The Spatial Prediction of Soil Texture Fractions in Arid Regions of Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Region
2.2. Soil Sampling and Laboratory Analysis
2.3. Modeling Soil Texture Depth Function in Soil Profiles
2.4. Auxiliary Variables
- The SRTM (Shuttle Radar Topography Mission) digital elevation model (DEM—90 m resolution) was used to extract terrain attributes (Table 1) in the SAGA (System for Automated Geoscientific Analyses) geographical system [29]. The parameters such as Aspect, catchment slope (CS), elevation, LS_Factor (Slope Length and Steepness factor), modified catchment area, multi-resolution ridge-top flatness index (MRRTF), multi-resolution, valley-bottom flatness index (MrVBF), slope, topographic wetness index (TWI), and valley depth, were calculated and extracted in SAGA’s geographical system environment. The extraction of these parameters was described in the method proposed by Hengl et al. [32].
- Landsat 8 satellite images taken in 2015 were used, including bands B2 (0.450 to 0.515 μm—15 m resolution), B3 (0.525–0.600 μm—15 m resolution), B4 (0.630–0.680 μm—15 m resolution), B5 (0.845–0.885 μm—15 m resolution), B6 (1.560–1.660 μm—15 m resolution), B7 (2.100–2.300 μm—15 m resolution), B8 (0.500–0.680 μm—15 m resolution), B10 (10.6–11.2 μm—100 m resolution) and B11 (11.5–12.5 μm—100 m resolution). To control the quality of the Landsat 8 data used and to ascertain whether systemic and non-systematic errors were resolved or left to the system’s correction, the data were monitored and processed. The following indices were then calculated: normalized difference vegetation index (NDVI), perpendicular vegetation index (PVI), green normalized difference vegetation index (GNDVI), green soil adjusted vegetation index (GSAVI), normalized difference water index (NDWI), and modified, soil-adjusted vegetation index (MSAVI). The images were georeferenced before use, and the remote sensing indices were applied for a better description of the study area in the modelling (Table 1).
- The soil spectral data obtained by a spectrometer was also used as auxiliary variables. For this purpose, the spectroradiometer was used with a 20-watt halogen bulb as an optical source. The grinding of soil particles has a significant effect on the soil spectrum and generally increases the reflection, and the drying of the sample also has the same effect as grinding, increasing the total reflection. According to this, air-dried soil samples were passed through a 2-mm sieve and their spectral curves were measured in the visible, near infrared, and middle infrared (350–2500 nm) in a dark room and used for white panel spectra upon calibration (Table 1).
- 4.
- A geomorphic map was prepared using aerial photographs with scale of 1:40,000 and through plotting geomorphic surfaces by air photo interpretation (API) based on formation processes, general structure, and morphometries. The geomorphological entities were defined through a nested geomorphological hierarchy. During stereoscopic delineation, we employed our existing knowledge in soil-scape relationships together with geology, topography, and geomorphology. The interpreted air photos of the study area were imported into a GIS environment, and geomorphic surfaces were mapped and inserted into the GIS via on-screen digitization, following ortho-photo geo-referencing. In all, 19 geomorphic surfaces were identified (Figure 2 and Table 2).
