Biochar Effects on Soil Physiochemical Properties in Degraded Managed Ecosystems in Northeastern Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. Biochar Production and Characterization of Physiochemical Properties
2.4. Collection of Soil Samples In-Situ
2.5. Determination of Soil Physiochemical Properties
2.6. Statistical Analysis
3. Results
3.1. Properties of Biochar Used in This Experiment
3.2. Effects of Biochar on Soil Macronutrients (N, P, and K)
3.3. Effects of Biochar on Soil pH
3.4. Effects of Biochar on Soil Moisture Content
3.5. Effects Biochar on Soil Bulk Density
3.6. Effects of Biochar on Soil Organic Matter Content
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef][Green Version]
- Laird, D.A.; Brown, R.C.; Amonette, J.E.; Lehmann, J. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioproducts Biorefining 2009, 3, 547–562. [Google Scholar] [CrossRef]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, P. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soils Sediments 2019, 19, 2405–2416. [Google Scholar] [CrossRef]
- Alling, V.; Hale, S.E.; Martinsen, V.; Mulder, J.; Smebye, A.; Breedveld, G.D.; Cornelissen, G. The role of biochar in retaining nutrients in amended tropical soils. J. Plant Nutr. Soil Sci. 2014, 177, 671–680. [Google Scholar] [CrossRef]
- Yang, Y.; Sheng, G. Enhanced Pesticide Sorption by Soils Containing Particulate Matter from Crop Residue Burns. Environ. Sci. Technol. 2003, 37, 3635–3639. [Google Scholar] [CrossRef] [PubMed]
- Sujeeun, L.; Thomas, S.C. Potential of biochar to mitigate allelopathic effects in tropical island invasive plants: Evidence from seed germination trials. Trop. Conserv. Sci. 2017, 10, 1–14. [Google Scholar] [CrossRef][Green Version]
- Zhao, J.; Shen, X.-J.; Domene, X.; Alcañiz, J.-M.; Liao, X.; Palet, C. Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Sci. Rep. 2019, 9, 9869. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Thomas, S.C.; Frye, S.; Gale, N.; Garmon, M.; Launchbury, R.; Machado, N.; Melamed, S.; Murray, J.; Petroff, A.; Winsborough, C. Biochar mitigates negative effects of salt additions on two herbaceous plant species. J. Environ. Manag. 2013, 129, 62–68. [Google Scholar] [CrossRef]
- Wang, L.; Butterly, C.R.; Wang, Y.; Herath, H.M.S.K.; Xi, Y.G.; Xiao, X.J. Effect of crop residue biochar on soil acidity amelioration in strongly acidic tea garden soils. Soil Use Manag. 2014, 30, 119–128. [Google Scholar] [CrossRef]
- Hong, C.; Lu, S. Does biochar affect the availability and chemical fractionation of phosphate in soils? Environ. Sci. Pollut. Res. 2018, 25, 8725–8734. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef][Green Version]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biolo. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Bruun, S.; El-Zehery, T. Biochar effect on the mineralization of soil organic matter. Pesquisa Agropecuária Brasileira 2012, 47, 665–671. [Google Scholar] [CrossRef][Green Version]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
- Raboin, L.-M.; Razafimahafaly, A.H.D.; Rabenjarisoa, M.B.; Rabary, B.; Dusserre, J.; Becquer, T. Improving the fertility of tropical acid soils: Liming versus biochar application? A long term comparison in the highlands of Madagascar. Field Crops Res. 2016, 199, 99–108. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef][Green Version]
- Laird, D.A. The charcoal vision: A win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy J. 2008, 100, 178–181. [Google Scholar]
- Spokas, K.A. Impacts of sixteen different biochars on soil greenhouse gas production. Annals Environ. Sci. 2009, 3, 179–193. [Google Scholar]
