Comparable Discrimination of Soil Constituents Using Spectral Reflectance Data (400–1000 nm) Acquired with Hyperspectral Radiometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. Hyperspectral Data Collection and Proximal Sensor Characteristics
2.2.1. PSR + 3500
2.2.2. EPP2000 and STS Devices
2.3. Calibration and Statistical Analysis of Spectroradiometry Data
3. Results
3.1. PSR + 3500 Calibration Performance
3.2. PSR + 3500, EPP2000, and STS Validation Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimers
References
- Dalal, R.C.; Henry, R.J. Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry. Soil Sci. Soc. Am. J. 1986, 50, 120–123. [Google Scholar] [CrossRef]
- Reeves, J.B.; McCarty, G.W.; Meisinger, J.J. Near infrared reflectance spectroscopy for the analysis of agricultural soils. J. Near Infrared Spectrosc. 1999, 7, 179–193. [Google Scholar] [CrossRef]
- Terhoeven-Urselmans, T.; Michel, K.; Helfrich, M.; Flessa, H.; Ludwig, B. Near-infrared spectroscopy can predict the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci. 2006, 169, 168–174. [Google Scholar] [CrossRef]
- Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Scow, K.M.; Arcenegui, V.; Mataix-Beneyto, J. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. Soil Biol. Biochem. 2008, 40, 1923–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gras, J.P.; Barthès, B.G.; Mahaut, B.; Trupin, S. Best practices for obtaining and processing field visible and near infrared (VNIR) spectra of topsoils. Geoderma 2014, 214, 126–134. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Q.; Fei, T.; Wang, J.; Shi, T.; Guo, K.; Li, X.; Chen, Y. Transferability of a visible and near-infrared model for soil organic matter estimation in riparian landscapes. Remote Sens. 2014, 6, 4305–4322. [Google Scholar] [CrossRef] [Green Version]
- De Paul Obade, V.; Lal, R.; Moore, R. Assessing the accuracy of soil and water quality characterization using remote sensing. Water Resour. Manag. 2014, 28, 5091–5109. [Google Scholar] [CrossRef]
- Issa, S.; Dahy, B.; Ksiksi, T.; Saleous, N. A review of terrestrial carbon assessment methods using geo-spatial technologies with emphasis on arid lands. Remote Sens. 2020, 12, 2008. [Google Scholar] [CrossRef]
- Malhotra, A.; Todd-Brown, K.; Nave, L.E.; Batjes, N.H.; Holmquist, J.R.; Hoyt, A.M.; Iversen, C.M.; Jackson, R.B.; Lajtha, K.; Lawrence, C.; et al. The landscape of soil carbon data: Emerging questions, synergies and databases. Prog. Phys. Geogr. Earth Environ. 2019, 43, 707–719. [Google Scholar] [CrossRef]
- Vasques, G.M.; Grunwald, S.; Sickman, J.O. Modeling of soil organic carbon fractions using visible-near infrared spectroscopy. Soil Sci. Soc. Am. J. 2009, 73, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Sarkhot, D.V.; Grunwald, S.; Ge, Y.; Morgan, C.L.S. Comparison and detection of total and available soil carbon fractions using visible/near infrared diffuse reflectance spectroscopy. Geoderma 2011, 164, 22–32. [Google Scholar] [CrossRef]
- Moura-Bueno, J.M.; Dalmolin, R.S.D.; Ten Caten, A.; Dotto, A.C.; Demattê, J.A. Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions. Geoderma 2019, 337, 565–581. [Google Scholar] [CrossRef]
- Šestak, I.; Mihaljevski Boltek, L.; Mesić, M.; Zgorelec, Ž.; Perčin, A. Hyperspectral sensing of soil pH, total carbon and total nitrogen content based on linear and non-linear calibration methods. J. Cent. Eur. Agric. 2019, 20, 504–523. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Hicks, W.S. Soil organic carbon and its fractions estimated by visible-near infrared transfer functions. Eur. J. Soil Sci. 2015, 66, 438–450. [Google Scholar] [CrossRef]
- Fortuna, A.M.; Starks, P.J.; Nelson, A.M.; Steiner, J.L. Prediction of Soil Carbon Fractions Using a Field Spectroradiometer Equipped with an Illuminating Contact Probe. Soil Syst. 2019, 3, 71. [Google Scholar] [CrossRef] [Green Version]
