Multireaction Modeling of Lead (Pb) and Copper (Cu) Sorption/Desorption Kinetics in Different Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sorption/Desorption Experiments
2.2. Modeling and Data Analyses
3. Results and Discussion
3.1. Sorption Isotherm
3.2. Sorption/Desorption Kinetics
3.3. Cu and Pb Hysteresis
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alloway, B.J. Heavy metals and metalloids as micronutrients for plants and animals. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability, Environmental Pollution, 3rd ed.; Alloway, B.J., Trevors, J.T., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 22, pp. 195–210. [Google Scholar]
- Hough, R.L. Copper and lead. In Trace Elements in Soils; Hooda, P.S., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2010; pp. 421–640. [Google Scholar]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, A.; Ingerman, L.; Swarts, S. Toxicological Profile for Copper; Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2004. [Google Scholar]
- Abadin, H.; Ashizawa, A.; Stevens, Y.; Llados, F.; Diamond, G.; Sage, G.; Citra, M.; Quinones, A.; Bosch, S.J.; Swarts, S.G. Toxicological Profile for Lead; Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2007. [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer-Verlag: Berlin/Heidelberg, Germany, 2007; 556p. [Google Scholar]
- OECD. Guidelines for the Testing of Chemicals. Test Number 106, Adsorption—Desorption Using a Batch Equilibrium Method; Organization for Economic Co-operation and Development, OECD: Paris, France, 2000; 44p. [Google Scholar] [CrossRef]
- Elbana, T.; Gaber, H.M.; Kishk, F.M. Soil chemical pollution and sustainable agriculture. In The Soils of Egypt; El-Ramady, H., Alshaal, T., Bakr, N., Elbana, T., Mohamed, E., Belal, A.A., Eds.; World Soils Book Series; Springer: Basel, Switzerland, 2019; pp. 187–200. [Google Scholar] [CrossRef]
- Martínez-Villegas, N.; Martínez, C.E. Importance of dynamic soil properties in metal retention: An example from long-term Cu partitioning and redistribution studies using model systems. Environ. Sci. Technol. 2012, 46, 8069–8074. [Google Scholar] [CrossRef]
- Cerqueira, B.; Covelo, E.F.; Andrade, M.L.; Vega, F.A. Retention and mobility of copper and lead in soils as influenced by soil horizon properties. Pedosphere 2011, 21, 603–614. [Google Scholar] [CrossRef]
- Peng, S.; Wang, P.; Peng, L.; Cheng, T.; Sun, W.; Shi, Z. Predicting heavy metal partition equilibrium in soils: roles of soil components and binding sites. Soil Sci. Soc. Am. J. 2018, 82, 839–849. [Google Scholar] [CrossRef]
- Shi, Z.; Di Toro, D.M.; Allen, H.E.; Sparks, D.L. A general model for kinetics of heavy metal adsorption and desorption on soils. Environ. Sci. Technol. 2013, 47, 3761–3767. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Liu, P.; Feng, X.; Wang, Z.; Cheng, T.; Liang, Y.; Lin, Z.; Shi, Z. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation. Geochim. Cosmochim. Acta 2018, 224, 282–300. [Google Scholar] [CrossRef]
- Undabeytia, T.; Nir, S.; Rytwo, G.; Serban, C.; Morillo, E.; Maqueda, C. Modeling Adsorption−Desorption Processes of Cu on Edge and Planar Sites of Montmorillonite. Environ. Sci. Technol. 2002, 36, 2677–2683. [Google Scholar] [CrossRef] [PubMed]
- Di Bonito, M.; Lofts, S.; Groenenberg, J.E. Models of geochemical speciation: Structure and applications. In Environmental Geochemistry; De Vivo, B., Belkin, H.E., Lima, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 237–305. [Google Scholar] [CrossRef]
