Organic Carbon Speciation in Urban Anthrosols—The Legacy of Historical Waste Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling
2.3. Soil Chemical and Physical Analysis
2.4. Magnetic Susceptibility and Charcoal Content Analysis
2.5. Site Chronological Profiling by Portable OSL Reader
2.6. Solid-State 13C-CPMAS NMR Spectroscopy
3. Results and Discussion
3.1. Soil Physical and Chemical Analysis
3.2. Site Chronology
3.3. Soil Organic Matter Speciation: 13C-CPMAS NMR Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bridges, E.M. Interaction of soil and mankind in Britain. J. Soil Sci. 1978, 29, 125–139. [Google Scholar] [CrossRef]
- Grieve, I.C. Human impacts on soil properties and their implications for the sensitivity of soil systems in Scotland. Catena 2001, 42, 361–374. [Google Scholar] [CrossRef]
- Price, S.J.; Ford, J.R.; Cooper, A.H.; Neal, C. Humans as major geological and geomorphological agents in the Anthropocene: The significance of artificial ground in Great Britain. Phil. Trans. R. Soc. A. 2011, 369, 1056–1084. [Google Scholar] [CrossRef] [PubMed]
- Vasenev, V.; Kuzykov, Y. Urban soils as hot spots of anthropogenic carbon accumulation: Review of stocks, mechanisms and driving factors. Land Degrad. Dev. 2018, 29, 1607–1622. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE. 2011, 6, e23777. [Google Scholar] [CrossRef]
- O’Riordan, R.; Davies, J.; Steven, C.; Quinton, J.N.; Boyko, C. The ecosystem services of urban soils: A review. Geoderma 2021, 395, 115076. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Day, S.D.; Brown, S.; Schwarz, K.; Shaw, R.E.; Szlavecz, K.; Trammell, T.L.E.; Yesiloni, I.D. Urban Soils. In Forest and Rangeland Soils of the United States Under Changing Conditions; Pouyat, R.V., Page-Dumroese, D.S., Patel-Weynand, T., Geiser, L.H., Eds.; Springer: Cham, Switzerland, 2020; pp. 127–143. [Google Scholar] [CrossRef]
- Lal, R.; Stewart, B.A. Urban Soils: Advances in Soil Science; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Liu, R.; Wang, M.; Chen, W. The influence of urbanization on organic carbon sequestration and cycling in soils of Beijing. Landsc. Urban Plan. 2018, 169, 241–249. [Google Scholar] [CrossRef]
- Leguédois, S.; Séré, G.; Auclerc, A.; Cortet, J.; Huot, H.; Ouvrard, S.; Watteau, F.; Schwartz, C.; Morel, J.L. Modelling pedogenesis of Technosols. Geoderma 2016, 262, 199–212. [Google Scholar] [CrossRef]
- Esiana, B.O.I.; Coates, C.J.; Adderley, W.P.; Berns, A.E.; Bol, R. Phenoloxidase activity and organic carbon dynamics in historic Anthrosols in Scotland, UK. PLoS ONE 2021, 16, e0259205. [Google Scholar] [CrossRef]
- Davidson, D.A.; Dercon, G.; Stewart, M.; Watson, F. The legacy of past urban waste disposal on local soils. J. Archaeol. Sci. 2006, 33, 778–783. [Google Scholar] [CrossRef]
- Oram, R.D. Waste management and peri-urban agriculture in the early modern Scottish burgh. Agric. Hist. Rev. 2011, 59, 1–17. [Google Scholar]
- Sheail, J. Town wastes, agricultural sustainability and Victorian sewage. Urban Hist. 1996, 23, 189–210. [Google Scholar] [CrossRef]