2.5. Spatial Prediction
2.6. The Comparison of Digital Soil Maps
3. Results and Discussion
3.1. A Summary of the Statistical Data
3.2. The Soil Spectrum’s Characteristics
3.3. Effective Auxiliary Data
3.4. Spatial Prediction
3.4.1. Regression Tree (RT)
3.4.2. Artificial Neural Network (ANN)
3.4.3. Neuro-Fuzzy Technique (ANFIS)
3.5. A Comparison of the Models
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akpa, S.I.C.; Odeh, I.O.A.; Bishop, T.F.A. Digital mapping of soil particle-size fractions for Nigeria. Soil Sci. Soc. Am. J. 2014, 78, 1953–1966. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 11st ed.; United States Department of Agriculture: Washington, DC, USA, 2014. [Google Scholar]
- Amin, P.; Taghizadeh-Mehrjardi, R.; Akbarzadeh, A.; Shirmardi, M. Comparison of data mining techniques to predict and map the Atterberg limits in central plateau of Iran. Pol. J. Soil Sci. 2018, 51, 185. [Google Scholar] [CrossRef]
- Lie, M.; Glaser, B.; Huwe, B. Uncertainty in the spatial prediction of soil texture: Comparison of regression tree and random forest models. Geoderma 2012, 170, 70–79. [Google Scholar]
- Minasny, B.; Hartemink, A.E. Predicting soil properties in the tropics. Earth Sci. Rev. 2011, 106, 52–62. [Google Scholar]
- Thompson, J.A.; Roecker, S.; Grunwald, S.; Owens, P.R. Digital soil mapping: Interactions with and applications for hydropedology. In Hydropedology; Lin, H., Ed.; Academic Press: Amsterdam, The Netherlands, 2012; pp. 665–709. [Google Scholar]
- Amirian-Chakan, A.; Minasny, B.; Taghizadeh-Mehrjardi, R.; Akbarifazli, R.; Darvishpasand, Z.; Khordehbin, S. Some practical aspects of predicting texture data in digital soil mapping. Soil Tillage Res. 2019, 194, 104289. [Google Scholar] [CrossRef]
- Muzzamal, M.; Huang, J.; Nielson, R.; Sefton, M.; Triantafilis, J. Mapping soil particle-size fractions (PSFs) using additive-log ratio transformation and proximal sensed ancillary data. Clays Clay Min. 2018, 66, 9–27. [Google Scholar]
- Huang, J.; Buchanan, S.; Bishop, T.F.A.; Triantafilis, J. Terra GIS—A web GIS for delivery of digital soil maps in cotton growing areas of Australia. Soil Use Man. 2017, 33, 568–582. [Google Scholar] [CrossRef]
- Zare, E.; Huang, J.; Ahmed, M.F.; Malik, R.S.; Subasinghe, R.; Triantafilis, J. Comparing traditional and digital soil mapping at the district scale using REML analysis. Soil Res. 2018, 56, 535–547. [Google Scholar] [CrossRef]
- Adhikari, K.; Kheir, R.B.; Greve, M.B.; Bocher, P.K.; Malone, B.P.; Minasny, B.; McBratney, A.B.; Greve, M.H. High-resolution 3-D mapping of soil texture in Denmark. Soil Sci. Soc. Am. J. 2013, 77, 860–876. [Google Scholar] [CrossRef]
- Bishop, T.F.A.; McBratney, A.B.; Laslett, G.M. Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma 1999, 91, 27–45. [Google Scholar] [CrossRef]
- Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology; McGraw-Hill: New York, NY, USA, 1941; p. 281. [Google Scholar]
- Minasny, B.; McBratney, A.B.; Mendonça-Santos, M.L.; Odeh, I.O.A.; Guyon, B. Prediction and digital mapping of soil carbon storage in the Lower Namoi Valley. Aust. J. Soil Res. 2006, 44, 233–244. [Google Scholar] [CrossRef]
