Water Erosion Processes on the Geotouristic Trails of Serra da Bocaina National Park Coast, Rio de Janeiro State, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
3. Results
3.1. Rainfall Data
3.2. Spatial Variation of Soil Physical–Chemical Characteristics
3.3. Spatiotemporal Dynamics of Soil Microtopography
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centeri, C. Soil Water Erosion. Water 2022, 14, 447–501. [Google Scholar] [CrossRef]
- Boardman, J.; Poesen, J.; Evans, M. Slopes: Soil erosion. In The History of the Study of Landforms or the Development of Geomorphology: Volume 5: Geomorphology in the Second Half of the Twentieth Century; Geological Society of London: London, UK, 2022. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106–150123. [Google Scholar] [CrossRef]
- Golubović, T.D. Environmental Consequences of Soil Erosion. In Advances in Environmental Engineering and Green Technologies; Milutinović, S., Živković, S., Eds.; IGI Global: Hershey, PA, USA, 2022; pp. 112–131. [Google Scholar]
- Yin, C.; Zhao, W.; Pereira, P. Soil conservation service underpins sustainable development goals. Glob. Ecol. Conserv. 2022, 33, 1–8. [Google Scholar] [CrossRef]
- Guerra, A.J.T.; Bezerra, J.F.R.; Jorge, M.C.O. Recuperação de voçorocas e de áreas degradadas, no Brasil e no mundo—Estudo de caso da voçoroca do Sacavém—São Luís—MA. Rev. Bras. Geomorfol. 2023, 24, 1–20. [Google Scholar] [CrossRef]
- Dragovich, D.; Bajpai, S. Managing Tourism and Environment—Trail Erosion, Thresholds of Potential Concern and Limits of Acceptable Change. Sustainability 2022, 14, 4291–4307. [Google Scholar] [CrossRef]
- Pereira, L.S.; Rodrigues, A.M.; Jorge, M.C.O.; Guerra, A.J.T.; Booth, C.A.; Fullen, M.A. Detrimental effects of tourist trails on soil system dynamics in Ubatuba Municipality, São Paulo State, Brazil. Catena 2022, 216, 106431. [Google Scholar] [CrossRef]
- Lima, G.M.; Rangel, L.A.; Guerra, A.J.T. Monitoramento da microtopografia do solo em trilhas de uso público no litoral do Parque Nacional da Serra da Bocaina. Rev. Bras. Geomorfol. 2023, 24, 1–17. [Google Scholar] [CrossRef]
- Lima, G.M.; Guerra, A.J.T. Áreas degradadas por processos erosivos hídricos na Trilha do Morro Dois Irmãos, no município do Rio de Janeiro (RJ). Rev. Ciência Geográfica 2023, 27, 376–395. [Google Scholar] [CrossRef]
- Costa, N.M.C.; Oliveira, F.L. Trilhas: “caminhos” para o geoturismo, a geodiversidade e a geoconservação. In Geoturismo, Geodiveridade e Geoconservação: Abordagens Geográficas e Geológicas; Guerra, A.J.T., Jorge, M.C.O., Eds.; Oficina de Textos: São Paulo, Brazil, 2018; pp. 201–223. [Google Scholar]
- Bhammar, H.; Li, W.; Molina, C.M.M.; Hickey, V.; Pendry, J.; Narain, U. Framework for Sustainable Recovery of Tourism in Protected Areas. Sustainability 2021, 13, 2798–2808. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, L.; Yu, H. Sustainability assessment of tourism in protected areas: A relational perspective. Glob. Ecol. Conserv. 2022, 35, 1–14. [Google Scholar] [CrossRef]
- Marion, J.L. Trail sustainability: A state-of-knowledge review of trail impacts, influential factors, sustainability ratings, and planning and management guidance. J. Environ. Manag. 2023, 340, 117868. [Google Scholar] [CrossRef] [PubMed]
- Spernbauer, B.S.; Monz, C.; D’antonio, A.; Smith, J.W. Factors influencing informal trail conditions: Implications for management and research in urban-proximate parks and protected areas. Landsc. Urban Plan. 2023, 231, 104661. [Google Scholar] [CrossRef]
- Fonseca Filho, R.E.; Varajão, A.F.D.C.; Castro, P.T.A. Compactação e erosão de trilhas geoturísticas de parques do Quadrilátero Ferrífero e Serra do Espinhaço meridional. Rev. Bras. Geomorfol. 2019, 20, 825–839. [Google Scholar] [CrossRef]
- Rangel, L.A.; Jorge, M.C.; Guerra, A.J.T.; Fullen, M.A. Soil Erosion and Land Degradation on Trail Systems in Mountainous Areas: Two Case Studies from South-East Brazil. Soil Syst. 2019, 3, 56–70. [Google Scholar] [CrossRef]
- Figueiredo, M.A.; Martins, J.V.A. Erosão em trilhas e sua relação com o turismo em áreas protegidas: Uma breve discussão. In Turismo em Áreas Protegidas; Sutil, T., Ladwig, N.I., Silva, J.G.S., Eds.; UNESC: Criciúma, Brazil, 2021; pp. 173–195. [Google Scholar]
- Wolf, I.D.; Croft, D.B.; Green, R.J. Nature Conservation and Nature-Based Tourism: A paradox? Environments 2019, 6, 104–126. [Google Scholar] [CrossRef]
- ICMBIO. Instituto Chico Mendes de Conservação da Biodiversidade. ICMBio Realiza Operação de Ordenamento da Visitação nas Praias do Meio e Caixa D’aço em Trindade no Feriado de Carnaval de 2022. Available online: https://www.icmbio.gov.br/parnaserradabocaina/destaques/190-icmbio-realiza-operacao-de-ordenamento-da-visitacao-nas-praias-do-meio-e-caixa-d-aco-em-trindade-no-feriado-de-carnaval-de-2022.html (accessed on 20 July 2023).