- Oram, R.; Adderley, W.P. Lordship and Environmental Change in Central Highland Scotland c.1300–c.1400. J. North Atl. 2008, 1, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Golding, K.A.; Davidson, D.A.; Wilson, C.A. Antiquated rubbish: The use of urban waste as soil fertiliser in and near to historic Scottish Burghs. Antiquity 2010, 84, 1–6. [Google Scholar]
- Macdonald, A. The Agriculture of the Counties of Elgin and Nairn. Trans. Highl. Agric. Soc. Scotl. 1884, 16, 1–123. [Google Scholar]
- Keene, D.J. Rubbish in Medieval Towns. In Environmental Archaeology in the Urban Context; Hall, A.R., Kenward, H.K., Eds.; Council of British Archaeology Research: Oxford, UK, 1982; Volume 43, pp. 26–30. [Google Scholar]
- Hall, D.W. 134 and 120–124 Market Street. In Excavations in St. Andrews 1980–89: A Decade of Archaeology in a Scottish Burgh—Monograph 1; Rains, M.J., Hall, D.W., Eds.; Tayside and Fife Archaeological Committee: Glenrothes, Scotland, 1997; pp. 26–30. [Google Scholar]
- Carter, S. A reassessment of the origins of the St. Andrews ‘garden soil’. Tayside Fife Archaeol. J. 2001, 7, 87–97. [Google Scholar]
- Herbert, L. Centenary History of Waste and Waste Managers in London and South East England. The Chartered Institute of Wastes Management. 2009. Available online: http://www.ciwm.co.uk/ciwm/about-us/ciwm-history/ciwm/about/ciwm-history.aspx?hkey=b626e07d-e626-4886-ac7f-669dfaeb1551 (accessed on 12 April 2018).
- Brothwell, D. Linking Urban Man with His Urban Environment. In Environmental Archaeology in the Urban Context; Hall, A.R., Kenward, H.K., Eds.; Council of British Archaeology Research: Oxford, UK, 1982; Volume 43, pp. 126–129. [Google Scholar]
- Pape, J.C. Plaggen soils in the Netherlands. Geoderma 1970, 4, 229–255. [Google Scholar] [CrossRef]
- Hubbe, A.; Chertov, O.; Kalinina, O.; Nadporozhskaya, M.; Tolksdorf-Lienemann, E.; Giani, L. Evidence of plaggen soils in European North Russia (Arkhangelsk region). J. Plant Nutr. Soil Sci. 2007, 170, 329–334. [Google Scholar] [CrossRef]
- Woods, W.I.; Denevan, W.M. Amazonian Dark Earths: The first century of reports. In Amazonian Dark Earths: Wim Sombroek’s Vision; Woods, W.I., Teixeira, W.G., Lehmann, J., Steiner, C., WinklerPrins, A.M.G.A., Rebellato, L., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 1–14. [Google Scholar]
- Balee, W. Amazonian Dark Earths. J. Soc. Anthropol. Lowl. S. Am. 2010, 8, 3. [Google Scholar]
- Schmid, E.M.; Skjemstad, J.O.; Glaser, B.; Knicker, H.; Kögel-Knabner, I. Detection of charred organic matter in soils from a Neolithic settlement in Southern Bavaria, Germany. Geoderma 2002, 107, 71–91. [Google Scholar] [CrossRef]
- Solomon, D.; Lehmann, J.; Thies, J.; Schӓfer, T.; Liang, B.; Kinyangi, J.; Neves, E.; Petersen, J.; Luizao, F.; Skjemstad, J. Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian Dark Earth. Geochim. Cosmochim. Acta 2007, 71, 2285–2298. [Google Scholar] [CrossRef]