- Sridhar, A.; Thakur, B.; Basavaiah, N.; Seth, P.; Tiwari, P.; Chamyal, L.S. Lacustrine record of high magnitude flood events and climate variability during mid to late Holocene in the semiarid alluvial plains, western India. Palaeogeography Palaeoclimatol. Palaeoecol. 2020, 542, 109581. [Google Scholar] [CrossRef]
- Renner, R. Rethinking biochar. Environ. Sci. Technol. 2007, 41, 5932–5933. [Google Scholar] [CrossRef][Green Version]
- Cerri, C.E.P.; Sparovek, G.; Bernoux, M.; Easterling, W.E.; Melillo, J.M.; Cerri, C.C. Tropical agriculture and global warming: Impacts and mitigation options. Sci. Agricola 2007, 64, 83–99. [Google Scholar] [CrossRef]
- Bolan, N.S.; Kunhikrishnan, A.; Choppala, G.K.; Thangarajan, R.; Chung, J.W. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility. Sci. Total Environ. 2012, 424, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.R.; Weil, R.R. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agric. Ecosyst. Environ. 2000, 79, 9–16. [Google Scholar] [CrossRef]
- Cerri, C.C.; Volkoff, B.; Andreaux, F. Nature and behaviour of organic matter in soils under natural forest, and after deforestation, burning and cultivation, near Manaus. For. Ecol. Manag. 1991, 38, 247–257. [Google Scholar] [CrossRef]
- Dechert, G.; Veldkamp, E.; Anas, I. Is soil degradation unrelated to deforestation? Examining soil parameters of land use systems in upland Central Sulawesi, Indonesia. Plant Soil 2004, 265, 197–209. [Google Scholar] [CrossRef]
- Sahani, U.; Behera, N. Impact of deforestation on soil physicochemical characteristics, microbial biomass and microbial activity of tropical soil. Land Degrad. Dev. 2001, 12, 93–105. [Google Scholar] [CrossRef]
- Hossain, M.; Saha, M.; Aziz, C.; Hoque, S. Effects of deforestation on the properties of soil of Sal forests in Bangladesh. Dhaka Univ. J. Biol. Sci. 2010, 19, 63–72. [Google Scholar] [CrossRef][Green Version]
- Rasiah, V.; Florentine, S.K.; Williams, B.L.; Westbrooke, M.E. The impact of deforestation and pasture abandonment on soil properties in the wet tropics of Australia. Geoderma 2004, 120, 35–45. [Google Scholar] [CrossRef][Green Version]
- Thomas, S.C.; Gale, N. Biochar and forest restoration: A review and meta-analysis of tree growth responses. New For. 2015, 46, 931–946. [Google Scholar] [CrossRef]
- Vitousek, P.M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 1984, 65, 285–298. [Google Scholar] [CrossRef]
- Ali, M.M.; Saheed, S.M.; Kubota, D.; Masunaga, T.; Wakatsuki, T. Soil degradation during the period 1967–1995 in Bangladesh. Soil Sci. Plant Nutr. 1997, 43, 863–878. [Google Scholar] [CrossRef]
- Bhuiya, Z.H. Organic matter status and organic recycling in Bangladesh soils. Resour. Conserv. 1987, 13, 117–124. [Google Scholar] [CrossRef]
- Islam, A.; Arnin, M.S.; Anwar, M.N. Review of Soil Fertility Research in Bangladesh; Hussain, M.S., Imamul-Huq, S.M., AnwarIqbal, M., Khan, T.H., Eds.; Bangladesh Agriculture Research Council: Faridpur, Bangladesh, 1992; pp. 1–18.
- Biswas, J.C.; Naher, U.A. Soil nutrient stress and rice production in Bangladesh. In Advances in Rice Research for Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Nahar, K., Biswas, J.K., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 431–445. ISBN 9780128143322. [Google Scholar]
- Hariprasad, V.N.; Dayananda, S.H. Environmental impact due to agricultural runoff containing heavy metals—A review. Int. J. Sci. Res. Publ. 2013, 3, 224–280. [Google Scholar]
- Iftekhar, M.S.; Hoque, A.K.F. Causes of Forest Encroachment: An Analysis of Bangladesh. GeoJournal 2005, 62, 95–106. [Google Scholar] [CrossRef]
- Contreas-Hermosella, A. Illegal activities and corruption in the forest sector. In State of the World’s Forests; FAO, Ed.; Food and Agriculture Organization (FAO): Rome, Italy, 2001; pp. 76–89. [Google Scholar]