- Stenberg, B.; Rossel, R.A.V.; Mouazen, A.M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. Adv. Agron. 2010, 107, 163–215. [Google Scholar] [CrossRef] [Green Version]
- Thaler, E.A.; Larsen, I.J.; Yu, Q. A new index for remote sensing of soil organic carbon based solely on visible wavelengths. Soil Sci. Soc. Am. J. 2019, 83, 1443–1450. [Google Scholar] [CrossRef]
- Aldana-Jague, E.; Heckrath, G.; Macdonald, A.; Van Wesemael, B.; Van Oost, K. UAS-based soil carbon mapping using VIS-NIR (480–1000) mult-spectral imaging: Potential and limitations. Geoderma 2016, 275, 55–66. [Google Scholar] [CrossRef]
- Crucil, G.; Castaldi, F.; Aldana-Jague, E.; Van Wesemael, B.; Macdonald, A.; Van Oost, K. Assessing the performance of UAS-compatible multispectral sensors for soil organic carbon prediction. Sustainability 2019, 11, 1889. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.W.; Sommers, L. Total carbon, organic carbon, and organic matter. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1983, 9, 539–579. [Google Scholar]
- Paul, E.A.; Morris, S.J.; Böhm, J.S.; Lal, R. (Eds.) The determination of soil C pool sizes and turnover rates: Biophysical fractionation and tracers. In Assessment Methods for Soil Carbon; Advances in Soil Science; CRC Press: Boca Raton, FL, USA, 2001; pp. 193–206. [Google Scholar]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palago, B.; Roger, J.M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Chang, C.W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, B.; Khanna, P.K.; Bauhus, J.; Hopmans, P. Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability. For. Ecol. Manag. 2002, 171, 121–132. [Google Scholar] [CrossRef]
- Fang, Q.; Hong, H.; Zhao, L.; Kukolich, S.; Yin, K.; Wang, C. Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy: A review. J. Spectrosc. 2018, 2018, 3168974. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Inbar, Y.; Chen, Y. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sens. Environ. 1997, 61, 1–15. [Google Scholar] [CrossRef]
- Rossel, R.V.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Kimsey, M.J.; Laing, L.E.; Anderson, S.M.; Bruggink, J.; Campbell, S.; Diamond, D.; Domke, G.M.; Gries, J.; Holub, S.M.; Nowacki, G.; et al. Soil Mapping, Monitoring, and Assessment. In Forest and Rangeland Soils of the United States Under Changing Conditions; Springer: Cham, Switzerland, 2020; pp. 169–188. [Google Scholar]
- Thompson, J.A.; Kienast-Brown, S.; D’Avello, T.; Philippe, J.; Brungard, C. Soils2026 and digital soil mapping-A foundation for the future of soils information in the United States. Geoderma Reg. 2020, 22, e00294. [Google Scholar] [CrossRef]
- Dangal, S.R.; Sanderman, J.; Wills, S.; Ramirez-Lopez, L. Accurate and precise prediction of soil properties from a large mid-infrared spectral library. Soil Syst. 2009, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Dangal, S.R.; Sanderman, J. Is Standardization Necessary for Sharing of a Large Mid-Infrared Soil Spectral Library? Sensors 2020, 20, 6729. [Google Scholar] [CrossRef] [PubMed]
- Salley, S.W.; Talbot, C.J.; Brown, J.R. The Natural Resources Conservation Service land resource hierarchy and ecological sites. Soil Sci. Soc. Am. J. 2016, 80, 1–9. [Google Scholar] [CrossRef]
- Schnepf and Flanagan. A History of Natural Resource Inventories Conducted by the USDA’s Soil Conservation Service and Natural Resources Conservation Service. A Special Report by the Soil and Water Conservation Society. 2016. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1212208.pdf (accessed on 29 April 2021).
- Moriasi, D.N.; King, K.W.; Bosch, D.D.; Bjorneberg, D.L.; Teet, S.; Guzman, J.A.; Williams, M.R. Framework to parameterize and validate APEX to support deployment of the nutrient tracking tool. Agric. Water Manag. 2016, 177, 146–164. [Google Scholar] [CrossRef] [Green Version]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality-A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Tavares, T.R.; Molin, J.P.; Nunes, L.C.; Alves, E.E.N.; Melquiades, F.L.; De Carvalho, H.W.P.; Mouazen, A.M. Effect of X-ray tube configuration on measurement of key soil fertility attributes with XRF. Remote Sens. 2020, 12, 963. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