- Wolf, M.; Lehndorff, E.; Wiesenberg, G.L.B.; Stockhausen, M.; Schwark, L.; Amelung, W. Towards reconstruction of past fire regimes from geochemical analysis of charcoal. Org. Geochem. 2013, 55, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Martin, M.; Gonzalez-Vila, F.J.; Knicker, H. Distribution of black carbon and black nitrogen in physical soil fractions from soils seven years after an intense forest fire and their role as C sink. Sci. Total Environ. 2018, 637, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Knicker, H. Pyrogenic organic matter in soil: Its origin and occurrence, its chemistry and survival in soil environments. Quart. Int. 2011, 243, 251–263. [Google Scholar] [CrossRef]
- Meredith, W.; Ascough, P.L.; Bird, M.I.; Large, D.J.; Snape, C.E.; Sun, Y.; Tilston, E.L. Assessment of hydropyrolysis as a method for the quantification of black carbon using standard reference materials. Geochim. Cosmochim. Acta 2012, 97, 131–147. [Google Scholar] [CrossRef] [Green Version]
- De la Rosa, J.M.; Rosado, M.; Paneque, M.; Miller, A.Z.; Knicker, H. Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils. Sci. Total Environ. 2018, 613, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.W.I.; Skjemstad, J.O.; Gehrt, E.; Kögel-Knabner, I. Charred organic carbon in German chernozemic soils. Eur. J. Soil Sci. 1999, 50, 351–365. [Google Scholar] [CrossRef]
- Novotny, E.H.; Bonagamba, T.J.; De Azevedo, E.R.; Hayes, M.H.B. Solid-state 13C nuclear magnetic resonance characterisation of humic acids extracted from Amazonian dark earths (Terra Preta De Indio). In Amazonian Dark Earths: Wim Sombroek’s Vision; Woods, W.I., Teixeira, W.G., Lehmann, J., Steiner, C., WinklerPrins, A.M.G.A., Rebellato, L., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 373–391. [Google Scholar]
- Downie, A.E.; Zwieten, L.V.; Smernik, R.J.; Morris, S.; Munroe, P.R. Terra Preta Australis: Reassessing the carbon storage capacity of temperate soils. Agric. Ecosyst. Environ. 2011, 140, 137–147. [Google Scholar] [CrossRef]
- Capra, G.F.; Ganga, A.; Grilli, E.; Vacca, S.; Buodonno, A. A review on anthropogenic soils from a worldwide perspective. J. Soils Sediments 2015, 15, 1602–1618. [Google Scholar] [CrossRef]
- Brown, R.B.; Huddleston, J.H.; Anderson, J.L. Managing Soils in an Urban Environment; ASA—CSSA—SSSA: Madison, WI, USA, 2000. [Google Scholar]
- Norra, S.; Stüben, D. Urban Soils. J. Soils Sediments 2003, 3, 230–233. [Google Scholar] [CrossRef]
- Brooks, N.P.; Whittington, G. Planning the Growth in the Medieval Scottish Burgh: The example of St Andrews. Trans. Inst. Br. Geogr. New Ser. 1977, 2, 278–295. [Google Scholar] [CrossRef]
- Met Office. UK Climate Average: Leuchars 1981–2010 Averages. Available online: http://www.metoffice.gov.uk/public/weather/climate/gfjbwz5gy (accessed on 29 January 2014).
- National Soil Map of Scotland. Scotland’s Soils. Available online: https://map.environment.gov.scot/Soil_maps/?layer=1 (accessed on 3 June 2022).
- The Macaulay Land Use Research Institute. Land Cover of Scotland. 1988. Available online: http://www.macaulay.ac.uk/explorescotland/lcs_mapformat.html (accessed on 29 January 2014).
- IUSS Working Group WRB 2015. World Reference Base for Soil Resources 2014. In World Soil Resources Reports No. 103; FAO: Rome, Italy.
