No-Till and Solid Digestate Amendment Selectively Affect the Potential Denitrification Activity in Two Mediterranean Orchard Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solid Anaerobic Digestate
2.2. Study Sites
2.3. Experimental Design and Soil Treatments
2.4. Soil Sampling
2.5. Soil Chemical and Biochemical Analysis
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Montanaro, G.; Tuzio, A.C.; Xylogiannis, E.; Kolimenakis, A.; Dichio, B. Carbon budget in a Mediterranean peach orchard under different management practices. Agric. Ecosyst. Environ. 2017, 238, 104–113. [Google Scholar] [CrossRef]
- Vignozzi, N.; Agnelli, A.E.; Brandi, G.; Gagnarli, E.; Goggioli, D.; Lagomarsino, A.; Pellegrini, S.; Simoncini, S.; Simoni, S.; Valboa, G.; et al. Soil ecosystem functions in a high-density olive orchard managed by different soil conservation practices. Appl. Soil Ecol. 2019, 134, 64–76. [Google Scholar] [CrossRef]
- Sastre, B.; Barbero-Sierra, C.; Bienes, R.; Marques, M.J.; García-Díaz, A. Soil loss in an olive grove in Central Spain under cover crops and tillage treatments, and farmer perceptions. J. Soils Sediments 2017, 17, 873–888. [Google Scholar] [CrossRef]
- Pe’er, G.; Bonn, A.; Bruelheide, H.; Dieker, P.; Eisenhauer, N.; Feindt, P.H.; Hagedorn, G.; Hansjürgens, B.; Herzon, I.; Lomba, Â.; et al. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2020, 2, 305–316. [Google Scholar] [CrossRef]
- Sofo, A.; Zanella, A.; Ponge, J. Soil quality and fertility in sustainable agriculture, with a contribution to the biological classification of agricultural soils. Soil Use Manag. 2021, 1–28. [Google Scholar] [CrossRef]
- Badagliacca, G.; Petrovičovà, B.; Pathan, S.I.; Roccotelli, A.; Romeo, M.; Monti, M.; Gelsomino, A. Use of solid anaerobic digestate and no-tillage practice for restoring the fertility status of two Mediterranean orchard soils with contrasting properties. Agric. Ecosyst. Environ. 2020, 300, 107010. [Google Scholar] [CrossRef]
- Jordan, V.W.L.; Leake, A.R.; Ogilvy, S.; Cook, S.K.; Cormack, W.F.; Green, M.; Holland, J.M.; Welsh, J.P. Agronomic and environmental implications of soil management practices in integrated farming systems. In Proceedings of the Farming Systems for the New Millenium, Cambridge, UK, 18–20 December 2000; Churchill College: Cambridge, UK, 2000; pp. 61–66. [Google Scholar]
- González-Sánchez, E.J.; Ordóñez-Fernández, R.; Carbonell-Bojollo, R.; Veroz-González, O.; Gil-Ribes, J.A. Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture. Soil Tillage Res. 2012, 122, 52–60. [Google Scholar] [CrossRef]
- De Vita, P.; Li Destri Nicosia, O.; Nigro, F.; Platani, C.; Riefolo, C.; Di Fonzo, N.; Cattivelli, L. Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Eur. J. Agron. 2007, 26, 39–53. [Google Scholar] [CrossRef]
- Ruisi, P.; Giambalvo, D.; Saia, S.; Di Miceli, G.; Frenda, A.S.; Plaia, A.; Amato, G. Conservation tillage in a semiarid Mediterranean environment: Results of 20 years of research. Ital. J. Agron. 2014, 9, 560. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.R.; van Es, H.M.; Schindelbeck, R.; Ristow, A.J.; Ryan, M. No-till and cropping system diversification improve soil health and crop yield. Geoderma 2018, 328, 30–43. [Google Scholar] [CrossRef]
- Tsachidou, B.; Scheuren, M.; Gennen, J.; Debbaut, V.; Toussaint, B.; Hissler, C.; George, I.; Delfosse, P. Biogas residues in substitution for chemical fertilizers: A comparative study on a grassland in the Walloon Region. Sci. Total Environ. 2019, 666, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, I.; Virga, G.; Maucieri, C.; Borin, M. Digestate Liquid Fraction Treatment with Filters Filled with Recovery Materials. Water 2020, 13, 21. [Google Scholar] [CrossRef]
- Barra Caracciolo, A.; Bustamante, M.A.; Nogues, I.; Di Lenola, M.; Luprano, M.L.; Grenni, P. Changes in microbial community structure and functioning of a semiarid soil due to the use of anaerobic digestate derived composts and rosemary plants. Geoderma 2015, 245–246, 89–97. [Google Scholar] [CrossRef]