- Amacher, M.C.; Selim, H.M.; Iskandar, I.K. Kinetics of chromium(VI) and cadmium retention in soils; A nonlinear multireaction model. Soil Sci. Soc. Am. J. 1988, 52, 398–408. [Google Scholar] [CrossRef]
- Liao, L.; Selim, H.M.; DeLaune, R.D. Mercury adsorption-desorption and transport in soils. J. Environ. Qual. 2009, 38, 1608–1616. [Google Scholar] [CrossRef]
- Zhang, H.; Selim, H.M. Kinetics of arsenate adsorption-desorption in soils. Environ. Sci. Technol. 2005, 39, 6101–6108. [Google Scholar] [CrossRef] [PubMed]
- Elbana, T.A.; Selim, H.M. Copper Mobility in Acidic and Alkaline Soils: Miscible Displacement Experiments. Soil Sci. Soc. Am. J. 2011, 75, 2101–2110. [Google Scholar] [CrossRef]
- Selim, H.M. Nonlinear behavior of heavy metals in soils: Mobility and bioavailability. In Dynamics and Bioavailability of Heavy Metals in the Rootzone; Selim, H.M., Ed.; CRC/Taylor and Francis: Boca Raton, FL, USA, 2011; pp. 1–36. [Google Scholar]
- Gao, Y.; Kan, A.T.; Tomson, M.B. Critical evaluation of desorption phenomena of heavy metals from natural sediments. Environ. Sci. Technol. 2003, 37, 5566–5573. [Google Scholar] [CrossRef]
- Liu, P.; Wang, P.; Lu, Y.; Ding, Y.; Lu, G.; Dang, Z.; Shi, Z. Modeling kinetics of heavy metal release from field-contaminated soils: Roles of soil adsorbents and binding sites. Chem. Geol. 2019, 506, 187–196. [Google Scholar] [CrossRef]
- Elbana, T.A.; Sparks, D.L.; Selim, H.M. Adsorption-desorption of lead and tin in soils: Experimental and second-order modeling. Soil Sci. 2013, 178, 425–435. [Google Scholar] [CrossRef]
- Tian, L.; Liang, Y.; Lu, Y.; Peng, L.; Wu, P.; Shi, Z. Pb(II) and Cu (II) adsorption and desorption kinetics on Ferrihydrite with different morphologies. Soil Sci. Soc. Am. J. 2018, 82, 96–105. [Google Scholar] [CrossRef]
- Roe, A.L.; Hayes, K.F.; Chisholm-Brause, C.; Brown, G.E., Jr.; Parks, G.A.; Hodgson, K.O.; Leckie, J.O. In situ x-ray absorption study of lead ion surface complexes at the goethite-water interface. Langmuir 1991, 7, 367–373. [Google Scholar] [CrossRef]
- Rybicka, H.E.; Calmano, W.; Breeger, A. Heavy metals sorption/desorption on competing clay minerals; An experimental study. Appl. Clay Sci. 1995, 9, 369–381. [Google Scholar] [CrossRef]
- Hizal, J.; Apak, R.; Hoell, W.H. Modeling competitive adsorption of copper(ii), lead(ii), and cadmium(ii) by kaolinite-based clay mineral/humic acid system. Environ. Prog. Sustain. Energy 2009, 28, 493–506. [Google Scholar] [CrossRef]
- Strawn, D.G.; Sparks, D.L. Effects of soil organic matter on the kinetic and mechanisms of Pb(II) sorption and desorption in soil. Soil Sci. Soc. Am. J. 2000, 64, 144–156. [Google Scholar] [CrossRef]
- Mehlhorn, J.; Besold, J.; Pacheco, J.S.L.; Gustafsson, J.P. Copper mobilization and immobilization along an organic matter and redox gradient-insights from a Mofette site. Environ. Sci. Technol. 2018, 52, 13698–13707. [Google Scholar] [CrossRef] [PubMed]
- Sipos, P.; Tóth, A.; Kis, V.K.; Balázs, R.; Kovács, I.; Németh, T. Partition of Cd, Cu, Pb and Zn among mineral particles during their sorption in soils. J. Soils Sediments 2018, 19, 1775–1787. [Google Scholar] [CrossRef]
- Elbana, T.A.; Selim, H.M.; Akrami, N.; Newman, A.; Shaheen, S.; Rinklebe, J. Freundlich sorption parameters for cadmium, copper, nickel, lead, and zinc for different soils: Influence of kinetics. Geoderma 2018, 324, 80–88. [Google Scholar] [CrossRef]
- Selim, M. Chem_Transport Software Models for Chemical Kinetic Retention and Transport in Soils and Geological Media User’s Manual; School of Plant, Environmental and Soil Science, LSU-Agcenter: Baton Rogue, LA, USA, 2016; Available online: http://www.spess.lsu.edu/chem_transport/ (accessed on 25 March 2019).