- Rossiter, D.G. Classification of urban and industrial soils in the World Reference Base of Soil Resource. J. Soils Sediments 2007, 7, 96–100. [Google Scholar] [CrossRef]
- Goddard, N. “A mine of wealth”? The Victorians and the agricultural value of sewage. J. Hist. Geogr. 1996, 22, 274–290. [Google Scholar] [CrossRef]
- Velis, C.A.; Wilson, D.C.; Cheeseman, C.R. 19th century London dust-yards: A case study in closed-loop resource efficiency. Waste Manag. 2009, 29, 1282–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munsell Color. Munsell Soil Color Charts; GregtagMacbeth: New Windsor, NY, USA, 2000. [Google Scholar]
- Carlo Erba Instruments. EA 1108 Elemental Analyser Product Manual; CE Instruments Ltd.: Hindley Green, UK, 2009. [Google Scholar]
- Schumacher, B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments; U.S. Environmental Protection Agency (EPA): Las Vegas, NV, USA, 2002. [Google Scholar]
- McLean, E.O. Recommended pH and lime requirement tests, In Methods of Soil Analysis: Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; ASA, SSS: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Dearing, J.A. Environmental Magnetic Susceptibility: Using Bartington MS2 System; Chi Publishing: Kenilworth, UK, 1994. [Google Scholar]
- Murphy, C.P. Thin Section Preparation of Soils and Sediments; AB Academic Publishers: Berkhamsted, UK, 1986. [Google Scholar]
- Russ, J.C. The Image Processing Handbook, 3rd ed.; CRC Press LLC: Boca Raton, FL, USA, 1999. [Google Scholar]
- Sanderson, D.C.W.; Murphy, S. Using simple portable OSL measurements and laboratory characterisation to help understand complex and heterogeneous sediment sequences for luminescence dating. Quat. Geochronol. 2010, 5, 299–305. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Knicker, H.; Hatcher, P.G.; Kögel-Knaber, I. Improvement of 13C and 15N CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10% hydrofluoric acid. Eur. J. Soil Sci. 1997, 48, 319–328. [Google Scholar] [CrossRef]
- Conte, P.; Piccolo, A.; Van Lagen, B.; Buurman, P.; De Jager, P.A. Quantitative aspects of solid-state 13C-NMR spectra of humic substances from soils of volcanic systems. Geoderma 1997, 80, 327–338. [Google Scholar] [CrossRef]
- Berns, A.E.; Conte, P. Effect of ramp size and sample spinning speed on CPMAS 13C NMR spectra of soil organic matter. Org. Geochem. 2011, 42, 926–935. [Google Scholar] [CrossRef]
- Baldock, J.A.; Preston, C.M. Chemistry of carbon decomposition processes in forests as revealed by solid-state carbon-13 nuclear magnetic resonance. In Carbon Forms and Functions in Forest Soils; Mcfee, W.W., Kelly, J.M., Eds.; Soil Science Society of America: Madison, WI, USA, 1995; pp. 89–117. [Google Scholar]
- Baldock, J.A.; Oades, J.M.; Nelson, P.N.; Skene, T.M.; Golchin, A.; Clarke, P. Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust. J. Soil Res. 1997, 35, 1061–1083. [Google Scholar] [CrossRef]
- Mathers, N.J.; Xu, Z. Solid-state 13C NMR spectroscopy: Characterization of soil organic matter under two contrasting residue management regimes in a 2-year-old pine plantation of subtropical Australia. Geoderma 2003, 114, 19–31. [Google Scholar] [CrossRef]
- Clark, R.P. 29 North Street. In Excavations in St. Andrews 1980–89: A Decade of Archaeology in a Scottish Burgh—Monograph 1; Rains, M.J., Hall, D.W., Eds.; Tayside and Fife Archaeological Committee: Glenrothes, Scotland, 1997; pp. 35–39. [Google Scholar]
- Bowler, D.P. Perth, the Archaeology and Development of a Scottish Burgh; Tayside and Fife Archaeological Committee: Perth, Australia, 2004. [Google Scholar]
- Dercon, G.; Davidson, D.A.; Dalsgaard, K.; Simpson, I.A.; Spek, T.; Thomas, J. Formation of sandy anthropogenic soils in NW Europe: Identification of inputs based on particle size distribution. Catena 2005, 59, 341–356. [Google Scholar] [CrossRef]
- Holliday, V.T.; Gartner, W.G. Methods of soil P analysis in archaeology. J. Archaeol. Sci. 2007, 34, 301–333. [Google Scholar] [CrossRef]