- Cardelli, R.; Giussani, G.; Marchini, F.; Saviozzi, A. Short-term effects on soil of biogas digestate, biochar and their combinations. Soil Res. 2018, 56, 623. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; Caruso, C.; Sambo, P.; Borin, M. Effects of digestate solid fraction fertilisation on yield and soil carbon dioxide emission in a horticulture succession. Ital. J. Agron. 2017, 12, 800. [Google Scholar] [CrossRef] [Green Version]
- Wrage, N.; Velthof, G.L.; van Beusichem, M.L.; Oenema, O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 2001, 33, 1723–1732. [Google Scholar] [CrossRef]
- Chen, J.; Strous, M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochim. Biophys. Acta Bioenerg. 2013, 1827, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Bateman, E.J.; Baggs, E.M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 2005, 41, 379–388. [Google Scholar] [CrossRef]
- Saggar, S.; Luo, J.; Giltrap, D.L.; Maddena, M. Nitrous oxide emission processes, measurements, modeling and mitigation. In Nitrous Oxide Emissions Research Progress; Sheldon, A.I., Barnhart, E.P., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2009; pp. 1–66. [Google Scholar]
- Regina, K.; Alakukku, L. Greenhouse gas fluxes in varying soils types under conventional and no-tillage practices. Soil Tillage Res. 2010, 109, 144–152. [Google Scholar] [CrossRef]
- Tellez-Rio, A.; García-Marco, S.; Navas, M.; López-Solanilla, E.; Tenorio, J.L.; Vallejo, A. N2O and CH4 emissions from a fallow-wheat rotation with low N input in conservation and conventional tillage under a Mediterranean agroecosystem. Sci. Total Environ. 2015, 508, 85–94. [Google Scholar] [CrossRef]
- Eickenscheidt, T.; Freibauer, A.; Heinichen, J.; Augustin, J.; Drösler, M. Short-term effects of biogas digestate and cattle slurry application on greenhouse gas emissions affected by N availability from grasslands on drained fen peatlands and associated organic soils. Biogeosciences 2014, 11, 6187–6207. [Google Scholar] [CrossRef] [Green Version]
- Abubaker, J.; Cederlund, H.; Arthurson, V.; Pell, M. Bacterial community structure and microbial activity in different soils amended with biogas residues and cattle slurry. Appl. Soil Ecol. 2013, 72, 171–180. [Google Scholar] [CrossRef]
- Buchen-Tschiskale, C.; Hagemann, U.; Augustin, J. Soil incubation study showed biogas digestate to cause higher and more variable short-term N2O and N2 fluxes than mineral-N. J. Plant Nutr. Soil Sci. 2020, 183, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, M.; Fongen, M.; Foereid, B. Greenhouse gas emissions from digestate in soil. Int. J. Recycl. Org. Waste Agric. 2020, 9, 1–19. [Google Scholar]
- Rosace, M.C.; Veronesi, F.; Briggs, S.; Cardenas, L.M.; Jeffery, S. Legacy effects override soil properties for CO2 and N2O but not CH4 emissions following digestate application to soil. GCB Bioenergy 2020, 12, 445–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čuhel, J.; Šimek, M.; Laughlin, R.J.; Bru, D.; Chèneby, D.; Watson, C.J.; Philippot, L. Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Appl. Environ. Microbiol. 2010, 76, 1870–1878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Kessel, C.; Venterea, R.; Six, J.; Adviento-Borbe, M.A.; Linquist, B.; van Groenigen, K.J. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: A meta-analysis. Glob. Chang. Biol. 2013, 19, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Tambone, F.; Scaglia, B.; D’Imporzano, G.; Schievano, A.; Orzi, V.; Salati, S.; Adani, F. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 2010, 81, 577–583. [Google Scholar] [CrossRef]
- Bonetta, S.; Bonetta, S.; Ferretti, E.; Fezia, G.; Gilli, G.; Carraro, E. Agricultural reuse of the digestate from anaerobic co-digestion of organic waste: Microbiological contamination, metal hazards and fertilizing performance. Water. Air. Soil Pollut. 2014, 225, 1–11. [Google Scholar] [CrossRef]
- ARSSA (Agenzia Regionale per i Servizi di Sviluppo Agricolo). I Suoli della Calabria—Carta dei Suoli in Scala 1:250.000; Rubbettino Industrie Grafiche: Catanzaro, Italy, 2003. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA—NRCS: Washington, DC, USA, 2014; p. 410.
