Proximal Mobile Gamma Spectrometry as Tool for Precision Farming and Field Experimentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites and Sample Set
2.2. Ground Truth Sampling and Soil Analyses
2.3. Gamma Measurements
2.3.1. Principles
2.3.2. Instrumentation and Data Recording
2.3.3. Noise Reduction
2.4. Model Calibration
2.5. Statistical Evaluation
3. Results
3.1. Comparing Site-Independent and Site-Specific Calibration
3.2. Recognition of Spatial Patterns
3.3. Texture Prediction
3.4. Gamma Spectrometry as a Tool for Precision Farming
3.4.1. Considering in-Field Heterogeneity for Estimation of Lime Requirement
3.4.2. Estimation of FC as Basic Data for Irrigation Management
3.5. Gamma Spectrometry as A Tool to Support Field Experimentation
3.5.1. Choosing the Optimal Position of the Plot Experiment Within the Field
3.5.2. Supporting Field Experimentation with Texture Prediction at High Spatial Resolution
3.5.3. Providing Texture Information as Co-Variable for Future Vegetation Monitoring in a New Experiment
4. Discussion
4.1. Universal Applicability of the Site-Independent Model by Heggemann et al. [8]
4.2. Recognition of Spatial Patterns of Gamma Features
4.3. Quantitative Texture Prediction: Chances and Limitations
4.4. Application Examples in Precision Agriculture and Field Experimentation
4.5. Complementarity with Electromagnetic Induction
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuang, B.; Mahmood, H.S.; Quraishi, M.Z.; Hoogmoed, W.B.; Mouazen, A.M.; van Henten, E.J. Sensing Soil Properties in the Laboratory, In Situ, and On-Line: A Review. Adv. Agron. 2012, 114, 155–223. [Google Scholar] [CrossRef]
- Mahmood, H.S.; Hoogmoed, W.B.; van Henten, E.J. Proximal gamma-ray spectroscopy to predict soil properties using windows and full-spectrum analysis methods. Sensors 2013, 13, 16263–16280. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, N.; Herrmann, L. Gamma-ray spectrometry as versatile tool in soil science: A critical review. J. Plant Nutr. Soil Sci. 2019, 182, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.E.; Corner, R.J.; Groves, P.R.; Grealish, G.J. Use of airborne gamma radiometric data for soil mapping. Aust. J. Soil Res. 1996, 34, 183–194. [Google Scholar] [CrossRef]
- IAEA, International Atomic Energy Agency. Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data; IAEA-TECDOC-1363; IAEA: Vienna, Austria, 2003. [Google Scholar]
- Megumi, K.; Mamuro, T. Concentration of uranium series nuclides in soil particles in relation to their size. J. Geophys. Res. 1977, 82, 353–356. [Google Scholar] [CrossRef]
- Priori, S.; Bioanconi, N.; Costantini, E.A.C. Can γ-radiometrics predict soil textural data and stoniness in different parent materials? A comparison of two machine-learning methods. Geoderma 2014, 226–227, 354–364. [Google Scholar] [CrossRef]
- Heggemann, T.; Welp, G.; Amelung, W.; Angst, G.; Franz, S.O.; Koszinski, S.; Schmidt, K.; Pätzold, S. Proximal gamma-ray spectrometry for site-independent in situ prediction of soil texture on ten heterogeneous fields in Germany using support vector machines. Soil Till. Res. 2017, 99–109. [Google Scholar] [CrossRef]
- Stahr, K. Mineralbestand von Böden. In Scheffer/Schachtschabel Lehrbuch der Bodenkunde; Amelung, W., Blume., H.-P., Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., Wilke, B.-M., Eds.; Springer Spektrum: Berlin/Heidelberg, Germany, 2018; pp. 59–60. [Google Scholar]
- Welp, G. Radionuklide. In Scheffer/Schachtschabel Lehrbuch der Bodenkunde; Amelung, W., Blume, H.-P., Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., Wilke, B.-M., Eds.; Springer Spektrum: Berlin/Heidelberg, Germany, 2018; pp. 614–622. [Google Scholar]