- Campbell, N.A.; Mulcahy, M.J.; McArthur, W.M. Numerical classifi cation of soil profi les on the basis of fi eld morphological properties. Aust. J. Soil Res. 1970, 8, 43–58. [Google Scholar] [CrossRef]
- Ponce-Hernandez, R.; Marriott, F.H.C.; Beckett, P.H.T. An improved method for reconstructing a soil profi le from analyses of a small number of samples. J. Soil Sci. 1986, 37, 455–467. [Google Scholar] [CrossRef]
- Malone, B.P.; McBratney, A.B.; Minasny, B.; Laslett, G.M. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma 2009, 154, 138–152. [Google Scholar] [CrossRef]
- Malone, B.P.; McBratney, A.B.; Minasny, B. Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes. Geoderma 2011, 160, 614–626. [Google Scholar] [CrossRef]
- Odgers, N.P.; Libohova, Z.; Thompson, J.A. Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale. Geoderma 2012, 189–190, 153–163. [Google Scholar] [CrossRef]
- Taghizadeh Mehrjardi, R.; Minasny, B.; Sarmadian, F.; Malone, P.B. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma 2014, 213, 15–28. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Ayoubi, S.; Namazi, Z.; Malone, B.P.; Zolfaghari, A.A.; Sadrabadi, F.R. Prediction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming. Arid Land Res. Manag. 2016, 30, 49–64. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Minasny, B.; Toomanian, N.; Zeraatpisheh, M.; Amirian-Chakan, A.; Triantafilis, J. Digital Mapping of Soil Classes Using Ensemble of Models in Isfahan Region, Iran. Soil Syst. 2019, 3, 37. [Google Scholar] [CrossRef]
- Vaysse, K.; Lagacherie, P. Evaluating digital soil mapping approaches for mapping GlobalSpilMap soil properties from legacy data in Languedoc Roussillon (France). Geoderma 2015, 4, 20–30. [Google Scholar] [CrossRef]
- McBratney, A.B.; Santos, M.L.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Zhao, Z.; Chow, T.L.; Rees, H.W.; Yang, Q.; Xing, Z.; Meng, F. Predict soil texture distributions using an artificial neural network model. Comput. Electron. Agric. 2009, 65, 36–48. [Google Scholar] [CrossRef]
- Jafari, A.; Finke, P.A.; Wauw, J.V.; Ayoubi, S.; Khademi, H. Spatial prediction of USDA-great soil groups in the arid Zarand region, Iran: Comparing logistic regression approaches to predict diagnostic horizons and soil types. Eur. J. Soil Sci. 2012, 63, 284–298. [Google Scholar] [CrossRef]
- Kisi, O. Suspended sediment estimation using neuro-fuzzy and neural network. approaches. Hydrol. Sci. J. Des. Sci. Hydrol. 2005, 50, 683–696. [Google Scholar]
- Drake, J.T. Communications Phase Synchronization Using the Adaptive Network Fuzzy Inference System. Ph.D. Thesis, New Mexico State University, Las Cruces, NM, USA, 2000. [Google Scholar]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model. Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Weather Data of Zarand, Kerman Province 2015. Available online: http://irimo.ir (accessed on 25 September 2019).
- Fernndez-Glvez, J.; Simmond, L.P.; Barahona, E. Estimating detailed soil water profile records from point measurements. Eur. J. Soil Sci. 2005, 57, 23–45. [Google Scholar]
- Hengl, T.; Rossiter, D.G.; Stein, A. Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Geoderma 2003, 120, 75–93. [Google Scholar] [CrossRef]