Sensor | Spectral Range (nm) | Distance between Wavebands (nm) | Spectral Range Used in This Study (nm) | Spectral Resolution (nm @ FWHM) 1 | Signal-to-Noise Ratio | Fiber Optic Field of View (deg) |
---|---|---|---|---|---|---|
PSR + 3500 | 350–2500 | 1.0 | 400–1000 | ≤2.8 @ 700 | >15,000:1 | 25 |
EPP2000 | 195.0–1100.5 | 0.50 | 436–1000 | 10.0 | <2000:1 | 11 |
STS-VIS | 335.286–821.946 | 0.48 | 435–822 | 1.5 | >1500:1 | 15 |
STS-NIR | 632.482–1122.341 | 0.48 | 632–1000 | 1.5 | >1500:1 | 15 |
Calibration | Validation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Device | Slope | RMSE | r2 | RPDc | n | Slope | RMSE | r2 | RPDv | n | |
TSN (g kg−1) | |||||||||||
PSR + 3500 | 1 | 0.14 | 0.94 | 4.3 | 76 | 0.96 | 0.23 | 0.88 | 2.0 | 23 | |
EPP2000 | 1 | 0.24 | 0.83 | 2.1 | 59 | 1.17 | 0.21 | 0.89 | 2.3 | 20 | |
STS-VIS | 1 | 0.20 | 0.88 | 2.6 | 64 | 1.14 | 0.29 | 0.79 | 1.4 | 18 | |
STS-NIR | 1 | 0.27 | 0.84 | 1.9 | 61 | 1.15 | 0.24 | 0.82 | 1.7 | 21 | |
STS-VIS + NIR | 1 | 0.35 | 0.64 | 1.3 | 60 | 0.84 | 0.20 | 0.83 | 2.4 | 27 | |
TSOC (g kg−1) | |||||||||||
PSR + 3500 | 1 | 2.11 | 0.90 | 3.4 | 76 | 0.94 | 2.83 | 0.86 | 1.8 | 23 | |
EPP2000 | 1 | 2.77 | 0.83 | 2.1 | 59 | 1.14 | 2.45 | 0.89 | 2.3 | 20 | |
STS-VIS | 1 | 3.51 | 0.73 | 1.6 | 64 | 0.81 | 2.90 | 0.75 | 2.0 | 21 | |
STS-NIR | 1 | 2.42 | 0.89 | 2.8 | 63 | 1.1 | 2.67 | 0.87 | 2.3 | 22 | |
STS-VIS + NIR | 1 | 1.80 | 0.93 | 3.5 | 64 | 1.45 | 3.61 | 0.75 | 1.2 | 23 | |
POMN (mg kg−1) | |||||||||||
PSR + 3500 | 1 | 46.23 | 0.91 | 4.1 | 70 | 0.95 | 47.33 | 0.89 | 3.2 | 23 | |
EPP2000 | 1 | 64.17 | 0.83 | 2.2 | 41 | 0.92 | 56.33 | 0.85 | 2.7 | 11 | |
STS-VIS | 1 | 53.24 | 0.85 | 2.5 | 50 | 1.18 | 62.70 | 0.84 | 1.7 | 19 | |
STS-NIR | 1 | 45.65 | 0.91 | 3.0 | 50 | 0.81 | 78.34 | 0.65 | 1.9 | 20 | |
STS-VIS + NIR | 1 | 44.71 | 0.92 | 3.5 | 60 | 0.96 | 68.82 | 0.75 | 2.0 | 20 | |
POMC (g kg−1) | |||||||||||
PSR + 3500 | 1 | 0.74 | 0.92 | 4.4 | 70 | 0.90 | 0.92 | 0.84 | 2.8 | 23 | |
EPP2000 | 1 | 1.16 | 0.80 | 2.1 | 41 | 0.91 | 0.96 | 0.81 | 2.7 | 11 | |
STS-VIS | 1 | 0.88 | 0.84 | 2.3 | 54 | 0.92 | 0.51 | 0.93 | 3.8 | 15 | |
STS-NIR | 1 | 0.36 | 0.96 | 6.6 | 56 | 1.15 | 1.07 | 0.81 | 2.0 | 19 | |
STS-VIS + NIR | 1 | 0.48 | 0.97 | 5.2 | 60 | 0.79 | 0.96 | 0.82 | 2.3 | 20 | |
RCAH (g kg−1) | |||||||||||
PSR + 3500 | 1 | 1.09 | 0.95 | 4.4 | 71 | 1.07 | 1.57 | 0.93 | 3.2 | 20 | |
EPP2000 | 1 | 1.65 | 0.92 | 3.3 | 52 | 0.77 | 1.77 | 0.86 | 2.9 | 13 | |
STS-VIS | 1 | 1.38 | 0.93 | 3.8 | 47 | 1.04 | 1.42 | 0.94 | 3.6 | 13 | |
STS-NIR | 1 | 1.26 | 0.94 | 3.8 | 44 | 1.03 | 2.08 | 0.88 | 2.4 | 13 | |
STS-VIS + NIR | 1 | 1.62 | 0.91 | 3.1 | 45 | 0.95 | 1.14 | 0.93 | 4.4 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starks, P.J.; Fortuna, A.-M. Comparable Discrimination of Soil Constituents Using Spectral Reflectance Data (400–1000 nm) Acquired with Hyperspectral Radiometry. Soil Syst. 2021, 5, 45. https://doi.org/10.3390/soilsystems5030045
Starks PJ, Fortuna A-M. Comparable Discrimination of Soil Constituents Using Spectral Reflectance Data (400–1000 nm) Acquired with Hyperspectral Radiometry. Soil Systems. 2021; 5(3):45. https://doi.org/10.3390/soilsystems5030045
Chicago/Turabian StyleStarks, Patrick J., and Ann-Marie Fortuna. 2021. "Comparable Discrimination of Soil Constituents Using Spectral Reflectance Data (400–1000 nm) Acquired with Hyperspectral Radiometry" Soil Systems 5, no. 3: 45. https://doi.org/10.3390/soilsystems5030045
APA StyleStarks, P. J., & Fortuna, A. -M. (2021). Comparable Discrimination of Soil Constituents Using Spectral Reflectance Data (400–1000 nm) Acquired with Hyperspectral Radiometry. Soil Systems, 5(3), 45. https://doi.org/10.3390/soilsystems5030045