organic Matter Sandy-Loam Cambisol Soil Structure. Soil Tillage Res. 2021, 207, 104865. [Google Scholar] [CrossRef]
- Cui, L.; Sun, H.; Du, X.; Feng, W.; Wang, Y.; Zhang, J.; Jiang, J. Dynamics of Labile Soil Organic Carbon during the Development of Mangrove and Salt Marsh Ecosystems. Ecol. Indic. 2021, 129, 107875. [Google Scholar] [CrossRef]
- Francisco da Silva, E.; Pinheiro Reis Lourente, E.; Estevão Marchetti, M.; Martins Mercante, F.; Karolina Teixeira Ferreira, A.; Carneiro Fujii, G. Frações Lábeis e Recalcitrantes Da Matéria Orgânica Solos Sob Integração Lavoura-pecuária. Pesqui. Agropecuária Bras. 2011, 46, 1321–1331. [Google Scholar] [CrossRef]
- Sato, J.H.; de Figueiredo, C.C.; Marchão, R.L.; de Oliveira, A.D.; Vilela, L.; Delvico, F.M.; Alves, B.J.R.; de Carvalho, A.M. Understanding the Relations between Soil Organic Matter Fractions and N2O Emissions in a Long-Term Integrated Crop–Livestock System. Eur. J. Soil Sci. 2019, 70, 1183–1196. [Google Scholar] [CrossRef]
- Ferreira, R.V.; Tavares, R.L.M.; de Medeiros, S.F.; da Silva, A.G.; Júnior, J.F.d.S. Carbon Stock and Organic Fractions in Soil under Monoculture and Sorghum Bicolor–Urochloa Ruziziensis Intercropping Systems. Bragantia 2020, 79, 425–433. [Google Scholar] [CrossRef]
- Culman, S.W.; Snapp, S.S.; Freeman, M.A.; Schipanski, M.E.; Beniston, J.; Lal, R.; Drinkwater, L.E.; Franzluebbers, A.J.; Glover, J.D.; Grandy, A.S.; et al. Permanganate Oxidizable Carbon Reflects a Processed Soil Fraction That Is Sensitive to Management. Soil Sci. Soc. Am. J. 2012, 76, 494–504. [Google Scholar] [CrossRef]
- Witzgall, K.; Vidal, A.; Schubert, D.I.; Höschen, C.; Schweizer, S.A.; Buegger, F.; Pouteau, V.; Chenu, C.; Mueller, C.W. Particulate Organic Matter as a Functional Soil Component for Persistent Soil Organic Carbon. Nat. Commun. 2021, 12, 4115. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.Q.; Pereira, M.G.; Guimarães Giácomo, S.; Betta, M.; Polidoro, J.C. Labile Fractions of Organic Matter in Cropping System with Straw of Brachiaria and Sorghum. Rev. Cienc. Agron. 2012, 43, 38–46. [Google Scholar]
- Ramesh, T.; Manjaiah, K.M.; Mohopatra, K.P.; Rajasekar, K.; Ngachan, S.V. Assessment of Soil Organic Carbon Stocks and Fractions under Different Agroforestry Systems in Subtropical Hill Agroecosystems of North-East India. Agrofor. Syst. 2015, 89, 677–690. [Google Scholar] [CrossRef]
- Wang, W.; Ingwersen, J.; Yang, G.; Wang, Z.; Alimu, A. Effects of Farmland Conversion to Orchard or Agroforestry on Soil Organic Carbon Fractions in an Arid Desert Oasis Area. Forests 2022, 13, 181. [Google Scholar] [CrossRef]
- Kalambukattu, J.G.; Singh, R.; Patra, A.K.; Arunkumar, K. Soil Carbon Pools and Carbon Management Index under Different Land Use Systems in the Central Himalayan Region. Acta Agric. Scand. B Soil Plant Sci. 2013, 63, 200–205. [Google Scholar] [CrossRef]
- Nanzer, M.C.; Ensinas, S.C.; Barbosa, G.F.; Barreta, P.G.V.; de Oliveira, T.P.; da Silva, J.R.M.; Paulino, L.A. Total Organic Carbon Stock and Granulometric Fractioning of Organic Matter in Soil Use Systems in Cerrado. Rev. Cienc. Agron. 2019, 18, 136–145. [Google Scholar] [CrossRef]