- Gallant, J.C.; Dowling, T.I. A multiresolution index of vally bottom flatness for mapping depositional areas. Water Resour. Res. 2003, 39, 1347–1359. [Google Scholar] [CrossRef]
- Boehner, J.; Selige, T. Spatial Prediction of soil Attibutes Using Terrain Analysis and Climate Regionalisation. In SAGA-Analysis and Modelling Application; Boehner, J., McCloy, K.R., Strobl, J., Eds.; Geographisehe Abhandlungen: Goettinger, Germany, 2006; pp. 13–27. [Google Scholar]
- Hom, B.K. Hill shading and the relectance map. Proc. IEEE 1981, 69, 14–47. [Google Scholar]
- Rodiguez, F.; Maire, E.; Courjault-Rade, D.; Darrozes, J. The Black Top Hat fanction applied to a DEM: A tool to estimate recent incision in a mountainous water shed. Geophys. Res. Lett. 2002, 29, 9-1–9-4. [Google Scholar]
- Boettinger, J.L.; Ramsey, R.D.; Bodily, J.M.; Cole, N.J.; Kienast-Brown, S.; Nield, S.J.; Saunders, A.M.; Stum, A.K. Landsat spectral data for digital soil mapping. In Digital Soil Mapping with Limited Data; Hartemink, A.E., McBratney, A.B., Eds.; Springer Science: Berlin, Australia, 2008; pp. 193–203. [Google Scholar]
- Esbensen, K.H. Multivariate Data Analysis, 5th ed.; CAMO Software AS: Oslo, Norway, 2006; p. 589. [Google Scholar]
- Toomanian, N.; Jalalian, A.; Khademi, H.; KarimianEghbal, M.; Papritz, A. Pedodeversity and pedogenesis in Zayandeh-Rud Vally, Central Iran. Geomorphology 2006, 81, 376–393. [Google Scholar] [CrossRef]
- Tamari, S.; Wosten, J.H.M.; Ruz-suarez, J.C. Testing an artificial neural network for predicting soil hydraulic conductivity. J. Soil Sci. Soc. Am. 1996, 60, 1732–1741. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. Adv. Agron. 2010, 107, 163–215. [Google Scholar]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modeling: Review of hydrological, geomorphological and biological applications. Hyd. Proc. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Kheir, B.; Greve, M.H.; Bocher, P.K.; Greve, M.B.; Larsen, R.; McCloy, K. Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: The case study of Denmark. J. Environ. Manag. 2010, 91, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Moonjun, R.; Farshad, A.; Shrestha, D.P.; Vaiphasa, C. Artificial Neural Network and Decision Tree in Predictive Soil Mapping of Hoi NumRin Sub-Watershed, Thailand. Digital Soil Mapping. Pro. Soil Sci. 2010, 2, 151–164. [Google Scholar]
- Amini, M.; Abbaspour, K.C.; Khademi, H.; Fathianpour, N.; Afyuni, M.; Schulin, R. Neural network models to predict cation exchange capacity in arid regions of Iran. Eur. J.Soil Sci. 2005, 53, 748–757. [Google Scholar] [CrossRef]
- Kashi, H.; Emamgholizadeh, S.; Ghorbani, H. Estimation of Soil Infiltration and Cation Exchange Capacity Based on Multiple Regression, ANN (RBF, MLP), and ANFIS Models. Commun. Soil Sci. Plant. Anal. 2014, 45, 1195–1213. [Google Scholar] [CrossRef]
- Besalatpour, A.A.; Ayoubi, S.; Hajabbasi, M.A.; Mosaddeghi, M.R.; Schulin, R. Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed. Catena 2013, 111, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Si, J.; Feng, Q.; Wen, X.; Xi, H.; Yu, T.; Li, W.; Zhao, C. Modeling soil water content in extreme arid area using an adaptive neuro-fuzzy inference system. J. Hydrol. 2015, 527, 679–687. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; van Genuchten, M.T. Neural network analysis for hierarchical prediction of soil hydraulic properties. J. Soil Sci. Soc. Am. 1998, 62, 847–855. [Google Scholar] [CrossRef]