- IUSS Working Group W.R.B. World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103, 2nd ed.; FAO: Rome, Italy, 2006. [Google Scholar]
- Fernández-Bayo, J.D.; Achmon, Y.; Harrold, D.R.; McCurry, D.G.; Hernandez, K.; Dahlquist-Willard, R.M.; Stapleton, J.J.; VanderGheynst, J.S.; Simmons, C.W. Assessment of two solid anaerobic digestate soil amendments for effects on soil quality and biosolarization efficacy. J. Agric. Food Chem. 2017, 65, 3434–3442. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. Chemical methods. In Methods of Soil Analysis; Part 3; SSSA–ASA: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Bottomley, P.J.; Angle, J.S.; Weaver, R.W. Microbiological and biochemical properties. In Methods of Soil Analysis; Part 2; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 12, p. 1152. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Brookes, P.C. Quantification of soil microbial biomass by fumigation-extraction. In Monitoring and Assessing Soil Bioremediation; Springer: Berlin/Heidelberg, Germany, 2005; pp. 281–295. [Google Scholar]
- Šimek, M.; Elhottová, D.; Klimeš, F.; Hopkins, D.W. Emissions of N2O and CO2, denitrification measurements and soil properties in red clover and ryegrass stands. Soil Biol. Biochem. 2004, 36, 9–21. [Google Scholar] [CrossRef]
- Abubaker, J.; Risberg, K.; Jönsson, E.; Dahlin, A.S.; Cederlund, H.; Pell, M. Short-term effects of biogas digestates and pig slurry application on soil microbial activity. Appl. Environ. Soil Sci. 2015, 2015, 658542. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.M.; Stres, B.; Rosenquist, M.; Hallin, S. phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol. Biol. Evol. 2008, 25, 1955–1966. [Google Scholar] [CrossRef]
- Gardner, L.M.; White, J.R. Denitrification enzyme activity as an indicator of nitrate movement through a diversion wetland. Soil Sci. Soc. Am. J. 2010, 74, 1037–1047. [Google Scholar] [CrossRef]
- Schipper, L.A.; Cooper, A.B.; Harfoot, C.G.; Dyck, W.J. Regulators of denitrification in an organic riparian soil. Soil Biol. Biochem. 1993, 25, 925–933. [Google Scholar] [CrossRef]
- Tiedje, J.M.; Simkins, S.; Groffman, P.M. Perspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods. Plant Soil 1989, 115, 261–284. [Google Scholar] [CrossRef]
- Groffman, P.M.; Tiedje, J.M. Denitrification in north temperate forest soils: Spatial and temporal patterns at the landscape and seasonal scales. Soil Biol. Biochem. 1989, 21, 613–620. [Google Scholar] [CrossRef]
- Attard, E.; Recous, S.; Chabbi, A.; De Berranger, C.; Guillaumaud, N.; Labreuche, J.; Philippot, L.; Schmid, B.; Le Roux, X. Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses. Glob. Chang. Biol. 2011, 17, 1975–1989. [Google Scholar] [CrossRef]
- Badagliacca, G.; Benítez, E.; Amato, G.; Badalucco, L.; Giambalvo, D.; Laudicina, V.A.; Ruisi, P. Long-term no-tillage application increases soil organic carbon, nitrous oxide emissions and faba bean (Vicia faba L.) yields under rain-fed Mediterranean conditions. Sci. Total Environ. 2018, 639, 350–359. [Google Scholar] [CrossRef]
- Wang, J.; Zou, J. No-till increases soil denitrification via its positive effects on the activity and abundance of the denitrifying community. Soil Biol. Biochem. 2020, 142, 107706. [Google Scholar] [CrossRef]
