The Impact of Flood Frequency on the Heterogeneity of Floodplain Surface Soil Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data Collection
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Connell, J.H. Diversity in tropical rain forests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, P.S. Pattern, process, and natural disturbance in vegetation. Bot. Rev. 1979, 45, 229–299. [Google Scholar] [CrossRef]
- Miller, T.E. Community diversity and interactions between the size and frequency of disturbance. Amer. Nat. 1982, 120, 533–536. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; White, P.S. The Ecology of Natural Disturbance and Patch Dynamics; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Wootton, J.T. Effects of disturbance on species diversity: A multitrophic perspective. Amer. Midl. Nat. 1998, 152, 803–825. [Google Scholar] [CrossRef]
- Huston, M. A general hypothesis of species diversity. Amer. Nat. 1979, 113, 81–101. [Google Scholar] [CrossRef]
- Pollock, M.M.; Naiman, R.J.; Hanley, T.A. Plant species richness in riparian wetlands: A test of biodiversity theory. Ecology 1998, 79, 94–105. [Google Scholar]
- Fox, J.F. Intermediate-disturbance hypothesis. Science 1979, 204, 1344–1345. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.R.; Brown, A.G.; Dinnin, M.H. Floodplain connectivity, disturbance and change: A palaeoentomological investigation of floodplain ecology from south-west England. J. Anim. Ecol. 2007, 76, 276–288. [Google Scholar] [CrossRef] [Green Version]
- Huston, M. Biological Diversity: The Coexistence of Species on Changing Landscapes; Cambridge University Press: London, UK, 1994. [Google Scholar]
- Crandall, R.M. Application of the intermediate disturbance hypothesis to flooding. Community Ecol. 2003, 4, 225–232. [Google Scholar] [CrossRef]
- Bornette, G.; Amoros, C. Disturbance regimes and vegetation dynamics: Role of floods in riverine wetlands. J. Veg. Sci. 1996, 7, 615–622. [Google Scholar] [CrossRef]
- Ferreira, L.V. Effects of flooding duration on species richness, floristic composition and forest structure in river margin habitat in Amazonian blackwater floodplain forests: Implications for future design of protected areas. Biodivers. Conserv. 2000, 9, 1–14. [Google Scholar] [CrossRef]
- Townsend, C.R.; Scarsbrook, M.R.; Doledce, S. The intermediate disturbance hypothesis, refugia and biodiversity in streams. Limnol. Oceanogr. 1997, 42, 938–949. [Google Scholar] [CrossRef] [Green Version]
- Real, R.; Vargas, J.M.; Antenez, A. Environmental influences on local amphibian diversity: The role of floods on river basins. Biodivers. Conserv. 1993, 2, 376–399. [Google Scholar] [CrossRef]
- Witthoft-Muhlmann, A.; Traunspurger, W.; Rothhaupt, K.O. Combined influence of river discharge and wind on littoral nematode communities of a river mouth area of Lake Constance. Aquat. Ecol. 2007, 41, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Reice, V.H. The impact of disturbance frequency on the structure of a lotic riffle community. Verh. Internat. Verein. Limnol. 1984, 22, 1906–1910. [Google Scholar] [CrossRef]
- Death, R.G.; Winterbourn, M.J. Diversity patterns in stream benthic invertebrate communities: The influence of habitat stability. Ecology 1995, 76, 1446–1460. [Google Scholar] [CrossRef]
- Collins, S.L. Fire frequency and community heterogeneity in tallgrass prairie vegetation. Ecology 1992, 73, 2001–2006. [Google Scholar] [CrossRef]
- Schwilk, D.W.; Keeley, J.E.; Bond, W.J. The intermediate disturbance hypothesis does not explain fire and diversity pattern in fynbos. Plant Ecol. 1997, 132, 77–84. [Google Scholar] [CrossRef]
- Garstecki, T.; Wickham, S.A. The response of benthic rhizopods to sediment disturbance does not support the intermediate disturbance hypothesis. Oikos 2003, 103, 528–536. [Google Scholar] [CrossRef]
- Ikeda, H. Testing the intermediate disturbance hypothesis on species diversity in herbaceous plant communities along a human trampling gradient using a 4-year experiment in an old-field. Ecol. Res. 2003, 18, 185–197. [Google Scholar] [CrossRef]
