The Use of Unmanned Aerial Vehicles (UAVs) for Estimating Soil Volumes Retained by Check Dams after Wildfires in Mediterranean Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Check Dams Survey
2.2.1. Orthophotogrammetric Method Using UAV
2.2.2. Topographic Method Using Total Station and GNSS/RTK
- Two cross sections were selected in the channel, of which one was located immediately upstream of the check dam, and the second was chosen at the upstream limit of the sediment wedge. The lowest point of each section was used to estimate the profile slope of the channel (thalweg);
- The cross sections of the sediment wedge were surveyed at a reciprocal distance between 0.5 (S1) and 3 (S2) m (see below), depending on its length, considering always at least two points upstream and downstream of the wedge. For each section, some points were extracted to characterize the adjacent hillslopes;
- The areas of each cross section were estimated and included into the transverse profile of the sediment wedge and original channel (Figure 3). To adjust the profile of the original channel at each section, the central point of the profile width was taken as a reference, and the height of the profile was adjusted based on the inclination of the channel. If the two profiles (sediment wedge and original channel) did not intersect, a closing line extending to the adjacent slopes of the SW was used to close the polygon (Figure 3).
- The sediment volume between two consecutive sections of the sediment wedge was estimated using Equation (2), assuming the shape of a prismoid. The final volume of the wedge was calculated as the sum of the volumes between all sections.
2.2.3. Evaluation of Method Accuracy
2.3. Statistical Analysis
3. Results and Discussion
3.1. Aerophotogrammetric Survey by UAV
3.2. Topographic Survey by Total Station and GNSS/RTK
3.3. Comparison of Survey Accuracy
3.4. Correlation and Regression Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Fernández, J.; Vega-Garcia, C.; Chuvieco, E. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 2009, 90, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Carvalho, A.; Monteiro, A.; Flannigan, M.; Solman, S.; Miranda, A.I.; Borrego, C. Forest fires in a changing climate and their impacts on air quality. Atmos. Environ. 2011, 45, 5545–5553. [Google Scholar] [CrossRef]
- Pechony, O.; Shindell, D.T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 2010, 107, 19167–19170. [Google Scholar] [CrossRef] [Green Version]
- Certini, G. Fire as a soil-forming factor. Ambio 2014, 43, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Mavsar, R.; Varela, E.; Corona, P.; Barbati, A.; Marsh, G. Economic, legal and social aspects of post-fire management. In Managing Forest Ecosystems: The Challenge of Climate Change; Springer Nature: Dordrecht, The Nederlands, 2011; pp. 45–78. [Google Scholar]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Bento-Gonçalves, A.; Vieira, A.; Úbeda, X.; Martin, D. Fire and soils: Key concepts and recent advances. Geoderma 2012, 191, 3–13. [Google Scholar] [CrossRef]
- Ferreira, A.J.D.; Prats, S.A.; Coelho, C.O.A.; Shakesby, R.A.; Páscoa, F.M.; Ferreira, C.S.S.; Keizer, J.J.; Ritsema, C. Strategies to prevent forest fires and techniques to reverse degradation processes in burned areas. Catena 2015, 128, 224–237. [Google Scholar] [CrossRef]