- Deepagoda, T.; Jayarathne, J.; Clough, T.J.; Thomas, S.; Elberling, B. Soil-gas diffusivity and soil-moisture effects on N2O emissions from intact pasture soils. Soil Sc. Soc. Am. J. 2019, 83, 1032–1043. [Google Scholar] [CrossRef]
- Liu, H.; Zak, D.; Rezanezhad, F.; Lennartz, B. Soil degradation determines release of nitrous oxide and dissolved organic carbon from peatlands. Environ. Res. Lett. 2019, 14, 094009. [Google Scholar] [CrossRef]
- Reichert, J.M.; Suzuki, L.E.A.S.; Reinert, D.J.; Horn, R.; Håkansson, I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Res. 2009, 102, 242–254. [Google Scholar] [CrossRef]
- Xu, Y.; Jimenez, M.A.; Parent, S.-É.; Leblanc, M.; Ziadi, N.; Parent, L.E. Compaction of coarse-textured soils: Balance models across mineral and organic compositions. Front. Ecol. Evol. 2017, 5, 83. [Google Scholar] [CrossRef] [Green Version]
- Köster, J.R.; Cárdenas, L.M.; Bol, R.; Lewicka-Szczebak, D.; Senbayram, M.; Well, R.; Giesemann, A.; Dittert, K. Anaerobic digestates lower N2O emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification—An N2O isotopomer case study. Soil Biol. Biochem. 2015, 84, 65–74. [Google Scholar] [CrossRef]
- Jha, N.; Saggar, S.; Giltrap, D.; Tillman, R.; Deslippe, J. Soil properties impacting denitrifier community size, structure, and activity in New Zealand dairy-grazed pasture. Biogeosciences 2017, 14, 4243–4253. [Google Scholar] [CrossRef] [Green Version]
- Askri, A.; Laville, P.; Trémier, A.; Houot, S. Influence of origin and post-treatment on greenhouse gas emissions after anaerobic digestate application to soil. Waste Biomass Valorization 2016, 7, 293–306. [Google Scholar] [CrossRef]
- Shrewsbury, L.H.; Smith, J.L.; Huggins, D.R.; Carpenter-Boggs, L.; Reardon, C.L. Denitrifier abundance has a greater influence on denitrification rates at larger landscape scales but is a lesser driver than environmental variables. Soil Biol. Biochem. 2016, 103, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Liu, J.; Li, Y.; Jiang, P.; Chang, S.X. Similar quality and quantity of dissolved organic carbon under different land use systems in two Canadian and Chinese soils. J. Soils Sediments 2012, 13, 34–42. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de la Fuente, C.; Bernal, M.P. Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agric. Ecosyst. Environ. 2012, 160, 15–22. [Google Scholar] [CrossRef]
- An, T.; Schaeffer, S.; Zhuang, J.; Radosevich, M.; Li, S.; Li, H.; Pei, J.; Wang, J. Dynamics and distribution of 13C-labeled straw carbon by microorganisms as affected by soil fertility levels in the Black Soil region of Northeast China. Biol. Fertil. Soils 2015, 51, 605–613. [Google Scholar] [CrossRef]
- Badagliacca, G.; Rees, R.M.; Giambalvo, D.; Saia, S. Vertisols and Cambisols had contrasting short term greenhouse gas responses to crop residue management. Plant Soil Environ. 2020, 66, 222–233. [Google Scholar] [CrossRef]
- Bastida, F.; Torres, I.F.; Hernández, T.; Bombach, P.; Richnow, H.H.; García, C. Can the labile carbon contribute to carbon immobilization in semiarid soils? Priming effects and microbial community dynamics. Soil Biol. Biochem. 2013, 57, 892–902. [Google Scholar] [CrossRef]
- Pezzolla, D.; Bol, R.; Gigliotti, G.; Sawamoto, T.; López, A.L.; Cardenas, L.; Chadwick, D. Greenhouse gas (GHG) emissions from soils amended with digestate derived from anaerobic treatment of food waste. Rapid Commun. Mass Spectrom. 2012, 26, 2422–2430. [Google Scholar] [CrossRef]