- ICMBIO. Instituto Chico Mendes de Conservação da Biodiversidade. Parque Nacional da Serra da Bocaina Promoveu Ação de Ordenamento Turístico na Trindade. Available online: http://www.icmbio.gov.br/parnaserradabocaina/destaques/152-parque-nacional-da-serrada-bocaina-promoveu-acao-de-ordenamento-turistico-na-trindade.html (accessed on 20 July 2023).
- Rangel, L.A.; Guerra, A.J.T. Microtopografia e compactação do solo em trilhas geoturísticas no litoral do Parque Nacional da Serra da Bocaina—Estado do Rio de Janeiro. Rev. Bras. Geomorfol. 2018, 19, 391–405. [Google Scholar] [CrossRef]
- MMA (Ministério do Meio Ambiente). Plano de Manejo do Parque Nacional da Serra da Bocaina; Instituto Brasileiro de Meio Ambiente; Ministério do Meio Ambiente: Brasília, Brazil, 2002. Available online: https://www.icmbio.gov.br/parnaserradabocaina/extras/62-plano-de-manejo-e-monitorias.html (accessed on 19 July 2023).
- Leuzinger, M.D.; Santana, P.C.; Souza, L.R. Parques Nacionais do Brasil: Pesquisa e Preservação; CEUB: Brasília, Brazil, 2020; pp. 1–748. [Google Scholar]
- Carvalho Filho, A.; Lumbreras, J.F.; Wittern, K.P.; Lemos, A.L.; Santos, R.D.; Calderano Filho, B.; Oliveira, R.P.; Aglio, M.L.D.; Souza, J.S.; Chaffin, C.E.; et al. Mapa de Reconhecimento de Baixa Intensidade dos solos do Estado do Rio de Janeiro; Escala 1:250.000; Embrapa Solos: Rio de Janeiro, Brazil, 2003. [Google Scholar]
- Guerra, A.J.T.; Jorge, M.C.O.; Fullen, M.A.; Bezerra, J.F.R. The geomorphology of Angra dos Reis and Paraty municipalities, Southern Rio de Janeiro State. Rev. Geonorte 2013, 9, 1–21. [Google Scholar]
- Kamino, L.H.Y.; Rezende, E.A.; Santos, L.J.C.; Felippe, M.F.; Assis, W.L. Atlantic Tropical Brazil. In The Physical Geography of Brazil: Environment, Vegetation and Landscape; Salgado, A.A.R., Santos, L.J.C., Paisani, J.C., Eds.; Springer: New York, NY, USA, 2019; pp. 41–74. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solos; Embrapa Solos: Rio de Janeiro, Brazil, 2017; pp. 1–574. [Google Scholar]
- USDA. United States Department of Agriculture. Soil Texture Calculator. Available online: https://www.nrcs.usda.gov/resources/education-and-teaching-materials/soil-texture-calculator (accessed on 20 July 2023).
