Micromorphological Characteristics of Fallow, Pyrogenic, Arable Soils of Central Part of Yakutia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Strategy
2.2. The Temperature Regime of the Soil
2.3. Laboratory Methods
3. Results and Discussion
3.1. Transformation of Soils as a Result of Their Transition to a Fallow State
3.2. Micromorphological Structure of Fallow Soils
3.3. Micromorphological Structure of Pyrogenic Soil
3.4. Microstructure of Anthropogenically Transformed Soils Used for Pastures and Hayfields
3.5. Micromorphology of Soils of Arable Lands
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Romanovskaya, A.A. Organic carbon in long-fallow lands of Russia. Eurasian Soil Sci. 2006, 39, 44–52. [Google Scholar] [CrossRef]
- Zhidkin, A.; Fomicheva, D.; Ivanova, N.; Dostál, T.; Yurova, A.; Komissarov, M.; Krása, J. A detailed reconstruction of changes in the factors and parameters of soil erosion over the past 250 years in the forest zone of European Russia (Moscow region). Int. Soil Water Conserv. Res. 2022, 10, 149–160. [Google Scholar] [CrossRef]
- Orlova, O. Struggle for the ground: Restoration of laylands. Karelian Sci. J. 2015, 2, 130–133. [Google Scholar]
- Nekrich, A.S.; Lyuri, D.I. Changes of the Dynamic of Agrarian Lands of Russia in 1990–2014. Izv. Ross. Akad. Nauk. Seriya Geogr. 2019, 3, 64–77. [Google Scholar] [CrossRef]
- Mikhailova, A. Unplowed Field: Is It Worth Returning Fallow Lands to Circulation? Available online: https://www.agroinvestor.ru/analytics/news/34684-nepakhanoe-pole-stoit-li-vozvrashchat-v-oborot-zalezhnye-zemli/ (accessed on 2 June 2022).
- Ivanov, A.L.; Savin, I.Y.; Stolbovoy, V.S.; Dukhanin, Y.A.; Kozlov, D.N.; Bamatov, I.M. Global climate and soil cover—Implications for land use in Russia. Dokuchaev Soil Bull. 2021, 107, 5–32. [Google Scholar] [CrossRef]
- Ioffe, G.; Nefedova, T.; de Beurs, K. Land Abandonment in Russia. Eurasian Geogr. Econ. 2012, 53, 527–549. [Google Scholar] [CrossRef]
- Polyakov, V.; Nizamutdinov, T.; Abakumov, E.; Morgun, E. Soil Diversity and Key Functional Characteristics of Yakutsk City: Largest Urbanized Cryogenic World’s Ecosystem. Energies 2021, 14, 3819. [Google Scholar] [CrossRef]
- Abakumov, E.; Morgun, E.; Pechkin, A.; Polyakov, V. Abandoned agricultural soils from the central part of the Yamal region of Russia: Morphology, diversity, and chemical properties. Open Agric. 2020, 5, 94–106. [Google Scholar] [CrossRef]
- Savin, I.Y.; Stolbovoy, V.S.; Avetyan, S.A.; Shishkonakova, E.A. Map of plowed soils of Russia. Dokuchaev Soil Bull. 2018, 94, 38–56. [Google Scholar] [CrossRef]
- Stolbovoy, V.S.; Petrosyan, R.D.; Shilov, P.M.; Lukianov, S.N. Increasing the efficiency of investments on survey of abundant land for their return to agricultural use. Dokuchaev Soil Bull. 2021, 108, 83–103. [Google Scholar] [CrossRef]
- Nizamutdinov, T.; Abakumov, E.; Morgun, E.; Loktev, R.; Kolesnikov, R. Agrochemical and Pollution Status of Urbanized Agricultural Soils in the Central Part of Yamal Region. Energies 2021, 14, 4080. [Google Scholar] [CrossRef]
- Lyuri, D.I.; Nekrich, A.S.; Karelin, D.V. Cropland dynamics in Russia in 1990–2015 and soil emission of carbon dioxide. Vestn. Mosk. Univ. Seriya 5 Geogr. 2018, 3, 70–76. [Google Scholar]
- Desyatkin, R.V.; Desyatkin, A.R.; Fedorov, P.P. Temperature regime of the forest soils, Central Yakutia. Earth’s Cryosphere 2012, 16, 70–78. [Google Scholar]
- Desyatkin, R.; Filippov, N.; Desyatkin, A.; Konyushkov, D.; Goryachkin, S. Degradation of Arable Soils in Central Yakutia: Negative Consequences of Global Warming for Yedoma Landscapes. Front. Earth Sci. 2021, 9, 795. [Google Scholar] [CrossRef]
- Kaverin, D.A.; Pastukhov, A.V.; Panjukov, A.N. Soil Temperature Regime in Postagrogenic Ecosystems Under the Expansion of Self-Restoring Succession of Tundra Vegetation (European Northeast of Russia). Earth’s Cryosphere 2019, 23, 58–66. [Google Scholar]
- Stolbovaya, V.S.; Savin, I.Y. Can Russian agricultural soils affect climate change? Nat. Russ. 2018, 1, 1. [Google Scholar]