- Collins, S.L.; Glenn, S.M.; Gibson, D.J. Experimental analysis of intermediate disturbance and initial floristic composition: Decoupling cause and effect. Ecology 1995, 76, 486–492. [Google Scholar] [CrossRef]
- Matinsen, G.D.; Cushman, J.H.; Whitham, T.G. Impact of pocket gopher disturbance on plant species diversity in a short-grass prairie community. Oecologia 1990, 83, 132–138. [Google Scholar] [CrossRef]
- Tilman, D. Plant succession and gopher disturbance along an experimental gradient. Oecologia 1983, 60, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.D.; Tilman, D. Interactive effects of fertilization and disturbance on community structure and resource availability in an old-field plant community. Oecologia 1991, 88, 61–71. [Google Scholar] [CrossRef]
- Anderson, S.C.; Elsen, P.R.; Hughes, B.B.; Tonietto, R.K.; Bletz, M.C.; Gill, D.A.; Holgerson, M.A.; Kuebbing, S.E.; McDonough MacKenzie, C.; Meek, M.H.; et al. Trends in ecology and conservation over eight decades. Front. Ecol. Environ. 2021, 19, 274–282. [Google Scholar] [CrossRef]
- Wesenbeeck, B.K.; Caitlin, M.; Andrew, H.; Mark, D. Distinct habitat types arise along a continuous hydrodynamic stress gradient due to interplay of competition and facilitation. Mar. Ecol. Prog. Ser. 2007, 349, 63–71. [Google Scholar] [CrossRef] [Green Version]
- O’Bryan, K.E.; Prober, S.M.; Lunt, I.D.; Eldridge, D.J. Frequent fire promotes diversity and cover of biological soil crusts in a derived temperate grassland. Oecologia 2009, 159, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Burnett, M.R.; August, P.V.; Brown, J.H.; Killingbeck, K.T. The influence of geomorphological heterogeneity on biodiversity. Part I. A patch-scale perspective. Conserv. Biol. 1998, 12, 363–370. [Google Scholar] [CrossRef]
- Nichols, W.F.; Killingbeck, K.T.; August, P.V. The influence of geomorphological heterogeneity on biodiversity. Part II. A landscape perspective. Conserv. Biol. 1998, 12, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Honnay, O.; Piessens, K.; Van Landuy, W.; Hermy, M.; Gulinck, H. Satellite based land use and landscape complexity indices as predictors for regional plant species diversity. Landsc. Urban Plan. 2003, 63, 241–250. [Google Scholar] [CrossRef]
- Lawson, J.R.; Fryirs, K.A.; Lenz, T.; Leishman, M.R. Heterogeneous flows foster heterogeneous assemblages: Relationships between functional diversity and hydrological heterogeneity in riparian plant communities. Freshw. Biol. 2015, 60, 2208–2225. [Google Scholar] [CrossRef]
- Lawson, J.R.; Fryirs, K.A.; Leishman, M.R. Hydrological conditions explain variation in wood density in riparian plants of south-eastern Australia. J. Ecol. 2015, 103, 945–956. [Google Scholar] [CrossRef]
- Commonwealth of Australia. Commonwealth Environmental Water Office Water Management Plan 2021–22: Murrumbidgee River Water Plan; Commonwealth of Australia: Canberra, Australia, 2021.
- Shilpakar, R.L.; Thoms, M.C.; Reid, M.A. The resilience of a floodplain vegetation landscape. Landsc. Ecol. 2021, 36, 139–157. [Google Scholar] [CrossRef]
- Schumm, S.A. River Adjustment to Altered Hydrologic Regimen—Murrumbidgee River and Palaeochannels, Australia; U.S. Geological Survey Professional Paper 598; United States Government Printing Office: Washington, DC, USA, 1968; 65p. [Google Scholar]
- Stone, T. The late-Holocene origin of the modern Murray River course, southeastern Australia. Holocene 2006, 16, 771–778. [Google Scholar] [CrossRef]
- Vivian, L.M.; Godfree, R.C.; Colloff, M.J.; Mayence, C.E.; Marshall, D.J. Wetland plant growth under contrasting water regimes associated with river regulation and drought: Implications for environmental water management. Plant Ecol. 2014, 215, 997–1011. [Google Scholar] [CrossRef]
- NSW National Parks and Wildlife Service. Yanga National Park, Yanga State Conservation Area and Yanga Nature Reserve: Plan of Management; NSW National Parks and Wildlife Service: Sydney, Australia, 2020; p. 98.