- Shakesby, R. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Shakesby, A.R.; Boakes, D.J.; Coelho, C.D.O.; Gonçalves, A.B.; Walsh, R.P. Limiting the soil degradational impacts of wildfire in pine and eucalyptus forests in Portugal. Appl. Geogr. 1996, 16, 337–355. [Google Scholar] [CrossRef]
- Plaza-Álvarez, P.A.; Lucas-Borja, M.; Sagra, J.; Moya, D.; Alfaro-Sánchez, R.; González-Romero, J.; Heras, J.D.L. Changes in soil water repellency after prescribed burnings in three different Mediterranean forest ecosystems. Sci. Total Environ. 2018, 644, 247–255. [Google Scholar] [CrossRef]
- Plaza-Álvarez, P.; Lucas-Borja, M.; Sagra, J.; Zema, D.; González-Romero, J.; Moya, D.; Heras, J.D.L. Changes in soil hydraulic conductivity after prescribed fires in Mediterranean pine forests. J. Environ. Manag. 2019, 232, 1021–1027. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Fonseca, T.; Lousada, J.L.; Santos, P.S.; Martínez García, E.; Abellán, M.A. Natural regeneration of Spanish black pine (Pinus nigra Arn. ssp. salzmannii (Dunal) Franco) at contrasting altitudes in a Mediterranean mountain area. Ecol. Res. 2012, 27, 913–921. [Google Scholar] [CrossRef]
- Vieira, D.; Serpa, D.; Nunes, J.; Prats, S.; Neves, R.; Keizer, J. Predicting the effectiveness of different mulching techniques in reducing post-fire runoff and erosion at plot scale with the RUSLE, MMF and PESERA models. Environ. Res. 2018, 165, 365–378. [Google Scholar] [CrossRef]
- Martínez-Murillo, J.F.; López-Vicente, M. Effect of salvage logging and check dams on simulated hydrological connectivity in a burned area. Land Degrad. Dev. 2018, 29, 701–712. [Google Scholar] [CrossRef] [Green Version]
- Prosser, I.P.; Williams, L. The effect of wildfire on runoff and erosion in native Eucalyptus forest. Hydrol. Process. 1998, 12, 251–265. [Google Scholar] [CrossRef]
- Keizer, J.J.; Silva, F.C.; Vieira, D.; González-Pelayo, O.; Campos, I.; Vieira, A.; Valente, S.; Prats, S. The effectiveness of two contrasting mulch application rates to reduce post-fire erosion in a Portuguese eucalypt plantation. Catena 2018, 169, 21–30. [Google Scholar] [CrossRef]
- Wilson, C.; Kampf, S.K.; Wagenbrenner, J.W.; Macdonald, L.H. Rainfall thresholds for post-fire runoff and sediment delivery from plot to watershed scales. For. Ecol. Manag. 2018, 430, 346–356. [Google Scholar] [CrossRef]
- Brevik, E.C.; Pereira, P.; Muñoz-Rojas, M.; Miller, B.A.; Cerdà, A.; Parras-Alcántara, L.; Lozano-García, B. Historical perspectives on soil mapping and process modeling for sustainable land use management. In Soil Mapping and Process Modeling for Sustainable Land Use Management; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 3–28. [Google Scholar]
- Gonzalez-Romero, J.; Lucas-Borja, M.; Plaza-Álvarez, P.A.; Sagra, J.; Moya, D.; Heras, J.D.L. Temporal effects of post-fire check dam construction on soil functionality in SE Spain. Sci. Total Environ. 2018, 642, 117–124. [Google Scholar] [CrossRef]