- Morgun, E.N.; Abakumov, E.V. Agricultural research and crop yields in the Yamal-Nenets Autonomous District: Retrospective analysis (1932–2019). Nauchnyy Vestn. Yamalo-Nenetskogo Avton. Okruga 2019, 3, 4–9. [Google Scholar]
- Nikitenko, M.E.; Trofimova, I.B. Food security in the Arctic zone of the Russian Federation. Soc. Politics Econ. Law 2016, 9, 1–5. [Google Scholar]
- Ivanov, V.A. Features of ensuring food security of the population of the North and the Russian Arctic. Arkt. Ecol. Econ. 2021, 11, 596–606. [Google Scholar]
- Alekseeva, L. The formation of Arctic agriculture in the USSR (Yamal). Bull. Nizhnevartovsk State Univ. 2017, 2, 3–10. [Google Scholar]
- Archegova, I.B.; Panyukov, A.N.; Andrianov, V.A. Opportunities and economic feasibility of agriculture in the tundra. North Mark. Form. Econ. 2013, 1, 12–15. [Google Scholar]
- Panyukov, A.N. Restorative succession on deposits in the conditions of the Eastern European tundra. Intern. Mag. Appl. Funds Res. 2013, 8, 235–238. [Google Scholar]
- Laruelle, M. The three waves of Arctic urbanisation. Drivers, evolutions, prospects. Polar Rec. 2019, 55, 1–12. [Google Scholar] [CrossRef]
- Konistsev, V.; Rogov, V. Micromorphology of cryogenic soils. Eurasian Soil Sci. 1977, 2, 119–125. [Google Scholar]
- Makeev, O. The Soil Cryology; Russian Academy of Science: Moscow, Russia, 2019; p. 464. [Google Scholar]
- Smith, C.A.S.; Fox, C.A.; Hargrave, A.E. Development of soil structure in some turbic cryosols in the Canadian low Arctic. Can. J. Soil Sci. 1991, 71, 11–29. [Google Scholar] [CrossRef]
- Szymański, W.; Skiba, M.; Wojtuń, B.; Drewnik, M. Soil properties, micromorphology, and mineralogy of Cryosols from sorted and unsorted patterned grounds in the Hornsund area, SW Spitsbergen. Geoderma 2015, 253, 1–11. [Google Scholar] [CrossRef]
- Abakumov, E.V.; Gagarina, E.I.; Sapega, V.F.; Vlasov, D.Y. Micromorphological features of the fine earth and skeletal fractions of soils of West Antarctica in the areas of Russian Antarctic stations. Eurasian Soil Sci. 2013, 46, 1219–1229. [Google Scholar] [CrossRef]
- Ilieva, R.; Vergilov, Z.; Groseve, M. Micromorphology of organic matter in the Antarctic soils. Bulg. J. Ecol. Sci. 2003, 2, 52–54. [Google Scholar]
- Van Vliet-Lanoë, B.; Fox, C.A.; Gubin, S.V. Micromorphology of Cryosols. In Cryosols: Permafrost-Affected Soils; Kimble, J.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 365–390. [Google Scholar] [CrossRef]
- Gerasimova, M.I.; Savitskaya, N.V. Micromorphological Interpretation of Natural and Anthropogenic Evolution of Soils in Bykovo Lacustrine-Alluvial Section of the Moskva River Floodplain. Eurasian Soil Sci. 2020, 53, 950–959. [Google Scholar] [CrossRef]
- Gerasimova, M.; Kovda, I.; Lebedeva, M.; Tursina, T. Micromorphological Terms: The State of the Art in Soil Microfabric Research. Eurasian Soil Sci. 2011, 44, 739–752. [Google Scholar] [CrossRef]
- Gerasimova, M.; Lebedeva, M. Contribution of Micromorphology to Classification of Aridic Soils. In New Trends Soil Micromorphol.; Springer Science & Business Media: Berlin, Germany, 2008; pp. 151–162. [Google Scholar] [CrossRef]
- Stoops, G. Mineral and Organic Constituents. In Guidelines for Analysis and Description of Soil and Regolith Thin Sections; Wiley: Hoboken, NJ, USA, 2020; pp. 87–126. [Google Scholar] [CrossRef]
- Elovskaya, L.G. Soils of Arable Farming Regions in Yakutia and the Ways to Improve Their Fertility; Yakutsk Knizhn. Izd.: Yakutsk, Russia, 1964. [Google Scholar]
- Elovskaya, L.G.; Konorovskii, A.K. Regionalization and Reclamation of Permafrost-Affected Soils of Yakutia; Nauka: Novosibirsk, Russia, 1978. [Google Scholar]
- Polyakov, V.; Orlova, K.; Abakumov, E. Soils of the Lena River Delta, Yakutia, Russia: Diversity, Characteristics and Humic Acids Molecular Composition. Polarforschung 2018, 88, 135–150. [Google Scholar]
- Arnfield, J.; Köppen Climate Classification. Encyclopedia Britannica. 2020. Available online: https://www.britannica.com/science/Koppen-climate-classification (accessed on 1 August 2022).