- Shakesby, R.A. The soil erosion bridge: A device for micro-profiling soil surfaces. Earth Surf. Process. Landf. 1993, 18, 823–827. [Google Scholar] [CrossRef]
- Ferreira, C.G. Erosão hídrica em solos florestais. Estudo em povoamentos de Pinu spinaster e Eucalyptus globulus em Macieira—Alcôba. Rev. Fac. Let. Geogr. 1996/7, 12/13, 145–244. [Google Scholar]
- Silva, A.O.; Botelho, R.G.M. Diagnóstico das condições ambientes e de uso público na trilha do Peito do Pombo por meio do Protocolo de Avaliação Rápida (Sana—Macaé—RJ). Rev. Iberoam. Tur. 2021, 11, 177–195. [Google Scholar] [CrossRef]
- Igwe, P.U.; Ezeukwu, J.C.; Edoka, N.E.; Ejie, O.C.; Ifi, G.I. A Review of Vegetation Cover as a Natural Factor to Soil Erosion. Int. J. Rural Dev. Environ. Health Res. 2017, 1, 21–28. [Google Scholar] [CrossRef]
- Xia, L.; Song, X.; Fu, N.; Cui, S.; Li, L.; Li, H.; Li, Y. Effects of forest litter cover on hydrological response of hillslopes in the Loess Plateau of China. Catena 2019, 181, 104076. [Google Scholar] [CrossRef]
- Prescott, C.E.; Vesterdal, L. Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For. Ecol. Manag. 2021, 498, 119522. [Google Scholar] [CrossRef]
- Sayer, E.J.; Rodtassana, C.; Sheldrake, M.; Bréchet, L.M.; Ashford, O.S.; Lopez-Sangil, L.; Kerdraon-Byrne, D.; Castro, B.; Turner, B.L.; Wright, S.J. Revisiting nutrient cycling by litterfall—Insights from 15 years of litter manipulation in old-growth lowland tropical forest. In Advances in Ecological Research; Holzer, J.M., Baird, J., Hickey, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 62, pp. 173–223. [Google Scholar]
- Giweta, M. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. J. Ecol. Environ. 2020, 44, 11. [Google Scholar] [CrossRef]
- Gmach, M.R.; Cherubin, R.; Kaiser, K.; Cerri, C.E.P. Processes that influence dissolved organic matter in the soil: A review. Sci. Agric. 2020, 77, e20180164. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Nie, X.; Huang, M.; Wang, D.; Xiao, H.; Liu, C.; Peng, H.; Jiang, J.; Zeng, G. The role of dissolved organic matter in soil organic carbon stability under water erosion. Ecol. Indic. 2019, 102, 724–733. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Lavallee, J.M. Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. Adv. Agron. 2022, 172, 1–66. [Google Scholar] [CrossRef]
- FAO. Global Status of Black Soils; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; pp. 1–176. [Google Scholar] [CrossRef]
- Fernández-Raga, M.; Palencia, C.; Keesstra, S.; Jordán, A.; Fraile, R.; Angulo-Martínez, M.; Cerdà, A. Splash erosion: A review with unanswered questions. Earth-Sci. Rev. 2017, 171, 463–477. [Google Scholar] [CrossRef]
- Yadav, G.K.; Dadhich, S.K.; Bhateshwar, M.C. Recent Innovative Approaches in Agricultural Science; Bhumi Publishing: Maharashtra, India, 2022; pp. 1–218. [Google Scholar]
- D’acqui, L.P.; Certini, G.; Cambi, M.; Marchi, E. Machinery’s impact on forest soil porosity. J. Terramechanics 2020, 91, 65–71. [Google Scholar] [CrossRef]
- Meadema, F.; Marion, J.L.; Arredondo, J.; Wimpey, J. The influence of layout on Appalachian Trail soil loss, widening, and muddiness: Implications for sustainable trail design and management. J. Environ. Manag. 2020, 257, 109986. [Google Scholar] [CrossRef] [PubMed]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 2017, 181, 104–136. [Google Scholar] [CrossRef]
- Matsumoto, S.; Ogata, S.; Shimada, H.; Sasaoka, T.; Hamanaka, A.; Kusuma, G.J. Effects of pH-induced changes in soil physical characteristics on the development of soil water erosion. Geosciences 2018, 8, 134. [Google Scholar] [CrossRef]