- Basta, N.T.; Ryan, J.A.; Chaney, R.L. Trace element chemistry in residual-treated soil: Key concepts and metal bioavailability. J. Environ. Qual. 2005, 34, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhang, Q.; Yuan, W.; Li, Z.; Zhao, Y.; Gu, W. Efficient Pb removal through the formations of (basic) carbonate precipitates from different sources during wet stirred ball milling with CaCO3. Sci. Total Environ. 2019, 664, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Bearup, L.A.; Navarre-Sitchler, A.K.; Maxwell, R.M.; McCray, J.E. Kinetic metal release from competing process in aquifers. Environ. Sci. Technol. 2012, 46, 6539–6547. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Close, M.; Schneider, D.; Stanton, G. Effect of pore-water velocity on chemical nonequilibrium transport of Cd, Zn, and Pb in alluvial gravel columns. J. Contam. Hydrol. 2002, 57, 241–258. [Google Scholar] [CrossRef]
- Elbana, T.A.; Selim, H.M. Lead mobility in calcareous soils: Influence of cadmium and copper. Soil Sci. 2013, 178, 417–424. [Google Scholar] [CrossRef]
- Usiyama, T.; Fukushi, K. Predictive model for Pb(II) adsorption on soil minerals (oxides and low-crystalline aluminum silicate) consistent with spectroscopic evidence. Cosmochim. Acta 2016, 190, 134–155. [Google Scholar] [CrossRef]
- Selim, H.M. Sorption-desorption of trace elements in soils influence of kinetics. In Trace Elements in Waterlogged Soils and Sediments, 1st ed.; Rinklebe, J., Knox, A.S., Paller, M., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2014; pp. 53–74. [Google Scholar]
Soil Series | Soil Texture ¶ | pH | TC (%) | CEC (coml kg−1) | Carbonates (%) |
---|---|---|---|---|---|
Arapahoe | Sandy Loam | 5.02 | 10.22 | 30.10 | 0.0 |
Candor-surface | Loamy Sand | 4.39 | 2.24 | 5.30 | 0.0 |
Candor-subsurface | Sand | 4.05 | 0.56 | 1.70 | 0.0 |
Crowley | Silt Loam | 5.22 | 1.16 | 16.50 | 0.0 |
Sharkey | Silty Clay | 5.49 | 2.76 | 39.70 | 0.0 |
Nada | Sandy Loam | 6.61 | 0.76 | 6.30 | 0.0 |
Olney | Sandy Loam | 8.12 | 1.14 | 10.10 | 3.32 |
Houston | Silty Clay | 7.78 | 4.26 | 47.70 | 26.0 |
Lincoln | Sandy Loam | 7.54 | 1.27 | 3.00 | 3.60 |
Morey | Loam | 7.74 | 1.05 | 27.80 | 0.0 |
Soil | Sorption Time | Cu | Pb | ||||
---|---|---|---|---|---|---|---|
Smax | kL | R2 | Smax | kL | R2 | ||
(mmol kg−1) | (L mmol−1) | (mmol kg−1) | (L mmol−1) | ||||
Arapahoe | 1d | 21.1 ± 1.1 | 161.3 ± 18.7 | 0.993 | 31.1 ± 5.2 | 290.9 ± 93.3 | 0.958 |