- Okonesnikova, M.V.; Ivanova, A.Z. Soils and technogenic surface formations of an industrial base of Yakutsk city. Vestn. North-East. Fed. Univ. 2020, 6, 5–19. [Google Scholar] [CrossRef]
- Polyakov, V.; Abakumov, E. Micromorphological Characteristic of Different-Aged Cryosols from the East Part of Lena River Delta, Siberia, Russia. Geosciences 2021, 11, 118. [Google Scholar] [CrossRef]
- Jahn, R.; Blume, H.P.; Spaargaren, O.; Schad, P. Guidelines for Soil Description; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- WRB, F. IUSS Working Group WRB World Reference Base for Soil Resources 2014, Update 2015; FAO: Rome, Italy, 2015; p. 195. [Google Scholar]
- On the State of Protection of the Population and Territories of the Russian Federation from Natural and Man-Made Emergencies in 2021; Ministry of the Russian Federation for Civil Defense; Academy of Civil Protection EMERCOM of Russia: Moscow, Russia, 2022; p. 250.
- Abakumov, E.; Maksimova, E.; Tsibart, A. Assessment of postfire soils degradation dynamics: Stability and molecular composition of humic acids with use of spectroscopy methods. Land Degrad. Dev. 2018, 29, 2092–2101. [Google Scholar] [CrossRef]
- Sharrow, S. Soil compaction by grazing livestock in silvopastures as evidenced by changes in soil physical properties. Agrofor. Syst. 2007, 71, 215–223. [Google Scholar] [CrossRef]
- Barrios, E.; Cobo, J.; Rao, I.; Thomas, R.; Amezquita, E.; Jimenez, J.; Rondon, M. Fallow management for soil fertility recovery in tropical Andean agroecosystems in Colombia. Agric. Ecosyst. Environ. 2005, 110, 29–42. [Google Scholar] [CrossRef]
- Vliet-Lanoë, B.V. 6—Frost Action. In Interpretation of Micromorphological Features of Soils and Regoliths; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 81–108. [Google Scholar] [CrossRef]
Soil ID | Horizon * | Depth, cm | Description | Location | Coordinates | Soil Name ** |
---|---|---|---|---|---|---|
Y1 | Ah | 0–6 | Horizon with accumulation of organic matter | Fallow lands, which have begun to be overgrown by Betula platyphylla | N 62°06′07.6” E 129°16′39.9” | Plaggic Anthrosol *** (arenic) |
Abhp | 6–30 | Buried ploughing horizon with accumulation of organic matter, inclusion of coal | ||||
Y3 | Ah | 4–15 | Horizon with accumulation of organic matter | Background forest with domination of Larix dahurica. | N 62°05′27.7” E 129°15′19.6” | Calcic Cryosol (arenic) |
Y5 | A/Bpyr | 0–50 | Streak of organic matter after fire | Location of fire in 2021. Background forest with domination of Larix dahurica and Betula platyphylla. | N 62°12′47.5” E 127°41′40.8” | Calcic Cryosol (stagnic) |
Ah | 0–15 | Horizon with accumulation of organic matter, pyrogenic, inclusion of coal | ||||
Btg | 15–70 | Horizon with stagnic conditions and illuvial concentration | ||||
Y6 | Ahd1 | 0–6 | Dense horizon with accumulation of organic matter | Pasture for cattle, Magara village. | N 62°08′51.2” E 128°01′44.5” | Plaggic Anthrosol (arenic) |
Ahd1 | 6–10 | Dense horizon with accumulation of organic matter, darker than previous | ||||
Y7 | Ahp | 0–24 | Ploughing horizon with accumulation of organic matter | Former arable land, today it is used as a hayfield. | N 62°08′11.5” E 128°11′41.5” | Plaggic Anthrosol (arenic) |
Y9 | Ah | 5–13 | Horizon with accumulation of organic matter | Background forest with domination of Larix dahurica. | N 62°07′33.2” E 128°11′38.3” | Calcic Cryosol (arenic) |
Y10 | Ahp | 0–26 | Ploughing horizon with accumulation of organic matter | Modern arable land. Experimental plot of Tabaga Agroschool. | N 62°15′57.9” E 129°49′47.6” | Plaggic Anthrosol (arenic) |