- Oliver, C.D.; Larson, B.C.; Oliver, C.D. Forest Stand Dynamics; Wiley New York: New York, NY, USA, 1996; ISBN 9780471138334. [Google Scholar]
- Deb, J.C.; Salman, M.H.R.; Halim, M.A.; Chowdhury, M.Q.; Roy, A. Characterising the diameter distribution of sal plantations by comparing normal, lognormal and weibull distributions at tilagarh eco-park, Bangladesh. Southern For. J. For. Sci. 2014, 76, 201–208. [Google Scholar] [CrossRef]
- Imamul Huq, S.M.; Md. Shoaib, J.U. Soil Classification. In The Soils of Bangladesh; Huq, S.M.I., Shoaib, J.U., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2013; pp. 71–82. ISBN 9789400711280. [Google Scholar]
- Islam, M.M.R.; Afroz, H.; Khatun, R.; Islam, M.; Hoque, M. Phosphorus fractionation in acid soil of Lakkatura tea garden, Sylhet, Bangladesh. J. Soil Nat. 2014, 7, 1–6. [Google Scholar]
- Rahman, M.H.; Bahauddin, M.; Khan, M.A.S.A.; Islam, M.J.; Uddin, M.B. Assessment of soil physical properties under plantation and deforested sites in a biodiversity conservation area of north-eastern Bangladesh. Int. J. Environ. Sci. 2012, 3, 1079–1088. [Google Scholar]
- Cornelissen, G.; Pandit, N.R.; Taylor, P.; Pandit, B.H.; Sparrevik, M.; Schmidt, H.P. Emissions and char quality of flame-curtain Kon Tiki kilns for farmer-scale charcoal/biochar production. PLoS ONE 2016, 11, e0154617. [Google Scholar] [CrossRef][Green Version]
- Gale, N.V.; Sackett, T.E.; Thomas, S.C. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds. PeerJ 2016, 4, e2385. [Google Scholar] [CrossRef]
- Hoogsteen, M.J.J.; Lantinga, E.A.; Bakker, E.J.; Groot, J.C.J.; Tittonell, P.A. Estimating soil organic carbon through loss on ignition: Effects of ignition conditions and structural water loss. Eur. J. Soil Sci. 2015, 66, 320–328. [Google Scholar] [CrossRef]
- Bremner, J.M. Nitrogen-Total. In Methods of Soil Analysis: Part 3 Chemical Methods, 5.3; SSSA Book Series; Sparks, D., Page, A., Helmke, P., Loeppert, R., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Wiley & Sons: Madison, WI, USA, 1996; pp. 1085–1121. ISBN 9780891188667. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Pratt, P.F. Potassium. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2; Agronomy Monographs; Norman, A.G., Ed.; Wiley & Sons: Madison, WI, USA, 1965; pp. 1022–1030. ISBN 9780891182047. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. Nlme: Linear and Nonlinear Mixed Effects Models; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Lenth, R. Emmeans: Estimated Marginal Means, aka Least-Squares Means. 2020. Available online: https://cran.r-project.org/web/packages/emmeans/emmeans.pdf (accessed on 26 November 2020).
- International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil, V.2.1; International Biochar Initiative: Westerville, OH, USA, 2015; Available online: https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_Biochar_Standards_V2.1_Final.pdf (accessed on 26 November 2020).
- Glaser, B.; Lehr, V.-I. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Sci. Rep. 2019, 9, 9338. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gao, S.; DeLuca, T.H.; Cleveland, C.C. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Sci. Total Environ. 2019, 654, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Ch’ng, H.Y.; Ahmed, O.H.; Majid, N.M.A.; Jalloh, M.B. Reducing soil phosphorus fixation to improve yield of maize on a tropical acid soil using compost and biochar derived from agro-industrial wastes. Compost Sci. Util. 2017, 25, 82–94. [Google Scholar] [CrossRef]
- Gezahegn, S.; Sain, M.; Thomas, S. Variation in feedstock wood chemistry strongly influences biochar liming potential. Soil Syst. 2019, 3, 26. [Google Scholar] [CrossRef][Green Version]