- Crabb, P. Murray-Darling Basin Resources; Murray-Darling Basin Commission: Canberra, Australia, 1997. [Google Scholar]
- Kingsford, R.T. Review: Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecol. 2000, 25, 109–127. [Google Scholar] [CrossRef]
- Kingsford, R.; Rachael, T. Destruction of Wetlands and Waterbird Populations by Dams and Irrigation on the Murrumbidgee River in Arid Australia. Environ. Manag. 2004, 34, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 1989, 106, 110–127. [Google Scholar]
- Thoms, M.C. Floodplain–river ecosystems: Lateral connections and the implications of human interference. Geomorphology 2003, 56, 335–349. [Google Scholar] [CrossRef]
- Olde Venterink, H.; Vermaat, J.E.; Pronk, M.; Wiegman, F.; van der Lee, G.E.M.; van den Hoorn, M.W.; Higler, L.W.G.; Verhoeven, J.T.A. Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands. Appl. Veg. Sci. 2006, 9, 163–174. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ralph, T.J.; Sharma, P.; Mitrovic, S.M. Influence of historical inundation frequency on soil microbes (Cyanobacteria, Proteobacteria, Actinobacteria) in semi-arid floodplain wetlands. Mar. Freshw. Res. 2019, 71, 617–625. [Google Scholar] [CrossRef]
- Moilanen, A.; Nieminen, M. Simple connectivity measures in spatial ecology. Ecology 2002, 83, 1131–1145. [Google Scholar] [CrossRef]
- Ogden, R.; Reid, M.; Thoms, M. Soil fertility in a large dryland floodplain: Patterns, processes and the implications of water resource development. Catena 2007, 70, 114–126. [Google Scholar] [CrossRef]
- Rayburg, S.; Thoms, M.; Lenon, E. Unraveling the Physical Template of a Terminal Flood Plain-Wetland Sediment Storage System. In Sediment Dynamics and the Hydrology of Fluvial Systems, Proceedings of a Symposium held in Dundee, UK, July 2006; IAHS Publication: Wallingford, UK, 2006; Volume 306, pp. 304–313. [Google Scholar]
- Gell, P.A.; Reid, M.A.; Wilby, R.L. Management pathways for the floodplain wetlands of the southern Murray–Darling Basin: Lessons from history. River Res. Appl. 2019, 35, 1291–1301. [Google Scholar] [CrossRef]
- Lite, S.J.; Bagstad, K.J.; Stromberg, J.C. Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. J. Arid. Environ. 2005, 63, 785–813. [Google Scholar] [CrossRef]
- Arias, M.E.; Wittmann, F.; Parolin, P.; Murray-Hudson, M.; Cochrane, T.A. Interactions between flooding and upland disturbance drives species diversity in large river floodplains. Hydrobiologia 2018, 814, 5–17. [Google Scholar] [CrossRef]