- Wonik, T. Gamma-ray measurements in the Kirchrode I and II boreholes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 174, 97–105. [Google Scholar] [CrossRef]
- Piikki, K.; Söderström, M. Digital soil mapping of arable land in Sweden – Validation of performance at multiple scales. Geoderma 2019, 352, 342–350. [Google Scholar] [CrossRef]
- van der Klooster, E.; van Egmond, F.M.; Sonneveld, M.P.W. Mapping soil clay contents in Dutch marine districts using gamma-ray spectrometry. Europ. J. Soil Sci. 2011, 62, 743–753. [Google Scholar] [CrossRef]
- Petersen, H.; Wunderlich, T.; al Hagrey, S.A.; Rabbel, W. Characterization of some Middle European soil textures by gamma-spectrometry. J. Plant Nutr. Soil Sci. 2012, 175, 651–660. [Google Scholar] [CrossRef]
- van Egmond, F.M.; Loonstra, E.H.; Limburg, J. Gamma ray sensor for topsoil mapping: The Mole. In Proximal Soil Sensing; Viscarra Rossel, R.A., McBratney, A.B., Minasny, B., Eds.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; London, UK; New York, NY, USA, 2010; pp. 323–332. [Google Scholar]
- Loonstra, E.; van Egmond, F. On-the-go measurement of soil gamma radiation. In Precision Agriculture ‘—Papers Presented at the 7th European Conference on Precision Agriculture; van Henten, E.J., Goense, D., Lokhorst, C., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2009; pp. 415–422. [Google Scholar]
- Gilmore, G. Practical Gamma Ray Spectrometry, 2nd ed.; repr. with corr.; Wiley: Chichester, UK, 2011; 387p. [Google Scholar]
- Dickson, B.L.; Taylor, G.M. Quietening the noise: An evaluation of noise reduction methods applied to aerial gamma-ray survey data. Explor. Geophys. 2003, 34, 97–102. [Google Scholar] [CrossRef]
- Pätzold, S.; Heggemann, T.; Welp, G.; Leenen, M. Small plot field experiments and proximal soil sensing (gamma and mid-infrared spectroscopy) provide reciprocal services. In Proceedings of the 12th European Conference on Precision Agriculture, Montpellier, France, 8–11 July 2019; pp. 146–147, (Book of Poster Abstracts). Available online: http://ecpa2019.agrotic.org/wp-content/uploads/2019/07/ECPA2019_Proceedings_Poster.pdf (accessed on 4 February 2020).
- Dennerley, C.; Huang, J.; Nielson, R.; Sefton, M.; Triantafilis, J. Identifying soil management zones in a sugarcane field using proximal sensed electromagnetic induction and gamma-ray spectrometry data. Soil Use Manag. 2018, 34, 219–235. [Google Scholar] [CrossRef]
- Mertens, F.M.; Pätzold, S.; Welp, G. Spatial heterogeneity of soil properties and its mapping with apparent electrical conductivity. J. Plant Nutr. Soil Sci. 2008, 171, 146–154. [Google Scholar] [CrossRef]
- Sun, Y.; Druecker, H.; Hartung, E.; Hueging, H.; Cheng, Q.; Zeng, Q.; Sheng, W.; Lin, J.; Roller, O.; Paetzold, S.; et al. Map-based investigation of soil physical conditions and crop yield using diverse sensor techniques. Soil Till. Res. 2011, 112, 149–158. [Google Scholar] [CrossRef]
- Pätzold, S.; Hbirkou, C.; Dicke, D.; Gerhards, R.; Welp, G. Linking weed patterns with soil sensing data – a long-term case study. Precis. Agric. 2020, 21, 569–588. [Google Scholar] [CrossRef] [Green Version]
- Sauer, D.; Felix-Henningsen, P. Saprolite, soils, and sediments in the Rhenish Massif as records of climate and landscape history. Quatern. Int. 2006, 156, 4–12. [Google Scholar] [CrossRef]
- GD-NRW, Geologischer Dienst Nordrhein-Westfalen. Bodenkarte zur Landwirtschaftlichen Standorterkundung 1:5000, m. Erl; [Auszug aus dem digitalen Fachinformationssystem Bodenkunde], Verfahren Meckenheim-Rheinbach-Swisttal, LP (Landwirtschaft); Geologischer Dienst NRW: Krefeld, Germany, 2008; Available online: https://www.geoportal.nrw/themenkarten (accessed on 25 February 2020).