- Oonk, S.; Slomp, C.P.; Huisman, D.J. Geochemistry as an Aid in Archaeological Prospection and Site Interpretation: Current Issues and Research Directions. Archaeol. Prospect. 2009, 16, 35–51. [Google Scholar] [CrossRef]
- Bull, I.D.; Betancourt, P.P.; Evershed, R.P. An organic geochemical investigation of the practice of manuring at a Minoan site on Pseira Island, Crete. Geoarchaeol. Int. J. 2001, 16, 223–242. [Google Scholar] [CrossRef]
- Wells, E.C. Investigating Activity Patterns in Pre-Hispanic Plazas: Weak Acid-Extraction ICP-AES Analysis of Anthrosols at Classic Period El Coyote, North western Honduras. Archaeometry 2004, 46, 67–84. [Google Scholar] [CrossRef]
- Leonardi, G.; Miglavacca, M.; Nardi, S. Soil Phosphorus Analysis as an Integrative Tool for Recognizing Buried Ancient Ploughsoils. J. Archaeol. Sci. 1999, 26, 343–352. [Google Scholar] [CrossRef]
- Marwick, B. Element concentrations and the magnetic susceptibility of anthrosols: Indicator of prehistoric human occupation in the inland Pilbara, Western Australia. J. Archaeol. Sci. 2005, 32, 1357–1368. [Google Scholar] [CrossRef] [Green Version]
- Crowther, J. Potential magnetic susceptibility and fractional conversion studies of archaeological soils and sediments. Archaeometry 2003, 45, 685–701. [Google Scholar] [CrossRef]
- Dalan, R.A. A geophysical approach to buried site detection using down-hole susceptibility and soil magnetic techniques. Archaeol. Prospect. 2006, 13, 182–236. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Noack, A.G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 2000, 14, 777–793. [Google Scholar] [CrossRef]
- James, P. Soil variability in the area of an archaeological site near Sparta, Greece. J. Archaeol. Sci. 1999, 26, 1273–1288. [Google Scholar] [CrossRef]
- Schmidt, A. Archaology, magnetic methods. In Encyclopedia of Geomagnetism and Paleomagnetism; Gubbins, D., Herrero-Bervera, E., Eds.; Encyclopedia of Earth Sciences Series; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; pp. 23–31. [Google Scholar]
- Peters, C.; Church, M.J.; Coles, G. Mineral magnetism and archaeology at Galson on the Isle of Lewis, Scotland. Phys. Chem. Earth Part A Solid Earth Geod. 2000, 25, 455–460. [Google Scholar] [CrossRef]
- Tan, K.H. Principles of Soil Chemistry, 2nd ed.; Marcel Dekker: New York, NY, USA, 1993. [Google Scholar]
- Martins, T.; Saab, S.C.; Milori, D.M.B.P.; Brinatti, A.M.; Rosa, J.A.; Cassaro, F.A.M.; Pires, L.F. Soil organic matter humification under different tillage managements evaluated by laser induced fluorescence (LIF) and C/N ratio. Soil Tillage Res. 2011, 111, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Schmid, E.M.; Knicker, H.; Baumler, R.; Kögel-Knabner, I. Chemical composition of the organic matter in Neolithic soil material as revealed by CPMAS 13C Spectroscopy, polysaccharide analysis, and CuO oxidation. Soil Sci. 2001, 166, 569–584. [Google Scholar] [CrossRef]
- Munyikwa, K.; Brown, S.; Kitabwalla, Z. Delineating stratigraphic breaks at the bases of postglacial eolian dunes in central Alberta, Canada using a portable OSL reader. Earth Surf. Processes Landf. 2012, 37, 1603–1614. [Google Scholar] [CrossRef]
- Baldock, J.A.; Oades, J.M.; Waters, A.G.; Peng, X.; Vassallo, A.M.; Wilson, M.A. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry 1992, 16, 1–42. [Google Scholar] [CrossRef]
- Kiem, R.; Knicker, H.; Korschens, M.; Kögel-Knabner, I. Refractory organic carbon in C-depleted arable soils, as studied by 13C NMR spectroscopy and carbohydrate analysis. Org. Geochem. 2000, 31, 655–668. [Google Scholar] [CrossRef]
- Preston, C.M.; Trofymow, J.A.; Sayer, B.G.; Niu, J. 13C nuclear magnetic resonance spectroscopy with cross-polarisation and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can. J. Bot. 1997, 75, 1601–1613. [Google Scholar] [CrossRef]