- Faccin, F.C.; Marchetti, M.E.; Serra, A.P.; Ensinas, S.C. Frações Granulométricas Da Matéria Orgânica Do Solo Em Consórcio de Milho Safrinha Com Capim-Marandu Sob Fontes de Nitrogênio. Pesqui. Agropecuária Bras. 2016, 51, 2000–2009. [Google Scholar] [CrossRef]
- Kleber, M.; Bourg, I.C.; Coward, E.K.; Hansel, C.M.; Myneni, S.C.B.; Nunan, N. Dynamic Interactions at the Mineral–Organic Matter Interface. Nat. Rev. Earth Environ. 2021, 2, 402–421. [Google Scholar] [CrossRef]
- Shi, L.; Feng, W.; Xu, J.; Kuzyakov, Y. Agroforestry Systems: Meta-Analysis of Soil Carbon Stocks, Sequestration Processes, and Future Potentials. Land Degrad. Dev. 2018, 29, 3886–3897. [Google Scholar] [CrossRef]
- Wang, B.; Su, X.; Wang, T.; Yang, T.; Xu, C.; Lin, Z.; Tian, D.; Tang, L. Spatial Heterogeneity of Total and Labile Soil Organic Carbon Pools in Poplar Agroforestry Systems. Forests 2023, 14, 1869. [Google Scholar] [CrossRef]
- Poirier, V.; Roumet, C.; Munson, A.D. The Root of the Matter: Linking Root Traits and Soil Organic Matter Stabilization Processes. Soil Biol. Biochem. 2018, 120, 246–259. [Google Scholar] [CrossRef]
- de Carvalho, A.M.; de Jesus, D.R.; de Sousa, T.R.; Ramos, M.L.G.; de Figueiredo, C.C.; de Oliveira, A.D.; Marchão, R.L.; Ribeiro, F.P.; Dantas, R.d.A.; Borges, L.d.A.B. Soil Carbon Stocks and Greenhouse Gas Mitigation of Agriculture in the Brazilian Cerrado—A Review. Plants 2023, 12, 2449. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, W.; Suárez, J.C.; Casanoves, F. Total Litterfall and Leaf-Litter Decomposition of Theobroma Grandiflorum under Different Agroforestry Systems in the Western Colombian Amazon. Agrofor. Syst. 2023, 97, 1541–1556. [Google Scholar] [CrossRef]
- Oelbermann, M.; Voroney, R.P. Carbon and Nitrogen in a Temperate Agroforestry System: Using Stable Isotopes as a Tool to Understand Soil Dynamics. Ecol. Eng. 2007, 29, 342–349. [Google Scholar] [CrossRef]
- Smiley, G.L.; Kroschel, J. Temporal Change in Carbon Stocks of Cocoa–Gliricidia Agroforests in Central Sulawesi, Indonesia. Agrofor. Syst. 2008, 73, 219–231. [Google Scholar] [CrossRef]
- Chen, C.; Liu, W.; Jiang, X.; Wu, J. Effects of Rubber-Based Agroforestry Systems on Soil Aggregation and Associated Soil Organic Carbon: Implications for Land Use. Geoderma 2017, 299, 13–24. [Google Scholar] [CrossRef]
- Vergutz, L.; Ferreira Novais, R.; Ribeiro da Silva, I.; Félix de Barros, N.; Novais Nunes, T. Mudanças na matéria orgânica do solo causadas pelo tempo de adoção de um sistema agrossilvopastoril com eucalipto. Rev. Bras. Cienc. Solo 2010, 34, 43–57. [Google Scholar] [CrossRef]
- Pinheiro, F.M.; Nair, P.K.R.; Nair, V.D.; Tonucci, R.G.; Venturin, R.P. Soil Carbon Stock and Stability under Eucalyptus-Based Silvopasture and Other Land-Use Systems in the Cerrado Biodiversity Hotspot. J. Environ. Manag. 2021, 299, 113676. [Google Scholar] [CrossRef] [PubMed]