- Karim, A.A.; Kumar, M.; Singh, S.K.; Panda, C.R.; Mishra, B.K. Potassium enriched biochar production by thermal plasma processing of banana peduncle for soil application. J. Anal. Appl. Pyrolysis 2017, 123, 165–172. [Google Scholar] [CrossRef]
- Bass, A.M.; Bird, M.I.; Kay, G.; Muirhead, B. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Sci. Total Environ. 2016, 550, 459–470. [Google Scholar] [CrossRef]
- Li, X.; Lu, J.; Wu, L.; Chen, F. The difference of potassium dynamics between yellowish red soil and yellow cinnamon soil under rapeseed (Brassica napus L.)–rice (Oryza sativa L.) rotation. Plant Soil 2009, 320, 141–151. [Google Scholar] [CrossRef]
- Mensah, A.K.; Frimpong, K.A. Biochar and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana. Int. J. Agron. 2018, 2018, 6837404. [Google Scholar] [CrossRef][Green Version]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef]
- Zhu, Q.; Peng, X.; Huang, T. Contrasted effects of biochar on maize growth and N use efficiency depending on soil conditions. Int. Agrophysics 2015, 29, 257–266. [Google Scholar] [CrossRef]
- Rondon, M.A.; Lehmann, J.; Ramírez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil. Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Thomas, S.C.; Halim, M.A.; Gale, N.V.; Sujeeun, L. Biochar enhancement of facilitation effects in agroforestry: Early growth and physiological responses in a maize-leucaena model system. Agrofor. Syst. 2018. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Xu, R.-K.; Wang, N.; Li, J.-Y. Amendment of acid soils with crop residues and biochars. Pedosphere 2011, 21, 302–308. [Google Scholar] [CrossRef]
- Sparks, D.L. Ion exchange processes. In Environmental Soil Chemistry; Sparks, D.L., Ed.; Academic Press: Burlington, VT, USA, 2003; pp. 187–205. ISBN 9780126564464. [Google Scholar]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Liao, W.; Thomas, S. Biochar particle size and post-pyrolysis mechanical processing affect soil pH, water retention capacity, and plant performance. Soil Syst. 2019, 3, 14. [Google Scholar] [CrossRef][Green Version]
- Lim, T.J.; Spokas, K.A.; Feyereisen, G.W.; Weis, R.; Koskinen, W.C. Influence of biochar particle size and shape on soil hydraulic properties. J. Environ. Sci. Eng. 2017, 5, 8–15. [Google Scholar]
- Lei, O.; Zhang, R. Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J. Soils Sedim. 2013, 13, 1561–1572. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhu, L.-X.; Shen, Y.-F.; Li, S.-Q. Sensitivity of soil water retention and availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment. Field Crops Res. 2016, 196, 284–293. [Google Scholar] [CrossRef]
- Obia, A.; Mulder, J.; Martinsen, V.; Cornelissen, G.; Børresen, T. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Tillage Res. 2016, 155, 35–44. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202–203, 183–191. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef][Green Version]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Zong, Y.; Hu, Z.; Wu, S.; Zhou, J.; Jin, Y.; Zou, J. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta-analysis. GCB Bioenergy 2016, 8, 392–406. [Google Scholar] [CrossRef]
- Kimetu, J.M.; Lehmann, J. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Soil Res. 2010, 48, 577–585. [Google Scholar] [CrossRef]
- Glaser, B.; Wiedner, K.; Seelig, S.; Schmidt, H.-P.; Gerber, H. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron. Sustain. Dev. 2015, 35, 667–678. [Google Scholar] [CrossRef][Green Version]
Properties | Unit | Mean Value ± SE (n = 3) |
---|---|---|
Al | % | 0.083 ± 0.003 |
As | ppm | 1.000 ± 0.000 |