- Fox, J.W. The intermediate disturbance hypothesis should be abandoned. Trends Ecol. Evol. 2013, 28, 86–92. [Google Scholar] [CrossRef]
HF | MF | LF | NF | |||||
---|---|---|---|---|---|---|---|---|
Variable | Mean | CV | Mean | CV | Mean | CV | Mean | CV |
Al | 32,543.7 | 0.07 | 26,576.2 | 0.16 | 34,960.5 | 0.28 | 17,174.1 | 0.28 |
As | 2.7 | 0.08 | 2.7 | 0.22 | 3.9 | 0.27 | 2.2 | 0.33 |
Ba | 127.7 | 0.13 | 107.7 | 0.14 | 101.7 | 0.11 | 100.9 | 0.14 |
Be | 1.3 | 0.05 | 1.0 | 0.15 | 1.3 | 0.25 | 0.6 | 0.25 |
Ca | 4118.8 | 0.23 | 3948.4 | 0.43 | 3854.2 | 0.40 | 11,509.4 | 1.26 |
Cd | 0.09 | 1.33 | 0.09 | 0.27 | 0.09 | 0.33 | 0.13 | 0.24 |
Co | 22.9 | 0.13 | 25.3 | 0.24 | 36.5 | 0.36 | 78.5 | 0.43 |
Cr | 35.1 | 0.06 | 27.6 | 0.15 | 35.3 | 0.23 | 17.7 | 0.19 |
Cu | 21.9 | 0.10 | 16.8 | 0.17 | 18.5 | 0.21 | 10.0 | 0.26 |
Fe | 22,801.5 | 0.05 | 18,859.0 | 0.17 | 26,190.6 | 0.26 | 13,039.0 | 0.24 |
K | 5317.2 | 0.08 | 6684.1 | 0.24 | 7869.9 | 0.21 | 5179.3 | 0.30 |
Li | 15.6 | 0.08 | 14.2 | 0.16 | 19.2 | 0.29 | 8.6 | 0.27 |
Mg | 3992.1 | 0.06 | 3673.3 | 0.23 | 5094.2 | 0.24 | 2930.7 | 0.37 |
Mn | 218.8 | 0.24 | 190.5 | 0.35 | 397.5 | 0.16 | 218.3 | 0.25 |
Na | 343.0 | 0.31 | 277.1 | 0.48 | 674.2 | 0.45 | 433.9 | 1.15 |
Ni | 22.0 | 0.06 | 17.5 | 0.16 | 21.3 | 0.24 | 10.2 | 0.26 |
P | 429.6 | 0.36 | 366.3 | 0.35 | 445.8 | 0.18 | 320.6 | 0.45 |
Pb | 15.6 | 0.98 | 11.2 | 0.12 | 12.5 | 0.16 | 6.8 | 0.96 |
S | 647.0 | 0.40 | 382.0 | 0.64 | 271.6 | 0.48 | 195.4 | 0.48 |
Se | 1.4 | 0.17 | 1.7 | 0.21 | 2.1 | 0.18 | 4.9 | 0.32 |
Si | 1361.7 | 0.61 | 2299.1 | 0.21 | 1296.5 | 0.58 | 2159.0 | 0.10 |
Sn | 1.2 | 1.72 | 0.9 | 1.13 | 0.5 | 0.33 | 2.0 | 4.79 |
Sr | 35.2 | 0.18 | 37.0 | 0.34 | 39.1 | 0.23 | 57.9 | 1.17 |
Ti | 88.7 | 0.41 | 165.7 | 0.11 | 179.6 | 0.22 | 94.0 | 0.19 |
V | 44.4 | 0.06 | 35.8 | 0.22 | 48.0 | 0.29 | 24.8 | 0.26 |
Zn | 57.8 | 0.33 | 42.5 | 0.15 | 49.8 | 0.17 | 25.4 | 0.26 |
EC | 425.7 | 0.73 | 397.1 | 0.94 | 410.3 | 0.76 | 315.1 | 0.81 |
pH | 6.0 | 0.13 | 6.4 | 0.13 | 6.7 | 0.10 | 6.9 | 0.13 |
%OM | 12.9 | 0.40 | 9.7 | 0.50 | 9.2 | 0.47 | 4.5 | 0.53 |
%Clay | 9.1 | 0.14 | 8.6 | 0.18 | 14.6 | 0.46 | 5.4 | 0.41 |
%Silt | 70.1 | 0.12 | 59.3 | 0.11 | 61.2 | 0.11 | 27.9 | 0.24 |
%Sand | 20.8 | 0.39 | 32.1 | 0.22 | 24.2 | 0.52 | 66.7 | 0.13 |
Soil Texture | Silt loam | Silt loam | Silt loam | Sandy loam |
Variable | HF v MF | HF v LF | HF v NF | MF v LF | MF v NF | LF v NF |
---|---|---|---|---|---|---|