- Bernal, B.; Murray, L.T.; Pearson, T.R.H. Global Carbon Dioxide Removal Rates from Forest Landscape Restoration Activities. Carbon Balance Manag. 2018, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Junior, M.A.L.; Fracetto, F.J.C.; da Silva Ferreira, J.; Silva, M.B.; Fracetto, G.G.M. Legume-Based Silvopastoral Systems Drive C and N Soil Stocks in a Subhumid Tropical Environment. Catena 2020, 189, 104508. [Google Scholar] [CrossRef]
Time | Available P | pH | Available K+ | Ca2+ | Mg2+ | H + Al | SB | V | m | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|---|---|---|
mg dm−3 | (H2O) | cmolc dm−3 | % | g kg−1 | ||||||||
T0 | 1.4 | 5.20 | 0.10 | 2.6 | 1.0 | 4.8 | 3.6 | 42.7 | 2.5 | 45 | 360 | 595 |
T4 | 2.0 | 5.06 | 0.08 | 3.3 | 0.73 | 2.66 | 4.03 | 59.6 | 0 | 45 | 360 | 595 |
Treatment/Year | Description of System Components | Data Collection Date | Fertilization a |
---|---|---|---|
T0 | Pasture characterized as low productivity | October 2012 | - |
T1—2013/2014 | Insertion of the maize and forage components | March 2014 | Planting: 30 kg N ha−1 + 120 kg ha−1 P2O5 + 64 kg ha−1 K2O; Top dressing: 130 kg N ha−1 + 65 kg K2O ha−1 |
T2—2014/2015 b | Insertion of the arboreal component (G. sepium), cultivated along with maize and P. maximum | March 2015 | Planting: 20 kg N ha−1 + 150 kg ha−1 P2O5 + 80 kg ha−1 K2O; Top dressing: 140 kg N ha−1 + 60 kg K2O ha−1; |
T3—2015/2016 | G. sepium + Maize + P. maximum | March 2016 | Planting: 30 kg N ha−1 + 150 kg ha−1 P2O5 + 50 kg ha−1 K2O; Top dressing: 150 kg N ha−1 + 90 kg K2O ha−1 |
T4—2022/2023 c | G. sepium + P. maximum. From 2016 onwards, the system was driven only with these 2 components (tree and grass) | June 2023 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.A.d.; Santos, A.d.D.d.; Costa, C.R.; Araujo, A.S.d.; Leite, G.G.; Coser, T.R.; Figueiredo, C.C.d. Fractions of Organic Matter and Soil Carbon Balance in Different Phases of an Agroforestry System in the Cerrado: A Ten-Year Field Assessment. Soil Syst. 2024, 8, 44. https://doi.org/10.3390/soilsystems8020044
Santos JAd, Santos AdDd, Costa CR, Araujo ASd, Leite GG, Coser TR, Figueiredo CCd. Fractions of Organic Matter and Soil Carbon Balance in Different Phases of an Agroforestry System in the Cerrado: A Ten-Year Field Assessment. Soil Systems. 2024; 8(2):44. https://doi.org/10.3390/soilsystems8020044
Chicago/Turabian StyleSantos, Juscelina Arcanjo dos, Anselmo de Deus dos Santos, Camila Rodrigues Costa, Alyson Silva de Araujo, Gilberto Gonçalves Leite, Thais Rodrigues Coser, and Cícero Célio de Figueiredo. 2024. "Fractions of Organic Matter and Soil Carbon Balance in Different Phases of an Agroforestry System in the Cerrado: A Ten-Year Field Assessment" Soil Systems 8, no. 2: 44. https://doi.org/10.3390/soilsystems8020044
APA StyleSantos, J. A. d., Santos, A. d. D. d., Costa, C. R., Araujo, A. S. d., Leite, G. G., Coser, T. R., & Figueiredo, C. C. d. (2024). Fractions of Organic Matter and Soil Carbon Balance in Different Phases of an Agroforestry System in the Cerrado: A Ten-Year Field Assessment. Soil Systems, 8(2), 44. https://doi.org/10.3390/soilsystems8020044