- van Reeuwijk, L.P. Procedures for Soil Analysis; Technical paper No. 9; International Soil Reference and Information Centre: Wageningen, The Netherlands, 2002; Available online: https://www.isric.org/explore/library (accessed on 16 October 2019).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015; International soil classification system for naming soils and creating legends for soil maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/soils-portal/soil-survey/soil-classification/world-reference-base/en/ (accessed on 10 October 2019).
- AG Boden, Ad-hoc-Arbeitsgruppe Boden. Bodenkundliche Kartieranleitung, 5th ed.; Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2005; 438p. [Google Scholar]
- VDLUFA, Verband der Landwirtschaftlichen Untersuchungs- und Forschungsanstalten. Bestimmung des Kalkbedarfs von Acker- und Grünlandböden. 2000. Available online: https://www.vdlufa.de/Dokumente/Veroeffentlichungen/Standpunkte/0-9-kalk.pdf (accessed on 25 November 2019).
- Dickson, B.L.; Scott, K.M. Interpretation of aerial gamma-ray surveys—adding the geochemical factors. AGSO J. Aust. Geol. Geophys. 1997, 17, 187–200. [Google Scholar]
- Wilford, J.R.; Bierwirth, P.N.; Craig, M.A. Application of airborne gamma-ray spectrometry in soil/regolith mapping and applied geomorphology. AGSO J. Aust. Geol. Geophys. 1997, 17, 201–216. [Google Scholar]
- Meyer, W. Geologie der Eifel, 4th ed.; Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller): Stuttgart, Germany, 2011; 704p. [Google Scholar]
- Coulouma, G.; Caner, L.; Loonstra, E.H.; Lagacherie, P. Analysing the proximal gamma radiometry in contrasting Mediterranean landscapes: Towards a regional prediction of clay content. Geoderma 2016, 266, 127–135. [Google Scholar] [CrossRef]
- Becegato, V.A.; Becegato, V.R.; Baum, C.A.; Lavnitcki, L.; Paulino, A.T. Multivariate statistical analysis correlating 238U, 232Th, and 40K equivalent activities in soil to geochemical data from an agricultural area. J. Soils Sediments 2019, 19, 1901–1910. [Google Scholar] [CrossRef]
- Vos, C.; Don, A.; Prietz, R.; Heidkamp, A.; Freibauer, A. Field-based soil-texture estimates could replace laboratory analysis. Geoderma 2016, 267, 215–219. [Google Scholar] [CrossRef]
- Stancu-Kristoff, G.; Vogel, A. Exkursion D—Zentrales Münsterland. In: Exkursionsführer Jahrestagung 1989 in Münster. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 58, 259–315. Available online: https://www.dbges.de/de/system/files/mitteilungen_dbg/Mitteilungen der DBG 1989_58.pdf (accessed on 24 January 2020).