- Wilson, M.A. NMR Techniques and Applications in Geochemistry and Soil Chemistry; Pergamon Press: Oxford, UK, 1987. [Google Scholar]
- Kleber, M. What is recalcitrant soil organic matter? Environ. Chem. 2010, 7, 320–332. [Google Scholar] [CrossRef]
- Velasco-Molina, M.; Berns, A.E.; Macías, F.; Knicker, H. Biochemically altered charcoal residues as an important source of soil organic matter in subsoils of fire-affected subtropical regions. Geoderma 2016, 262, 62–70. [Google Scholar] [CrossRef]
- McBeath, A.V.; Smernik, R.J. Variation in the degree of aromatic condensation of chars. Org. Geochem. 2009, 40, 1161–1168. [Google Scholar] [CrossRef]
- Knicker, H.; Hilscher, A.; González-Vila, F.J.; Almendros, G. A new conceptual model for the structural properties of char produced during vegetation fires. Org. Geochem. 2008, 39, 935–939. [Google Scholar] [CrossRef] [Green Version]
- Buena, A.P.; Almendros, G.; Gonzalez-Vila, F.J.; Gonzalez-Perez, J.A.; Knicker, H. Transformations in carbon and nitrogen-forms in peat subjected to progressive thermal stress as revealed by analytical pyrolysis. Chem. Ecol. 2010, 26, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Thevenot, M.; Dignac, M.F.; Rumpel, C. Fate of lignins in soils: A review. Soil Biol. Biochem. 2010, 42, 1200–1211. [Google Scholar] [CrossRef]
- Preston, C.M. Carbon-13 solid-state NMR of soil organic matter-using the technique effectively. Can. J. Soil Sci. 2001, 81, 255–270. [Google Scholar] [CrossRef]
- Sollins, P.; Homann, P.; Caldwell, B.A. Stabilisation and destabilisation of soil organic matter: Mechanisms and controls. Geoderma 1996, 74, 65–105. [Google Scholar] [CrossRef]
- Skjemstad, J.O.; Dalal, R.C. Spectroscopic and chemical differences in organic matter of two Vertisols subjected to long periods of cultivation. Aust. J. Soil Res. 1987, 25, 323–335. [Google Scholar] [CrossRef]
- Baldock, J.A.; Skjemstad, J.O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 2000, 31, 697–710. [Google Scholar] [CrossRef]
- Wang, W.J.; Dalal, R.C.; Moody, P.W.; Smith, C.J. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol. Biochem. 2003, 35, 273–284. [Google Scholar] [CrossRef]
- Chiti, T.; Neubert, R.E.M.; Janssens, I.A.; Certini, G.; Yuste, J.C.; Sirignano, C. Radiocarbon dating reveals different past managements of adjacent forest soils in the Campine region, Belgium. Geoderma 2009, 149, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kogel-Knaber, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Saidy, A.R.; Smernik, R.J.; Baldock, J.A.; Kaiser, K.; Sanderman, J.; Macdonald, L.M. Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma 2012, 173–174, 104–110. [Google Scholar] [CrossRef]
- Pronk, G.J.; Heister, K.; Kögel-Knabner, I. Is turnover and development of organic matter controlled by mineral composition. Soil Biol. Biochem. 2013, 67, 235–244. [Google Scholar] [CrossRef]
- Greinert, A. The heterogeneity of urban soils in the light of their properties. J. Soils Sediments 2015, 15, 1725–1737. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esiana, B.O.I.; Berns, A.E.; Adderley, W.P.; Bol, R. Organic Carbon Speciation in Urban Anthrosols—The Legacy of Historical Waste Management. Soil Syst. 2022, 6, 53. https://doi.org/10.3390/soilsystems6020053
Esiana BOI, Berns AE, Adderley WP, Bol R. Organic Carbon Speciation in Urban Anthrosols—The Legacy of Historical Waste Management. Soil Systems. 2022; 6(2):53. https://doi.org/10.3390/soilsystems6020053
Chicago/Turabian StyleEsiana, Benneth O. I., Anne E. Berns, W. Paul Adderley, and Roland Bol. 2022. "Organic Carbon Speciation in Urban Anthrosols—The Legacy of Historical Waste Management" Soil Systems 6, no. 2: 53. https://doi.org/10.3390/soilsystems6020053
APA StyleEsiana, B. O. I., Berns, A. E., Adderley, W. P., & Bol, R. (2022). Organic Carbon Speciation in Urban Anthrosols—The Legacy of Historical Waste Management. Soil Systems, 6(2), 53. https://doi.org/10.3390/soilsystems6020053