- Galvez, A.; Sinicco, T.; Cayuela, M.L.L.; Mingorance, M.D.D.; Fornasier, F.; Mondini, C. Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agric. Ecosyst. Environ. 2012, 160, 3–14. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Velthof, G.L.; Kuikman, P.J.; Oenema, O. Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol. Fertil. Soils 2003, 37, 221–230. [Google Scholar] [CrossRef]
- Fiedler, S.R.; Augustin, J.; Wrage-Mönnig, N.; Jurasinski, G.; Gusovius, B.; Glatzel, S. Potential short-term losses of N2O and N2 from high concentrations of biogas digestate in arable soils. Soil 2017, 3, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Sarkara, B.; Biswas, B.; Churchman, J.; Boland, N.S. Adsorption-desorption behavior of dissolved organic carbon by soil clay fractions of varying mineralogy. Geoderma 2016, 208, 47–56. [Google Scholar] [CrossRef]
Variable | Value |
---|---|
Chemical analyses | |
pH | 8.77 ± 0.01 |
EC (dS m−1 at 25 °C) | 2.14 ± 0.01 |
Dry matter (% fresh weight) | 18.0 ± 0.49 |
Ash (%) | 14.4 ± 0.16 |
Volatile solids (%) | 85.6 ± 0.16 |
Tot-C (g kg−1) | 389.6 ± 0.8 |
Tot-N (g kg−1) | 16.02 ± 0.70 |
C/N | 24.3 ± 1.5 |
NH4+-N (g kg−1) | 5.59 ± 0.47 |
NH4+-N (% Tot-N) | 34.9 |
NO3−-N (g kg−1) | 0.034 ± 0.002 |
P (g kg−1) | 1.24 |
K (g kg−1) | 2.25 |
Tot-polyphenols (mg g−1) | 1.62 ± 0.05 |
Soil Variable | Study Site | |
---|---|---|
Olive Orchard | Orange Orchard | |
Coarse sand (%) | 6.6 ± 0.1 | 23.7 ± 0.7 |
Fine sand (%) | 12.3 ± 0.3 | 34.0 ± 0.8 |
Coarse silt (%) | 13.6 ± 0.3 | 17.3 ± 0.3 |
Fine silt (%) | 22.5 ± 0.3 | 12.5 ± 0.3 |
Clay (%) | 45.0 ± 0.8 | 12.5 ± 0.6 |
Texture (according to USDA) | Clay | Sandy loam |
Bulk density (g cm−3) | 1.24 ± 0.02 | 1.22 ± 0.14 |
Structural stability index (%) | 73.9 ± 7.5 | 66.9 ± 1.1 |
pHCaCl2 | 5.44 ± 0.11 | 7.46 ± 0.12 |
EC1:2 (dS m−1) | 0.170 ± 0.013 | 0.210 ± 0.087 |
Total CaCO3 (g kg−1) | 0 | 22.5 ± 3.0 |
Active CaCO3 (g kg−1) | 0 | 6.9 ± 0.1 |
CEC (cmol+ kg−1) | 51.9 ± 2.4 | 36.1 ± 1.2 |
Corg (g kg−1) | 21.30 ± 3.24 | 13.74 ± 0.15 |
Nt (g kg−1) | 2.03 ± 0.29 | 1.03 ± 0.05 |
C/N | 10.51 ± 0.35 | 13.34 ± 0.66 |
Exchangeable NH4+-N (mg kg−1) | 3.2 ± 0.2 | 5.1 ± 1.0 |
NO3−-N (mg kg−1) | 2.8 ± 2.0 | 2.2 ± 1.3 |
Olsen-P (mg kg−1) | 22.9 ± 2.2 | 20.4 ± 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monti, M.; Badagliacca, G.; Romeo, M.; Gelsomino, A. No-Till and Solid Digestate Amendment Selectively Affect the Potential Denitrification Activity in Two Mediterranean Orchard Soils. Soil Syst. 2021, 5, 31. https://doi.org/10.3390/soilsystems5020031
Monti M, Badagliacca G, Romeo M, Gelsomino A. No-Till and Solid Digestate Amendment Selectively Affect the Potential Denitrification Activity in Two Mediterranean Orchard Soils. Soil Systems. 2021; 5(2):31. https://doi.org/10.3390/soilsystems5020031
Chicago/Turabian StyleMonti, Michele, Giuseppe Badagliacca, Maurizio Romeo, and Antonio Gelsomino. 2021. "No-Till and Solid Digestate Amendment Selectively Affect the Potential Denitrification Activity in Two Mediterranean Orchard Soils" Soil Systems 5, no. 2: 31. https://doi.org/10.3390/soilsystems5020031
APA StyleMonti, M., Badagliacca, G., Romeo, M., & Gelsomino, A. (2021). No-Till and Solid Digestate Amendment Selectively Affect the Potential Denitrification Activity in Two Mediterranean Orchard Soils. Soil Systems, 5(2), 31. https://doi.org/10.3390/soilsystems5020031