- Mills, B.E.; Brorsen, B.W.; Arnall, D.B. The profitability of variable rate lime in wheat. Precis. Agric. 2019. online first. [Google Scholar] [CrossRef]
- Dordas, C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 2008, 28, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Leenen, M.; Welp, G.; Gebbers, R.; Pätzold, S. Rapid determination of lime requirement by mid-infrared spectroscopy: A promising approach for precision agriculture. J. Plant Nutr. Soil Sci. 2019, 182, 953–963. [Google Scholar] [CrossRef] [Green Version]
- Vogel, S.; Gebbers, R.; Oertel, M.; Kramer, E. Evaluating Soil-Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing. Sensors 2019, 19, 4593. [Google Scholar] [CrossRef] [Green Version]
- Pätzold, S.; Leenen, M.; Frizen, P.; Heggemann, T.; Wagner, P.; Rodionov, A. Predicting plant available phosphorus using infrared spectroscopy with consideration for future mobile sensing applications in precision farming. Precis. Agric. 2019. Online First. [Google Scholar] [CrossRef] [Green Version]
- Hagverdi, A.; Leib, B.G. Site specific irrigation systems. In Precision agriculture for sustainability; Stafford, J., Ed.; Burleigh Dodds series in agricultural science 52; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 323–346. [Google Scholar]
- Bondesan, L.; Ortiz, B.V.; Morata, G.T.; Damianidis, D.; Jimenez, A.F.; Vellidis, A.F.; Morari, F. Evaluating and improving soil sensor-based variable irrigation scheduling on farmers’ fields in Alabama. In Precision Agriculture ‘19—Papers Presented at the 12th European Conference on Precision Agriculture; Stafford, J., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2009; pp. 649–664. [Google Scholar]
- Hedley, C.B.; Yule, I.J. Soil water status mapping and two variable-rate irrigation scenarios. Precis. Agric. 2009, 10, 342–355. [Google Scholar] [CrossRef]
- Hejcman, M.; Češková, M.; Schellberg, J.; Pätzold, S. The Rengen Grassland Experiment: Effect of Soil Chemical Properties on Biomass Production, Plant Species Composition and Species Richness. Folia Geobot. 2010, 45, 125–142. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. The Application of EM38: Determination of Soil Parameters, Selection of Soil Sampling Points and Use in Agriculture and Archaeology. Sensors 2017, 17, 2540. [Google Scholar] [CrossRef] [Green Version]
- Saey, T.; Simpson, D.; Vermeesch, H.; Cockx, L.; van Meirvenne, M. Comparing the EM38DD and DUALEM-21S Sensors for Depth-to-Clay Mapping. Soil Sci. Soc. Am. J. 2009, 73, 7–12. [Google Scholar] [CrossRef]
- Gebbers, R. Proximal soil surveying and monitoring techniques. In Precision Agriculture for Sustainability; Stafford, J., Ed.; Burleigh Dodds series in agricultural science 52; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 29–78. [Google Scholar]
Site | Land Use | No. of Soil Samples; Sampling Strategy | Sand | Silt | Clay |
---|---|---|---|---|---|
Mean Content (min-max) [%] in Conventionally Analysed Soil Samples | |||||
Münster | Cropland | 45 (raster) | 57 (21–80) | 15 (9–21) | 26 (9–55) |
Düren | Cropland whole field experimental plots | 11 (stratified) 48 (plots) | 44 (34–59) | 38 (26–44) | 16 (11–20) |
Ahrweiler | Cropland | 71 (raster) | 12 (7–23) | 57 (37–70) | 30 (18–57) |
Rheinbach-1 | Cropland | 42 (raster) | 25 (12–37) | 43 (40–65) | 14 (21–28) |
Rheinbach-2 | permanent pasture | 81 (raster) | 38 (22–51) | 40 (27–49) | 20 (14–28) |
Uckermark-1 | Cropland | 81 (stratified) | 61 (36–81) | 23 (11–40) | 14 (5–21) |
Uckermark-2 | Cropland | 39 (stratified) | 57 (34–78) | 26 (16–37) | 16 (6–27) |