- Pachepsky, Y.A.; Timilin, D.; Varallyay, G. Artificial neural networks to estimate soil water retention from easily measurable data. J. Soil Sci. Soc. Am. 1996, 60, 727–733. [Google Scholar] [CrossRef]
- Mohammadi, J. Testing an artificial neural network for predicting soil water retention characteristics from soil physical and chemical properties. In Proceeding of the 17th WCSS, Bankok, Thailand, 20 August 2007; p. 221. [Google Scholar]
- Mohammadi, J.; Taheri, M. Estimation of pedotransfer function using fuzzy regression. J. Agri. Sci. Technol. 2005, 2, 51–60. [Google Scholar]
- Taghizadeh-mehrjardi, R.; Toomanian, N.; Khavaninzadeh, A.R.; Jafari, A.; Triantafilis, J. Predicting and mapping of soil particle-size fractions with adaptive neuro-fuzzy inference and ant colony optimization in central I ran. Eur. J. Soil Sci. 2016, 67, 707–725. [Google Scholar] [CrossRef]
Auxiliary Variables | Parameters | Definition | Reference |
---|---|---|---|
The extracted data is DEM | Elevation | Height above sea level in meters | [33] |
Slope gradient (SLOP) | Local hillslope gradient | [34] | |
Aspect (ASP) | Compass direction of the maximum rate of change | [35] | |
Multi-resolution Valley Bottom Flatness Index (MrVBF) | Measure of flatness in valley positions | [33] | |
Valley depth (VD) | Depth of valley in meters | [36] | |
Topographic wetness index (TWI) | Commonly used to quantify topographic control on hydrological processes | [34] | |
Catchment slope (CS) | Average gradient above the flow path | [34] | |
Multi-resolution Ridge-top Flatness Index(MRRTF) | Identifies high flat areas | [33] | |
Modified catchment area | Area of modified areas (calculation of flow accumulation and related parameters) | [34] | |
LS_Factor (Slope Length and Steepness factor) | Multiple flow algorithms and help to accurately estimate current accumulation | [34] | |
Remote sensing data | Normalized Difference Vegetation Index (NDVI) | (B4 − B3)/(B4 + B3) | [37] |
Perpendicular Vegetation Index(PVI) | -SINa(B5) COSa (B4) | [37] | |
Green Normalized Difference Vegetation Index(GNDVI) | (B5 − B3)/(B5 + B3) | [37] | |
Green Soil AdjustedVegetation Index (GSAVI) | (B5 − B3)/B5 + B3 + 0.5*1.5 | [37] | |
Normalized difference water index (NDWI) | (B3 − B5)/(B3 + B5) | [37] | |
Modified Soil-adjusted Vegetation Index (MSAVI) | (2*B5 + 1 − sqrt((2*B5 + 1)2 − 8*(B5 − B4)))/2 | [37] | |
B2 | Landsat OLI spectral band | ||
B3 | Landsat OLI spectral band | ||
B4 | Landsat OLI spectral band | ||
B5 | Landsat OLI spectral band | ||
B6 | Landsat OLI spectral band | ||
B7 | Landsat OLI spectral band | ||
B8 | Landsat OLI spectral band | ||
B10 | Landsat OLI spectral band | ||
B11 | Landsat OLI spectral band | ||
Field measurements closely measured by FieldSpec® 3 (The names of the spectra were performed in alphabetical order and then the effective spectra were separated.) | 1456 (SILT G) | 1456 Spectrum | [38] |