- Nichols, M.; McReynolds, K.; Reed, C. Short-term soil moisture response to low-tech erosion control structures in a semiarid rangeland. Catena 2012, 98, 104–109. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Zema, D.A.; Guzman, M.D.H.; Yang, Y.; Hernández, A.C.; Xiangzhou, X.; Carrà, B.G.; Nichols, M.; Cerdá, A. Exploring the influence of vegetation cover, sediment storage capacity and channel dimensions on stone check dam conditions and effectiveness in a large regulated river in México. Ecol. Eng. 2018, 122, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Boix-Fayos, C.; Barberá, G.; López-Bermúdez, F.; Castillo, V. Effects of check dams, reforestation and land-use changes on river channel morphology: Case study of the Rogativa catchment (Murcia, Spain). Geomorphology 2007, 91, 103–123. [Google Scholar] [CrossRef]
- Boix-Fayos, C.; De Vente, J.; Martínez-Mena, M.; Barberá, G.G.; Castillo, V. The impact of land use change and check-dams on catchment sediment yield. Hydrol. Process. 2008, 22, 4922–4935. [Google Scholar] [CrossRef]
- Bombino, G.; Boix-Fayos, C.; Gurnell, A.M.; Tamburino, V.; Zema, D.A.; Zimbone, S.M. Check dam influence on vegetation species diversity in mountain torrents of the Mediterranean environment. Ecohydrology 2013, 7, 678–691. [Google Scholar] [CrossRef]
- Bombino, G.; Zema, D.A.; Denisi, P.; Lucas-Borja, M.E.; Labate, A.; Zimbone, S.M. Assessment of riparian vegetation characteristics in Mediterranean headwaters regulated by check dams using multivariate statistical techniques. Sci. Total Environ. 2019, 657, 597–607. [Google Scholar] [CrossRef]
- Zema, D.A.; Bombino, G.; Denisi, P.; Lucas-Borja, M.E.; Zimbone, S.M. Evaluating the effects of check dams on channel geometry, bed sediment size and riparian vegetation in Mediterranean mountain torrents. Sci. Total Environ. 2018, 642, 327–340. [Google Scholar] [CrossRef]
- Castillo, V.M.; Mosch, W.; García, C.C.; Barberá, G.G.; Navarro-Cano, J.A.; López-Bermúdez, F. Effectiveness and geomorphological impacts of check dams for soil erosion control in a semiarid Mediterranean catchment: El Cárcavo (Murcia, Spain). Catena 2007, 70, 416–427. [Google Scholar] [CrossRef]
- Nadeu, E.; Quiñonero-Rubio, J.M.; De Vente, J.; Boix-Fayos, C. The influence of catchment morphology, lithology and land use on soil organic carbon export in a Mediterranean mountain region. Catena 2015, 126, 117–125. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, Á.; Schnabel, S.; Lavado Contador, F.; Sanjose, J.J.; Atkinson, A.D.J.; Pulido Fernandez, M.; Sánchez Fernández, M. Studying the influence of livestock pressure on gully erosion in rangelands of SW Spain by means of the UAV+SfM workflow. B Asoc. Geógr. Esp. 2018, 78, 66–88. [Google Scholar] [CrossRef]
- Mekonnen, M.; Keesstra, S.; Baartman, J.; Ritsema, C.; Melesse, A. Evaluating sediment storage dams: Structural off-site sediment trapping measures in northwest Ethiopia. Cuad. Investig. Geográfica 2015, 41, 7–22. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.; Keesstra, S.D.; Stroosnijder, L.; Baartman, J.E.M.; Maroulis, J. Soil conservation through sediment trapping: A review. Land Degrad. Dev. 2015, 26, 544–556. [Google Scholar] [CrossRef]
- Ramos-Diez, I.; Navarro-Hevia, J.; Fernández, R.S.M.; Díaz-Gutiérrez, V.; Mongil-Manso, J. Analysis of methods to determine the sediment retained by check dams and to estimate erosion rates in badlands. Environ. Monit. Assess. 2016, 188, 405. [Google Scholar] [CrossRef]
- Ramos-Diez, I.; Navarro-Hevia, J.; Fernández, R.S.M.; Díaz-Gutiérrez, V.; Mongil-Manso, J. Geometric models for measuring sediment wedge volume in retention check dams. Water Environ. J. 2016, 30, 119–127. [Google Scholar] [CrossRef]