------------------------------ Calibration ------------------------------ | -------------------------------------------------- Validation -------------------------------------------------- | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CAL Sites (N) | Conventionally Measured Grain Size Classes [%] in CAL Dataset | VAL Site (1) (N) | Conventionally Measured Grain Size Classes [%] in VAL Dataset | Mean Absolute Error [%] for VAL (Prediction) | ||||||||
Sand | Silt | Clay | Sand | Silt | Clay | Sand | Silt | Clay | ||||
2–11 (N = 510) | Min/Max Mean SD | 6/81 31.1 19.5 | 11/87 47.2 16.2 | 4/57 20.2 6.8 | 1 (N = 79) | Min/Max Mean SD | 21/80 63.0 13.2 | 9/21 14.4 2.6 | 9/55 21.2 10.9 | 21 | 15 | 15 |
1 & 3–11 (N = 508) | Min/Max Mean SD | 6/80 31.1 20.4 | 9/87 45.9 18.3 | 4/57 21.4 7.4 | 2 (N = 81) | Min/Max Mean SD | 36/81 61.0 7.4 | 11/40 23.4 4.3 | 5/21 14.0 3.5 | 4 | 3 | 3 |
1–2 & 4–11 (N = 550) | Min/Max Mean SD | 6/81 33.9 21.5 | 9/87 44.0 18.8 | 4/57 20.7 7.5 | 3 (N = 39) | Min/Max Mean SD | 34/78 56.9 9.5 | 16/37 25.6 4.8 | 6/27 16.0 5.9 | 4 | 3 | 3 |
1–3 & 5–11 (N = 547) | Min/Max Mean SD | 6/81 36.2 22.2 | 9/87 42.0 19.2 | 4/57 20.3 7.7 | 4 (N = 42) | Min/Max Mean SD | 12/37 24.6 6.8 | 40/65 52.8 7.0 | 14/28 21.4 2.7 | 5 | 18 | 12 |
1–10 (N = 523) | Min/Max Mean SD | 6/81 38.4 21.2 | 9/87 40.9 18.9 | 4/55 19.3 6.6 | 11 (N = 66) | Min/Max Mean SD | 7/23 11.7 3.7 | 37/69 57.7 7.8 | 18/57 29.1 7.7 | 4 | 7 | 7 |
Site | Clay [%] min–max | Total Counts [cps] min–max | Correlation Equation | R2 | RMSE | N |
---|---|---|---|---|---|---|
Ahrweiler | 18–57 | 1069–1359 | TC = −6.7 × clay + 1478 | 0.81 | 3.7 | 71 |
Rheinbach-1, cropland | 14–28 | 868–1143 | TC = −6.3 × clay + 1181 | 0.06 | 2.5 | 42 |
Rheinbach-2, pasture | 14–29 | 834–1133 | TC = 21.6 × clay + 549 | 0.60 | 2.2 | 108 |
Clay Content (1) | Texture Class According to…. | Lime Requirement | Field Capacity | |
---|---|---|---|---|
[% w/w] | Soil Survey (2) | Advisory Service (3) | [kg CaO ha−1 a−3] (4) | [% v/v] (5) |
Ahrweiler | ||||
45–65 | n.p. | 5 | 2000 | n.p. |
30–45 | n.p. | 5 | 2000 | n.p. |
25–35 | n.p. | 5 | 2000 | n.p. |
17–25 | n.p. | 4 | 1700 | n.p. |
Münster | ||||
25–45 | Lts | 4 | 1700 | 44 |
17–25 | Ls4 | 4 | 1700 | 39 |
12–17 | Sl4 | 3 | 1400 | 36 |
8–12 | Sl3 | 2 | 1000 | 34 |
5–8 | Sl2 | 2 | 1000 | 28 |
< 5 | Su2 | 1 | 600 | 26 |
Whole Field | Realised Position of Experiment | Alternative Positions of Experiment | |||
---|---|---|---|---|---|
A | B | C | |||
N | 3591 | 256 | 380 | 321 | 360 |
Min-Max [cps] | 86–243 | 107–189 | 86–200 | 96–188 | 110–181 |
Mean [cps] | 146 | 146 a | 145 a | 147 a | 141 b |
CV % | 15.1 | 11.2 | 13.2 | 9.9 | 9.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pätzold, S.; Leenen, M.; Heggemann, T.W. Proximal Mobile Gamma Spectrometry as Tool for Precision Farming and Field Experimentation. Soil Syst. 2020, 4, 31. https://doi.org/10.3390/soilsystems4020031
Pätzold S, Leenen M, Heggemann TW. Proximal Mobile Gamma Spectrometry as Tool for Precision Farming and Field Experimentation. Soil Systems. 2020; 4(2):31. https://doi.org/10.3390/soilsystems4020031
Chicago/Turabian StylePätzold, Stefan, Matthias Leenen, and Tobias W. Heggemann. 2020. "Proximal Mobile Gamma Spectrometry as Tool for Precision Farming and Field Experimentation" Soil Systems 4, no. 2: 31. https://doi.org/10.3390/soilsystems4020031
APA StylePätzold, S., Leenen, M., & Heggemann, T. W. (2020). Proximal Mobile Gamma Spectrometry as Tool for Precision Farming and Field Experimentation. Soil Systems, 4(2), 31. https://doi.org/10.3390/soilsystems4020031