Al | 0.000 | 0.906 | 0.000 | 0.000 | 0.000 | 0.000 |
As | 0.231 | 0.000 | 0.000 | 0.000 | 0.003 | 0.000 |
Ba | 0.000 | 0.000 | 0.000 | 0.198 | 0.071 | 0.647 |
Be | 0.000 | 0.261 | 0.000 | 0.001 | 0.000 | 0.000 |
Ca | 0.110 | 0.107 | 0.000 | 0.894 | 0.000 | 0.000 |
Co | 0.425 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Cd | 0.055 | 0.200 | 0.000 | 0.936 | 0.000 | 0.000 |
Cr | 0.000 | 0.690 | 0.000 | 0.000 | 0.000 | 0.000 |
Cu | 0.000 | 0.002 | 0.000 | 0.104 | 0.000 | 0.000 |
Fe | 0.000 | 0.249 | 0.000 | 0.000 | 0.000 | 0.000 |
K | 0.000 | 0.000 | 0.779 | 0.005 | 0.002 | 0.000 |
Li | 0.008 | 0.031 | 0.000 | 0.000 | 0.000 | 0.000 |
Mg | 0.084 | 0.000 | 0.000 | 0.000 | 0.007 | 0.000 |
Mn | 0.017 | 0.000 | 0.894 | 0.000 | 0.049 | 0.000 |
Na | 0.003 | 0.000 | 0.043 | 0.000 | 0.301 | 0.000 |
Ni | 0.000 | 0.214 | 0.000 | 0.005 | 0.000 | 0.000 |
P | 0.074 | 0.231 | 0.005 | 0.008 | 0.121 | 0.000 |
Pb | 0.000 | 0.615 | 0.000 | 0.007 | 0.000 | 0.000 |
S | 0.000 | 0.000 | 0.000 | 0.139 | 0.001 | 0.023 |
Se | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 |
Si | 0.000 | 0.756 | 0.001 | 0.000 | 0.003 | 0.000 |
Sn | 0.049 | 0.000 | 0.000 | 0.139 | 0.000 | 0.000 |
Sr | 0.848 | 0.092 | 0.027 | 0.294 | 0.029 | 0.027 |
Ti | 0.000 | 0.000 | 0.048 | 0.098 | 0.000 | 0.000 |
V | 0.000 | 0.688 | 0.000 | 0.000 | 0.000 | 0.000 |
Zn | 0.000 | 0.012 | 0.000 | 0.002 | 0.000 | 0.000 |
pH | 0.026 | 0.001 | 0.000 | 0.200 | 0.011 | 0.108 |
EC | 0.341 | 0.341 | 0.341 | 0.536 | 0.759 | 0.341 |
%OM | 0.011 | 0.002 | 0.000 | 0.536 | 0.000 | 0.000 |
%Sand | 0.000 | 0.026 | 0.000 | 0.026 | 0.000 | 0.000 |
%Silt | 0.000 | 0.000 | 0.000 | 0.200 | 0.000 | 0.000 |
%Clay | 0.200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Variable | HF v MF | HF v LF | HF v NF | MF v LF | MF v NF | LF v NF |
---|---|---|---|---|---|---|
Al | <0.0001 | <0.0008 | <0.0001 | <0.0001 | <0.0004 | 0.4192 |
As | <0.0001 | <0.0001 | <0.0001 | 0.0038 | 0.0470 | 0.3396 |
Ba | 0.0300 | 0.8232 | 0.4212 | 0.0506 | 0.1657 | 0.5607 |
Be | <0.0001 | <0.0001 | <0.0001 | 0.0004 | <0.0001 | 0.6736 |
Ca | 0.0104 | 0.0027 | <0.0001 | 0.6387 | <0.0001 | <0.0001 |
Cd | <0.0001 | <0.0001 | <0.0001 | 0.3264 | 0.7518 | 0.1956 |
Co | <0.0001 | 0.0002 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Cr | <0.0001 | 0.0007 | 0.0128 | 0.0003 | <0.0001 | 0.3432 |
Cu | 0.0072 | 0.2927 | 0.5179 | 0.0942 | 0.0385 | 0.6831 |
Fe | <0.0001 | <0.0001 | <0.0001 | 0.0002 | <0.0001 | 0.8734 |