A/Bp | 26–55 | Transit ploughing horizon | ||||
Y11 | Ah | 0–6 | Horizon with accumulation | Background forest with domination of Betula platyphylla. | N 62°41′06.1” E 129°22′46.4” | Calcic Cryosol (arenic) |
Y12 | Ahpz | 0–15 | Ploughing horizon with accumulation of organic matter and salts | Arable land, saline area. No vegetation. | N 62°41′06.1” E 129°22′46.4” | Plaggic Anthrosol (salic) |
Btz | 45–70 | Horizon with illuvial concentration and salts | ||||
Y13 | Ahp | 0–25 | Ploughing horizon with accumulation of organic matter | Modern arable land with oats. | N 61°41′04.9” E 129°22′50.9” | Plaggic Anthrosol (arenic) |
Bt | 25–40 | Horizon with illuvial concentration |
Soil ID | Horizon | Depth, cm | Structure | Roots | Consistence | Moisture |
---|---|---|---|---|---|---|
Y1 | Ah | 0–6 | Massive | Many | Hard | Dry |
Abhp | 6–30 | Massive | Many | Friable | Moist | |
Y3 | Ah | 4–15 | Massive | Many | Friable | Dry |
Y5 | A/Bpyr | 0–50 | Massive | Few | Friable | Moist |
Ah | 0–15 | Massive | Few | Friable | Moist | |
Btg | 15–70 | Massive | Absence | Friable | Moist | |
Y6 | Ahd1 | 0–6 | Massive | Few | Hard | Dry |
Ahd2 | 6–10 | Massive | Few | Hard | Dry | |
Y7 | Ahp | 0–24 | Massive | Few | Hard | Moist |
Y9 | Ah | 5–13 | Massive | Few | Hard | Moist |
Y10 | Ahp | 0–26 | Massive | Many | Friable | Dry |
A/Bp | 26–55 | Massive | Few | Friable | Moist | |
Y11 | Ah | 0–6 | Massive | Many | Friable | Dry |
Y12 | Ahpz | 0–15 | Massive | Absence | Friable | Dry |
Btz | 45–70 | Massive | Absence | Friable | Moist | |
Y13 | Ahp | 0–25 | Massive | Few | Friable | Dry |
Bt | 25–40 | Massive | Few | Friable | Dry |
Status or Land Use | Profiles | Horizons | Micromorphological Features | |||||
---|---|---|---|---|---|---|---|---|
Humus Streak | Coprolite | Ash | Organic Fine Materials | Pedofeatures | Cracking of Quartz Granules | |||
Zonal (natural) | Y3 | Ah | − | − | − | + | − | − |
Y9 | Ah | − | − | − | + | − | − | |
Y11 | Ah | − | + | − | + | − | − | |
Arable | Y10 | Ahp | − | − | − | − | + | + |
A/Bp | − | − | − | − | + | + | ||
Y12 | Ahpz | − | + | − | − | + | − | |
Btz | + | − | − | − | + | + | ||
Y13 | Ahp | − | − | − | − | + | + | |
Bt | − | − | − | − | + | + | ||
Meadow | Y7 | Ahp | − | − | − | − | + | + |
Pasture | Y6 | Ahd1 | − | + | − | − | + | − |
Ahd2 | − | + | − | − | + | − | ||
Fallow | Y1 | Ah | − | − | + | + | − | + |
Abhp | − | − | + | + | − | + | ||
Pyrogenic | Y5 | Ah | − | − | + | + | − | + |
Btg | + | − | + | + | − | + | ||
A/Bpyr | + | − | + | + | − | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyakov, V.; Petrov, A.; Abakumov, E. Micromorphological Characteristics of Fallow, Pyrogenic, Arable Soils of Central Part of Yakutia. Soil Syst. 2022, 6, 68. https://doi.org/10.3390/soilsystems6030068
Polyakov V, Petrov A, Abakumov E. Micromorphological Characteristics of Fallow, Pyrogenic, Arable Soils of Central Part of Yakutia. Soil Systems. 2022; 6(3):68. https://doi.org/10.3390/soilsystems6030068
Chicago/Turabian StylePolyakov, Vyacheslav, Alexey Petrov, and Evgeny Abakumov. 2022. "Micromorphological Characteristics of Fallow, Pyrogenic, Arable Soils of Central Part of Yakutia" Soil Systems 6, no. 3: 68. https://doi.org/10.3390/soilsystems6030068
APA StylePolyakov, V., Petrov, A., & Abakumov, E. (2022). Micromorphological Characteristics of Fallow, Pyrogenic, Arable Soils of Central Part of Yakutia. Soil Systems, 6(3), 68. https://doi.org/10.3390/soilsystems6030068