Ba | ppm | 17.667 ± 0.333 |
Total C | % | 72.1 ± 0.073 |
Ca | % | 1.820 ± 0.031 |
Cd | ppm | 0.150 ± 0.041 |
Ce | ppm | 1.000 ± 0.000 |
Co | ppm | 0.467 ± 0.033 |
Cr | ppm | 11.000 ± 2.517 |
Cu | ppm | 16.200 ± 0.208 |
Fe | % | 0.900 ± 0.015 |
K | % | 2.060 ± 0.038 |
La | ppm | 0.533 ± 0.033 |
Li | ppm | 0.433 ± 0.033 |
Total N | % | 1.8 ± 0.014 |
Na | % | 0.051 ± 0.002 |
Nb | ppm | 1.067 ± 0.033 |
Ni | ppm | 4.333 ± 0.133 |
P | % | 0.235 ± 0.002 |
Rb | ppm | 25.000 ± 0.404 |
Pb | ppm | 3.167 ± 0.067 |
Mg | % | 0.120 ± 0.000 |
Mn | ppm | 131.667 ± 2.728 |
Mo | ppm | 1.767 ± 0.033 |
Sb | ppm | 0.100 ± 0.000 |
Sn | ppm | 1.467 ± 0.088 |
Sr | ppm | 70.333 ± 1.453 |
Th | ppm | 0.133 ± 0.033 |
Tl | ppm | < 0.05 |
W | ppm | 0.200 ± 0.000 |
Y | ppm | 0.333 ± 0.033 |
Zn | ppm | 799.667 ± 35.751 |
Zr | ppm | 2.233 ± 0.393 |
Volatile matter | % | 70.2 ± 0.89 |
Ash content | % | 7.9 ± 0.12 |
pH | - | 7.6 ± 0.11 |
EC | µS.cm−1 | 532.3 ± 17.6 |
Bulk density | g·cm−3 | 0.141 ± 0.005 |
Factor | Term | F-Value (DF) | Adj. p-Value | Contrast | Estimate ± SE | Adj. p-Value |
---|---|---|---|---|---|---|
Total N (%) | Tmt | 0.39 (40) | 0.53 | b—c | −0.01 ± 0.01 | 0.53 |
LU | 1.06 (40) | 0.35 | ||||
Tmt × LU | 0.75 (40) | 0.47 | b_tea_mc—c_tea_mc | 0.004 ± 0.02 | 1.00 | |
b_tea_af—c_tea_af | −0.002 ± 0.02 | 1.00 | ||||
b_for—c_for | −0.037 ± 0.02 | 0.75 | ||||
Available P (%) | Tmt | 2.1 (40) | 0.15 | b—c | 7.64 ± 8.19 | 0.15 |
LU | 31.96 (40) | <0.01 | ||||
Tmt × LU | 2.63 (40) | <0.01 | b_tea_mc—c_tea_mc | 23.17 ± 8.61 | 0.01 | |
b_tea_af—c_tea_af | −3.05 ± 8.61 | 0.99 | ||||
b_for—c_for | 0.37 ± 10.54 | 1.00 | ||||
Available K (%) | Tmt | 0.92 (40) | 0.34 | b—c | −0.009 ± 0.01 | 0.34 |
LU | 7.78 (4) | <0.01 | ||||
Tmt × LU | 0.11 (40) | 0.89 | b_tea_mc—c_tea_mc | −0.005 ± 0.01 | 0.99 | |
b_tea_af—c_tea_af | −0.009 ± 0.02 | 0.99 | ||||
b_for—c_for | −0.016 ± 0.02 | 0.95 | ||||
pH | Tmt | 0.91 (40) | 0.34 | b—c | 0.053 ± 0.12 | 0.34 |
LU | 72.72 (40) | <0.01 | ||||
Tmt × LU | 29.10 (40) | <0.01 | b_tea_mc—c_tea_mc | 0.1 ± 0.09 | 0.09 | |
b_tea_af—c_tea_af | −0.001 ± 0.09 | 1.00 | ||||
b_for—c_for | 0.069 ± 0.11 | 0.98 | ||||
Moisture Content (%) | Tmt | 5.53 (40) | 0.02 | b—c | 1.75 ± 2.13 | 0.02 |
LU | 158.59 (4) | <0.01 | ||||
Tmt × LU | 4.42 (40) | <0.01 | b_tea_mc—c_tea_mc | 4.56 ± 1.22 | 0.006 | |
b_tea_af—c_tea_af | −0.225 ± 1.22 | 1.00 | ||||
b_for—c_for | 0.46 ± 1.49 | 0.99 | ||||
Bulk density (g·cm−3) | Tmt | 8.53 (40) | <0.01 | b—c | −0.123 ± 0.05 | 0.03 |
LU | 23.00 (40) | <0.01 | ||||
Tmt × LU | 0.40 (40) | <0.01 | b_tea_mc—c_tea_mc | −0.16 ± 0.06 | 0.08 | |
b_tea_af—c_tea_af | −0.13 ± 0.06 | 0.03 | ||||
b_for—c_for | −0.06 ± 0.08 | 0.97 | ||||
Organic Matter (%) | Tmt | 13.11 (40) | <0.01 | b—c | 1.12 ± 0.29 | <0.01 |
LU | 0.32 (40) | 0.72 | ||||
Tmt × LU | 2.8 (40) | 0.02 | b_tea_mc—c_tea_mc | 0.95 ± 0.50 | 0.04 | |
b_tea_af—c_tea_af | 1.16 ± 0.50 | 0.02 | ||||
b_for—c_for | 1.31 ± 0.61 | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karim, M.R.; Halim, M.A.; Gale, N.V.; Thomas, S.C. Biochar Effects on Soil Physiochemical Properties in Degraded Managed Ecosystems in Northeastern Bangladesh. Soil Syst. 2020, 4, 69. https://doi.org/10.3390/soilsystems4040069
Karim MR, Halim MA, Gale NV, Thomas SC. Biochar Effects on Soil Physiochemical Properties in Degraded Managed Ecosystems in Northeastern Bangladesh. Soil Systems. 2020; 4(4):69. https://doi.org/10.3390/soilsystems4040069
Chicago/Turabian StyleKarim, Md. Rezaul, Md Abdul Halim, Nigel V. Gale, and Sean C. Thomas. 2020. "Biochar Effects on Soil Physiochemical Properties in Degraded Managed Ecosystems in Northeastern Bangladesh" Soil Systems 4, no. 4: 69. https://doi.org/10.3390/soilsystems4040069