1998 (SILT M) | 1998 Spectrum | [38] | |
890 (CLAY F) | 890 Spectrum | [38] | |
852 (SAND F) | 852 Spectrum | [38] | |
879 (SAND G) | 879 Spectrum | [38] | |
879 (CLAY E) | 879 Spectrum | [38] | |
Geomorphology data | Geomorphology map | Geomorphology levels | [39] |
Landscape | Landform | Lithology | Geomorphic Surface | Code |
---|---|---|---|---|
Hill | Eroded outcrops | Conglomerate, sandstone | Tree branch drainage system | Hi111 |
Mountain | Rock outcrop | Dolomite and limestone | Rock surface | Mo111 |
Sandstone, volcanic rock, dolomite and shale | Rock surface | Mo121 | ||
Sand dunes | Dune | Wind deposits | The active shaped hills are expanding | Sd111 |
Piedmont | Shaped fan | Alluvial deposits of volcanic rocks, quartz, sandstone, dolomite and shale | Active fan, upper part, high slope, drainage network | Pi111 |
The lower part is less drained and slopes less | Pi112 | |||
Shale, sandstone, stone silt, quartz | Active fan, upper section | Pi121 | ||
Active fan, lower section, low slope | Pi122 | |||
Gypsiferous materials, sandstone | Active fan, upper section | Pi131 | ||
Connected fans | Alluvial deposits of sandstone, limestone and dolomite | Upper part, drainage dense network, very high slope | Pi211 | |
Lower bottom, drainage drain, slope less | Pi212 | |||
Connected and cut old machines | Alluvial deposits of different limestone, volcanic, sandstone and shale rocks | Smooth surface with drainage dense network | Pi311 | |
Surface with high elevation, high slope and deep drainage | Pi312 | |||
Old connected fans | Alluvial deposits of different limestone stones, gypsum, volcanic rocks, sandstone, and shale | Coarse texture deposits, low slope, increasing drainage distance | Pi411 | |
New alluvium with parallel drainage | Pi412 | |||
Shaped and cut fan | Alluvial deposits of different limestone, volcanic, sandstone and shale rocks | Upper part, drainage dense network, very high slope | Pi511 | |
Playa | clay flat | Alluvial fine sediments, salty | Cultivated clay flat | Pl111 |
Clay, salty and wet | Clay flat, highly salty and wetness | Pll21 | ||
Fine and coarse alluvial sediments, high salty | Salty and wetness, dense stream | Pl122 |
Soil Texture Fractions | Depth, cm | Min | Max | Average | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|---|
Clay | 0–5 | 3 | 42.61 | 18.59 | 8.91 | 48 |
5–15 | 3.52 | 41.35 | 18.63 | 8.14 | 43 | |
15–30 | 4.21 | 41.78 | 18.77 | 8.22 | 44 | |
30–60 | 4.1 | 53.91 | 19.14 | 9.88 | 52 | |
60–100 | 5 | 47.12 | 18.31 | 9.69 | 53 | |
Sand | 0–5 | 16.97 | 94.88 | 64.1 | 15.13 | 24 |
5–15 | 23.14 | 91.23 | 64.09 | 14.04 | 21 | |
15–30 | 9.02 | 90.3 | 63.64 | 14.57 | 23 | |
30–60 | 5.93 | 86.82 | 63.25 | 17.71 | 28 | |
60–100 | 18.34 | 86.69 | 65.36 | 17.39 | 27 | |
Silt | 0–5 | 2.01 | 42.15 | 17.26 | 9.57 | 55 |
5–15 | 3 | 47.41 | 17.12 | 9.46 | 55 | |
15–30 | 2.32 | 65.66 | 17.24 | 11.31 | 66 | |
30–60 | 3.54 | 70.39 | 17.56 | 12.82 | 73 | |
60–100 | 4.26 | 69.24 | 16.38 | 12.53 | 76 |
Soil Texture Fractions | Depth, cm | R2 | CCC | RMSE (g kg−1) | ME | nRMSE |
---|---|---|---|---|---|---|
Clay | 0–5 | 0.68 | 0.62 | 5.07 | 0.04 | 0.27 |
5–15 | 0.63 | 0.61 | 6.05 | 0.05 | 0.33 | |
15–30 | 0.59 | 0.54 | 6.45 | 0.08 | 0.34 | |