K | <0.0001 | <0.0001 | <0.0001 | 0.9115 | 0.7834 | 0.8699 |
Li | <0.0001 | 0.0007 | 0.0006 | <0.0001 | <0.0001 | 0.9612 |
Mg | <0.0001 | <0.0001 | <0.0001 | 0.0482 | 0.5994 | 0.1434 |
Mn | 0.3279 | 0.2052 | 0.8218 | 0.7705 | 0.4505 | 0.2963 |
Na | <0.0001 | 0.2089 | <0.0001 | <0.0001 | 0.0083 | <0.0001 |
Ni | <0.0001 | 0.0002 | 0.0008 | 0.0027 | 0.0008 | 0.6946 |
P | 0.0010 | 0.2918 | 0.7261 | 0.0215 | 0.0030 | 0.4801 |
Pb | <0.0001 | <0.0001 | <0.0001 | 0.0430 | <0.0001 | <0.0001 |
S | 0.0004 | 0.7409 | <0.0001 | 0.0011 | 0.0892 | <0.0001 |
Se | 0.0168 | 0.0223 | <0.0001 | 0.9119 | <0.0001 | <0.0001 |
Si | 0.5524 | 0.0053 | <0.0001 | 0.0262 | <0.0001 | <0.0001 |
Sn | <0.0001 | 0.0002 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Sr | 0.0588 | 0.0003 | <0.0001 | 0.0671 | <0.0001 | <0.0001 |
Ti | 0.7375 | 0.0002 | 0.0002 | <0.0001 | <0.0001 | 0.9839 |
V | <0.0001 | <0.0001 | <0.0001 | 0.0032 | <0.0001 | 0.2814 |
Zn | <0.0001 | <0.0001 | <0.0001 | 0.1792 | 0.1627 | 0.9572 |
pH | 0.5278 | 0.6917 | 0.3665 | 0.3050 | 0.1268 | 0.6114 |
EC | 0.9540 | 0.3190 | 0.3003 | 0.3476 | 0.2744 | 0.0439 |
%OM | 0.3688 | 0.8022 | <0.0001 | 0.5160 | 0.0023 | 0.0003 |
%Sand | 0.0253 | 0.4082 | 0.7362 | 0.0025 | 0.0558 | 0.2456 |
%Silt | 0.3277 | 0.1760 | 0.3076 | 0.7049 | 0.9665 | 0.7363 |
%Clay | <0.0001 | 0.3473 | 0.0055 | <0.0001 | <0.0001 | 0.0606 |
Anosim | Multivariate | ||||
---|---|---|---|---|---|
Flood Frequency | HF | MF | LF | NF | Dispersion |
HF | 0.740 | ||||
MF | 0.581 | 0.915 | |||
LF | 0.552 | 0.323 | 1.258 | ||
NF | 0.947 | 0.694 | 0.768 | 1.094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rayburg, S.; Neave, M.; Thompson-Laing, J. The Impact of Flood Frequency on the Heterogeneity of Floodplain Surface Soil Properties. Soil Syst. 2023, 7, 63. https://doi.org/10.3390/soilsystems7030063
Rayburg S, Neave M, Thompson-Laing J. The Impact of Flood Frequency on the Heterogeneity of Floodplain Surface Soil Properties. Soil Systems. 2023; 7(3):63. https://doi.org/10.3390/soilsystems7030063
Chicago/Turabian StyleRayburg, Scott, Melissa Neave, and Justin Thompson-Laing. 2023. "The Impact of Flood Frequency on the Heterogeneity of Floodplain Surface Soil Properties" Soil Systems 7, no. 3: 63. https://doi.org/10.3390/soilsystems7030063
APA StyleRayburg, S., Neave, M., & Thompson-Laing, J. (2023). The Impact of Flood Frequency on the Heterogeneity of Floodplain Surface Soil Properties. Soil Systems, 7(3), 63. https://doi.org/10.3390/soilsystems7030063