- Schlatter, D.C.; Kahl, K.; Carlson, B.; Huggins, D.R.; Paulitz, T. Soil acidification modifies soil depth-microbiome relationships in a no-till wheat cropping system. Soil Biol. Biochem. 2020, 149, 107939. [Google Scholar] [CrossRef]
- Ker, J.C.; Curi, N.; Schaefer, C.E.G.R.; Vidal-Torrado, P. Pedologia: Fundamentos; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2015; pp. 1–343. [Google Scholar]
- Nguyen, V.B.; Nguyen, Q.B.; Zhang, Y.W.; Lim, C.Y.H.; Khoo, B.C. Effect of particle size on erosion characteristics. Wear 2016, 348–349, 126–137. [Google Scholar] [CrossRef]
- Guerra, A.J.T.; Fullen, A.; Jorge, M.C.O.; Bezerra, J.F.R.; Shokr, M.S. Slope processes, mass movements and soil erosion: A review. Pedosphere 2017, 27, 27–41. [Google Scholar] [CrossRef]
- Jorge, M.C.O. Solos: Conhecendo sua História; Oficina de Textos: São Paulo, Brazil, 2021; pp. 1–62. [Google Scholar]
Trail to the Waterfall of Stone That Swallows | Position on the Trail | Pore Arrangement | Granulometry (%) | Chemical Analysis | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Total Porosity (%) | Bulk Density (g cm−3) | Coarse Sand | Fine Sand | Silt | Clay | Textural Classification | pH | Organic Matter (%) | ||
Point A | Bed | 39 | 1.6 | 52 | 8 | 16 | 24 | Sandy clay loam | 4.8 | 0.6 |
Edge | 51 | 1.2 | 60 | 8 | 19 | 14 | Sandy loam | 4.5 | 1.2 | |
Point B | Bed | 34 | 1.7 | 49 | 8 | 24 | 19 | Sandy loam | 5.7 | 0.4 |
Edge | 64 | 1.0 | 52 | 6 | 17 | 25 | Sandy clay loam | 5.5 | 3.6 | |
Point C | Bed | 44 | 1.6 | 41 | 13 | 31 | 15 | Sandy loam | 5.9 | 0.9 |
Edge | 62 | 1.1 | 42 | 3 | 23 | 32 | Sandy clay loam | 5.8 | 2.5 | |
Mean | Bed | 39 | 1.6 | 47 | 10 | 24 | 19 | - | 5.5 | 0.6 |
Edge | 59 | 1.1 | 51 | 6 | 19 | 24 | - | 5.3 | 2.4 | |
Standard deviation | Bed | 4.7 | 0.1 | 5.7 | 2.9 | 7.4 | 4.6 | - | 0.6 | 0.3 |
Edge | 7.0 | 0.1 | 8.9 | 2.5 | 2.9 | 9.5 | - | 0.7 | 1.2 |
Caixa D’Aço Natural Pool Trail | Position on the Trail | Pore Arrangement | Granulometry (%) | Chemical Analysis | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Total Porosity (%) | Bulk Density (g cm−3) | Coarse Sand | Fine Sand | Silt | Clay | Textural Classification | pH | Organic Matter (%) | ||
Point A | Bed | 33 | 1.8 | 41 | 14 | 16 | 29 | Sandy clay loam | 5.6 | 1.2 |
Edge | 56 | 1.1 | 30 | 9 | 26 | 36 | Clay loam | 5.4 | 1.5 | |
Point B | Bed | 36 | 1.7 | 10 | 51 | 28 | 11 | Sandy loam | 5.5 | 0.8 |
Edge | 62 | 1.1 | 14 | 39 | 17 | 31 | Sandy clay loam | 5.4 | 1.4 | |
Mean | Bed | 35 | 1.7 | 25 | 33 | 22 | 20 | - | 5.6 | 1.0 |
Edge | 59 | 1.1 | 22 | 24 | 21 | 33 | - | 5.4 | 1.4 | |
Standard deviation | Bed | 2 | 0.1 | 22.0 | 26.2 | 8.3 | 12.8 | - | 0.1 | 0.2 |
Edge | 4 | 0.0 | 11.6 | 21.2 | 6.4 | 3.4 | - | 0.0 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, G.M.d.; Guerra, A.J.T.; Rangel, L.d.A.; Booth, C.A.; Fullen, M.A. Water Erosion Processes on the Geotouristic Trails of Serra da Bocaina National Park Coast, Rio de Janeiro State, Brazil. Soil Syst. 2024, 8, 24. https://doi.org/10.3390/soilsystems8010024
Lima GMd, Guerra AJT, Rangel LdA, Booth CA, Fullen MA. Water Erosion Processes on the Geotouristic Trails of Serra da Bocaina National Park Coast, Rio de Janeiro State, Brazil. Soil Systems. 2024; 8(1):24. https://doi.org/10.3390/soilsystems8010024
Chicago/Turabian StyleLima, Guilherme Marques de, Antonio Jose Teixeira Guerra, Luana de Almeida Rangel, Colin A. Booth, and Michael Augustine Fullen. 2024. "Water Erosion Processes on the Geotouristic Trails of Serra da Bocaina National Park Coast, Rio de Janeiro State, Brazil" Soil Systems 8, no. 1: 24. https://doi.org/10.3390/soilsystems8010024