30–60 | 0.57 | 0.50 | 8.00 | 0.06 | 0.42 | |
60–100 | 0.51 | 0.50 | 8.45 | −0.19 | 0.46 | |
Sand | 0–5 | 0.70 | 0.65 | 6.98 | 0.09 | 0.11 |
5–15 | 0.68 | 0.61 | 10.96 | 0.18 | 0.17 | |
15–30 | 0.61 | 0.57 | 12.86 | 0.32 | 0.20 | |
30–60 | 0.59 | 0.56 | 13.67 | −0.11 | 0.22 | |
60–100 | 0.51 | 0.49 | 13.73 | −0.15 | 0.22 | |
Silt | 0–5 | 0.63 | 0.59 | 4.64 | 0.21 | 0.27 |
5–15 | 0.59 | 0.57 | 4.67 | 0.11 | 0.27 | |
15–30 | 0.54 | 0.47 | 5.67 | −0.12 | 0.33 | |
30–60 | 0.51 | 0.48 | 6.40 | −0.60 | 0.33 | |
60–100 | 0.51 | 0.44 | 6.54 | 0.09 | 0.40 |
Soil Texture Fractions | Depth, cm | R2 | CCC | RMSE (g kg−1) | ME | nRMSE |
---|---|---|---|---|---|---|
Clay | 0–5 | 0.89 | 0.82 | 2.02 | 0.02 | 0.11 |
5–15 | 0.85 | 0.81 | 2.37 | 0.02 | 0.13 | |
15–30 | 0.82 | 0.79 | 2.51 | 0.07 | 0.13 | |
30–60 | 0.79 | 0.71 | 3.35 | 0.01 | 0.18 | |
60–100 | 0.76 | 0.64 | 4.79 | -0.16 | 0.26 | |
Sand | 0–5 | 0.91 | 0.88 | 4.07 | 0.06 | 0.06 |
5–15 | 0.83 | 0.78 | 4.40 | 0.13 | 0.07 | |
15–30 | 0.77 | 0.69 | 6.33 | 0.24 | 0.10 | |
30–60 | 0.75 | 0.73 | 7.00 | −0.05 | 0.11 | |
60–100 | 0.66 | 0.57 | 8.22 | −0.08 | 0.13 | |
Silt | 0–5 | 0.92 | 0.86 | 2.75 | 0.1 | 0.16 |
5–15 | 0.85 | 0.83 | 3.35 | 0.09 | 0.20 | |
15–30 | 0.80 | 0.77 | 4.38 | −0.04 | 0.25 | |
30–60 | 0.68 | 0.59 | 5.66 | −0.40 | 0.32 | |
60–100 | 0.65 | 0.56 | 5.75 | 0.06 | 0.34 |
Soil Texture Fractions | Depth, cm | R2 | CCC | RMSE (g kg−1) | ME | nRMSE |
---|---|---|---|---|---|---|
Clay | 0–5 | 0.90 | 0.86 | 2.00 | 0.02 | 0.11 |
5–15 | 0.87 | 0.84 | 2.11 | 0.02 | 0.11 | |
15–30 | 0.85 | 0.77 | 2.35 | 0.06 | 0.12 | |
30–60 | 0.79 | 0.78 | 3.01 | 0.01 | 0.16 | |
60–100 | 0.76 | 0.69 | 4.68 | −0.15 | 0.25 | |
Sand | 0–5 | 0.91 | 0.90 | 4.00 | 0.06 | 0.06 |
5–15 | 0.85 | 0.77 | 4.11 | 0.11 | 0.06 | |
15–30 | 0.78 | 0.71 | 6.18 | 0.21 | 0.09 | |
30–60 | 0.75 | 0.68 | 6.82 | −0.03 | 0.11 | |
60–100 | 0.68 | 0.60 | 8.03 | −0.07 | 0.12 | |
Silt | 0–5 | 0.92 | 0.87 | 2.68 | 0.09 | 0.15 |
5–15 | 0.87 | 0.83 | 3.24 | 0.09 | 0.19 | |
15–30 | 0.81 | 0.75 | 4.10 | −0.05 | 0.24 | |
30–60 | 0.69 | 0.65 | 5.60 | −0.35 | 0.32 | |
60–100 | 0.71 | 0.68 | 5.21 | 0.04 | 0.32 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehrabi-Gohari, E.; Matinfar, H.R.; Jafari, A.; Taghizadeh-Mehrjardi, R.; Triantafilis, J. The Spatial Prediction of Soil Texture Fractions in Arid Regions of Iran. Soil Syst. 2019, 3, 65. https://doi.org/10.3390/soilsystems3040065
Mehrabi-Gohari E, Matinfar HR, Jafari A, Taghizadeh-Mehrjardi R, Triantafilis J. The Spatial Prediction of Soil Texture Fractions in Arid Regions of Iran. Soil Systems. 2019; 3(4):65. https://doi.org/10.3390/soilsystems3040065
Chicago/Turabian StyleMehrabi-Gohari, Elham, Hamid Reza Matinfar, Azam Jafari, Ruhollah Taghizadeh-Mehrjardi, and John Triantafilis. 2019. "The Spatial Prediction of Soil Texture Fractions in Arid Regions of Iran" Soil Systems 3, no. 4: 65. https://doi.org/10.3390/soilsystems3040065
APA StyleMehrabi-Gohari, E., Matinfar, H. R., Jafari, A., Taghizadeh-Mehrjardi, R., & Triantafilis, J. (2019). The Spatial Prediction of Soil Texture Fractions in Arid Regions of Iran. Soil Systems, 3(4), 65. https://doi.org/10.3390/soilsystems3040065