- Ramos-Diez, I.; Navarro-Hevia, J.; San Martín Fernández, R.; Mongil-Manso, J. Final analysis of the accuracy and precision of methods to calculate the sediment retained by check dams. Land Degrad. Dev. 2017, 28, 2446–2456. [Google Scholar] [CrossRef]
- Ramos-Diez, I.; Navarro-Hevia, J.; Fernández, R.S.M.; Díaz-Gutiérrez, V.; Mongil-Manso, J. Evaluating methods to quantify sediment volumes trapped behind check dams, Saldaña badlands (Spain). Int. J. Sediment Res. 2017, 32, 1–11. [Google Scholar] [CrossRef]
- Bombino, G.; Gurnell, A.M.; Tamburino, V.; Zema, D.A.; Zimbone, S.M. Adjustments in channel form, sediment calibre and vegetation around check-dams in the headwater reaches of mountain torrents, Calabria, Italy. Earth Surf. Process. Landf. 2009, 34, 1011–1021. [Google Scholar] [CrossRef]
- Vagnon, F. Design of active debris flow mitigation measures: A comprehensive analysis of existing impact models. Landslides 2019, 17, 313–333. [Google Scholar] [CrossRef]
- Díaz-Gutiérrez, V.; Mongil-Manso, J.; Navarro-Hevia, J.; Ramos-Díez, I. Check dams and sediment control: Final results of a case study in the upper Corneja River (Central Spain). J. Soils Sediments 2019, 19, 451–466. [Google Scholar] [CrossRef]
- Zema, D.A.; Bombino, G.; Boix-Fayos, C.; Tamburino, V.; Zimbone, S.M.; Fortugno, D. Evaluation and modeling of scouring and sedimentation around check dams in a Mediterranean torrent in Calabria, Italy. J. Soil Water Conserv. 2014, 69, 316–329. [Google Scholar] [CrossRef]
- Piton, G.; Recking, A. Effects of check dams on bed-load transport and steep-slope stream morphodynamics. Geomorphology 2017, 291, 94–105. [Google Scholar] [CrossRef]
- Abedini, M.; Said, M.A.; Ahmad, F. Effectiveness of check dam to control soil erosion in a tropoical catchment (The Ulu Kinta Basin). Catena 2012, 97, 63–70. [Google Scholar] [CrossRef]
- Gutiérrez, V.D.; Mongil, J.; Navarro, J. Topographical surveying for improved assessment of sediment retention in check dams applied to a Mediterranean badlands restoration site (Central Spain). J. Soils Sediments 2014, 14, 2045–2056. [Google Scholar] [CrossRef]
- Romero-Díaz, A.; Alonso-Sarriá, F.; Martínez-Lloris, M. Erosion rates obtained from check-dam sedimentation (SE Spain). A multi-method comparison. Catena 2007, 71, 172–178. [Google Scholar] [CrossRef]
- Bellin, N.; Vanacker, V.; Van Wesemael, B.; Solé-Benet, A.; Bakker, M. Natural and anthropogenic controls on soil erosion in the Internal Betic Cordillera (southeast Spain). Catena 2011, 87, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Alfonso-Torreño, A.; Gómez-Gutiérrez, A.; Schnabel, S.; J-Francisco, L.C.; de Sanjosé Blasco, J.J.; Fernández, M.S. sUAS, SfM-MVS photogrammetry and a topographic algorithm method to quantify the volume of sediments retained in check-dams. Sci. Total Environ. 2019, 678, 369–382. [Google Scholar]
- Cucchiaro, S.; Cavalli, M.; Vericat, D.; Crema, S.; Llena, M.; Beinat, A.; Marchi, L.; Cazorzi, F. Geomorphic effectiveness of check dams in a debris-flow catchment using multi-temporal topographic surveys. Catena 2019, 174, 73–83. [Google Scholar] [CrossRef]
- Gómez-Sánchez, E.; de Las Heras, J.; Lucas-Borja, M.E.; Moya, D. Assessing fire severity in semi-arid environments: Application in Donceles 2012 wildfire (SE Spain). Rev. Teledetección 2017, 49, 103–113. [Google Scholar]
- Gómez-Sánchez, E.; Lucas-Borja, M.E.; Plaza-Álvarez, P.; González-Romero, J.; Sagra, J.; Moya, D.; Heras, J.D.L. Effects of post-fire hillslope stabilisation techniques on chemical, physico-chemical and microbiological soil properties in mediterranean forest ecosystems. J. Environ. Manag. 2019, 246, 229–238. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Díaz, T.E.; Fernánez-González, F.; Izco, J.; Loidi, J.; Lousã, M. Penas Vascular plant comunities of Spain and Portugal. Itinera Geobot. 2012, 15, 5–922. [Google Scholar]
- USDA Soil Taxonomy. A basic system of soil classification for making and interpreting soil surveys. Second edition. Geol. Mag. 1999, 114, 886. [Google Scholar]
- Falkner, E. Aerial Mapping: Methods and Applications, 1st ed.; Lewis Publishers: Boca Raton, FL, USA, 1995; p. 322. [Google Scholar]
- Da Silva, C.A.; Duarte, C.R.; Souto, M.V.S.; Dos Santos, A.L.S.; Amaro, V.E.; Bicho, C.P.; Sabadia, J. Avaliação da acurácia do cálculo de volume de pilhas de rejeito utilizando vant, GNSS e lidar. Bol. Ciências Geodésicas 2016, 22, 73–94. [Google Scholar] [CrossRef] [Green Version]
- Sougnez, N.; Van Wesemael, B.; Vanacker, V. Low erosion rates measured for steep, sparsely vegetated catchments in southeast Spain. Catena 2011, 84, 1–11. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; He, Z.; Li, Y.; Jiao, J.; Zhao, G.; Mu, X. Sediment yield deduction from check–dams deposition in the weathered sandstone watershed on the North Loess plateau, China. Land Degrad. Dev. 2016, 28, 217–231. [Google Scholar] [CrossRef]
Check Dam | Name | Geographic Coordinates * | Construction Date | Size (m) | Material | ||
---|---|---|---|---|---|---|---|
X | Y | Width | Height | ||||
1 | Conejo | 610337 | 4252597 | September 2013 | 38.35 | 6.25 | Concrete |
2 | Palomar | 611670 | 4251744 | July 2013 | 38.75 | 6.40 | |
3 | Grillo 1 | 614452 | 4251197 | November 2013 | 26.00 | 6.70 | |
4 | Grillo 2 | 614291 | 4250787 | October 2013 | 21.00 | 4.90 | |
5 | Piñero 1a | 613357 | 4249539 | July 2013 | 23.00 | 2.90 | |
6 | Piñero 1b | 613393 | 4249533 | July 2013 | 38.00 | 5.80 | |
7 | Piñero 3 | 613850 | 4249857 | September 2013 | 26.00 | 6.38 | |
8 | Piñero 2 | 612541 | 4249848 | October 2013 | 29.00 | 4.25 | |
9 | Rayares 2 | 609401 | 4249979 | November 2013 | 36.00 | 6.45 | |
10 | Rayares 1 | 608726 | 4250782 | November 2013 | 28.00 | 6.22 |
Check Dam | Name | Flight Characteristics | ||||||
---|---|---|---|---|---|---|---|---|
Area (m2) | GSD (cm) | Number of Caught Photos | Flight Time (min) | Flight Speed (m/s) | Frontal Overlap (%) | Lateral Overlap (%) | ||
1 | Conejo | 6802 | 1.35 | 80 | 3.38 | 5 | 80 | 80 |
2 | Palomar | 8874 | 100 | 4.38 | ||||
3 | Grillo 1 | 8223 | 90 | 4.05 | ||||
4 | Grillo 2 | 6047 | 67 | 3.24 | ||||
5 and 6 | Piñero 1 (a and b) | 10,230 | 131 | 5.23 | ||||
7 | Piñero 3 | 5059 | 56 | 2.46 | ||||
8 | Piñero 2 | 5567 | 68 | 3.08 | ||||
9 | Rayares 2 | 5761 | 71 | 3.28 | ||||
10 | Rayares 1 | 5321 | 63 | 2.48 | ||||
TOTAL | 61,884 | 726 | 31.58 |
Check Dam | Name | Processing Time (h, min and s) | Number of Points | Area (ha) | Point Density (m−2) | GSD (cm) | RMSE (m) | DTM Resolution (cm) |
---|---|---|---|---|---|---|---|---|
1 | Conejo | 27 min 39 s | 9,957,856 | 1.51 | 429.73 | 1.21 | 0.369 | 4.82 |
2 | Palomar | 28 min 55 s | 8,718,922 | 1.74 | 339.83 | 1.36 | 0.424 | 5.42 |
3 | Grillo 1 | 13 min 27 s | 5,544,786 | 1.16 | 330.64 | 1.37 | 0.503 | 5.50 |
4 | Grillo 2 | 11 min 50 s | 3,109,516 | 1.04 | 182.83 | 1.85 | 0.573 | 7.40 |
5 and 6 | Piñero 1 (a and b) | 16 min 16 s | 6,743,476 | 1.75 | 280.09 | 1.49 | 0.399 | 5.98 |
7 | Piñero 3 | 08 min 22 s | 2,817,697 | 0.63 | 293.18 | 1.46 | 0.421 | 5.84 |
8 | Piñero 2 | 08 min 12 s | 4,668,160 | 0.91 | 364.99 | 1.31 | 0.417 | 5.23 |
9 | Rayares 2 | 07 min 33 s | 5,768,404 | 0.89 | 409.51 | 1.24 | 0.362 | 4.94 |
10 | Rayares 1 | 08 min 13 s | 4,047,376 | 0.85 | 320.56 | 1.40 | 0.419 | 5.59 |
Mean | - | 327.93 | 1.27 | 0.432 | 5.63 | |||
Total | - | 2 h 10 min 27 s | 51.376.193 | 10.48 | - |
Check Dam | Name | Duration of Field Survey (h and min) | Processing Time (min) | Number of Points | Area (ha) | Point Density (m−2) | RMSE (m) |
---|---|---|---|---|---|---|---|
1 | Conejo | ≈1 h 30 min | ≈25 min | 549 | 0.268 | 0.204 | <0.04 |
2 | Palomar | 400 | 0.324 | 0.123 | |||
3 | Grillo 1 | 291 | 0.112 | 0.260 | |||
4 | Grillo 2 | 296 | 0.129 | 0.228 | |||
5 and 6 | Piñero 1 (a and b) | ≈3 h 00 min | ≈50 min | 593 | 0.326 | 0.182 | |
7 | Piñero 3 | ≈1 h 30 min | ≈25 min | 297 | 0.136 | 0.218 | |
8 | Piñero 2 | 365 | 0.207 | 0.176 | |||
9 | Rayares 2 | 257 | 0.170 | 0.151 | |||
10 | Rayares 1 | 423 | 0.210 | 0.201 | |||
Mean | - | 0.194 | |||||
Total | - | ≈15 h 00 min | ≈4 h 10 min | 3471 | 1.882 | - |
Check Dam | UAV | Total Station | Difference (%) |
---|---|---|---|
Conejo | 421 | 305 | 38.1 |
Palomar | 710 | 586 | 21.2 |
Grillo 1 | 168 | 160 | 4.9 |
Grillo 2 | 213 | 210 | 1.5 |
Piñero 1a | 54 | 45 | 19.1 |
Piñero 1b | 180 | 164 | 10.1 |
Piñero 3 | 146 | 135 | 7.6 |
Piñero 2 | 83 | 116 | −28.4 |
Rayares 2 | 403 | 390 | 3.5 |
Rayares 1 | 84 | 71 | 17.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, B.T.; Zema, D.A.; González-Romero, J.; Rodrigues, M.T.; Campos, S.; Galletero, P.; Plaza-Álvarez, P.A.; Lucas-Borja, M.E. The Use of Unmanned Aerial Vehicles (UAVs) for Estimating Soil Volumes Retained by Check Dams after Wildfires in Mediterranean Forests. Soil Syst. 2021, 5, 9. https://doi.org/10.3390/soilsystems5010009
Rodrigues BT, Zema DA, González-Romero J, Rodrigues MT, Campos S, Galletero P, Plaza-Álvarez PA, Lucas-Borja ME. The Use of Unmanned Aerial Vehicles (UAVs) for Estimating Soil Volumes Retained by Check Dams after Wildfires in Mediterranean Forests. Soil Systems. 2021; 5(1):9. https://doi.org/10.3390/soilsystems5010009
Chicago/Turabian StyleRodrigues, Bruno Timóteo, Demetrio Antonio Zema, Javier González-Romero, Mikael Timóteo Rodrigues, Sérgio Campos, Pablo Galletero, Pedro Antonio Plaza-Álvarez, and Manuel Esteban Lucas-Borja. 2021. "The Use of Unmanned Aerial Vehicles (UAVs) for Estimating Soil Volumes Retained by Check Dams after Wildfires in Mediterranean Forests" Soil Systems 5, no. 1: 9. https://doi.org/10.3390/soilsystems5010009
APA StyleRodrigues, B. T., Zema, D. A., González-Romero, J., Rodrigues, M. T., Campos, S., Galletero, P., Plaza-Álvarez, P. A., & Lucas-Borja, M. E. (2021). The Use of Unmanned Aerial Vehicles (UAVs) for Estimating Soil Volumes Retained by Check Dams after Wildfires in Mediterranean Forests. Soil Systems, 5(1), 9. https://doi.org/10.3390/soilsystems5010009