7d | 22.4 ± 1.5 | 211.9 ± 30.0 | 0.990 | 36.5 ± 10.0 | 281.2 ± 129.7 | 0.933 | |
Candor-surface | 1d | 6.0 ± 0.4 | 5.0 ± 1.1 | 0.965 | 13.08 ± 1.2 | 3.8 ± 0.9 | 0.970 |
7d | 8.0 ± 0.5 | 7.9 ± 1.8 | 0.965 | 13.8 ± 0.9 | 5.6 ± 1.1 | 0.981 | |
Candor-subsurface | 1d | 3.6 ± 1.3 | 1.9 ± 1.7 | 0.710 | 6.4 ± 1.9 | 1.7 ± 1.2 | 0.803 |
7d | 4.8 ± 0.5 | 8.3 ± 3.6 | 0.882 | 7.4 ± 1.2 | 2.6 ± 1.2 | 0.895 | |
Crowley | 1d | 12.8 ± 1.1 | 18.2 ± 5.3 | 0.954 | 16.9 ± 0.8 | 96.3 ± 20.9 | 0.976 |
7d | 12.2 ± 1.0 | 37.4 ± 11.8 | 0.944 | 16.8 ± 0.9 | 135.8 ± 36.4 | 0.964 | |
Sharkey | 1d | 17.3 ± 1.0 | 68.0 ± 11.0 | 0.986 | 18.6 ± 1.0 | 1098.1 ± 283.5 | 0.968 |
7d | 16.8 ± 1.0 | 128.9 ± 23.8 | 0.980 | 18.2 ± 0.6 | 2288.1 ± 370.8 | 0.986 | |
Nada | 1d | 10.1 ± 0.6 | 28.2 ± 7.8 | 0.956 | 16.5 ± 0.9 | 141.1 ± 38.2 | 0.963 |
7d | 10.3 ± 0.4 | 131.1 ± 25.0 | 0.974 | 14.4 ± 0.9 | 362.8 ± 133.3 | 0.934 | |
Olney | 1d | NC ¶ | 17.9 ± 0.6 | 2391.6 ± 399.9 | 0.985 | ||
7d | NC | ||||||
Houston | 1d | NC | 36.0 ± 10.0 | 282.5 ± 133.4 | 0.930 | ||
7d | NC | ||||||
Lincoln | 1d | 12.8 ± 0.7 | 238.6 ± 51.9 | 0.963 | 14.1 ± 0.9 | 5.5 ± 1.1 | 0.982 |
7d | NC | ||||||
Morey | 1d | 16.8 ± 0.8 | 270.7 ± 37.3 | 0.985 | 7.7 ± 1.2 | 2.6 ± 1.1 | 0.904 |
7d | NC |
Soil | k1 (h−1) | k2 (h−1) | k3 (h−1) | kirr (h−1) | R2 | RMSE |
---|---|---|---|---|---|---|
One reversible kinetic site | ||||||
Arapahoe | 0.74 ± 0.01 | 0.0046 ± 0.0002 | -- | -- | 0.849 | 0.09 |
Candor-surface | 0.32 ± 0.03 | 0.0265 ± 0.0026 | -- | -- | 0.981 | 3.10 |
Candor-subsurface | 0.02 ± 0.00 | 0.0019 ± 0.0008 | -- | -- | 0.981 | 4.12 |
Crowley | 0.91 ± 0.04 | 0.0296 ± 0.002 | -- | -- | 0.919 | 1.58 |
Sharkey | 0.96 ± 0.01 | 0.0127 ± 0.0004 | -- | -- | 0.930 | 0.24 |
Nada | 1.24 ± 0.05 | 0.0356 ± 0.002 | -- | -- | 0.966 | 1.71 |
Olney | 0.19 ± 0.01 | 0.0001 ± 0 | -- | -- | 0.591 | 0.04 |
Houston | 0.31 ± 0.01 | 0.0001 ± 0 | -- | -- | 0.434 | 0.01 |
Lincoln | 1.46 ± 0.05 | 0.0083 ± 0.0022 | -- | -- | 0.784 | 0.69 |
Morey | 1.08 ± 0.01 | 0.0059 ± 0.0003 | -- | -- | 0.934 | 0.08 |
One reversible kinetic site and one concurrent irreversible site | ||||||
Arapahoe | 0.48 ± 0.03 | 0.007 ± 0.001 | -- | 0.0683 ± 0.0101 | 0.899 | 0.07 |
Candor-surface | 32.87 ± 1.92 | 5.813 ± 0.211 | -- | 0.0032 ± 0.0002 | 0.983 | 2.42 |
Candor-subsurface | 11.55 ± 1.33 | 10.545 ± 0.567 | -- | 0.0024 ± 0.0002 | 0.987 | 3.00 |
Crowley | 1.14 ± 0.12 | 0.052 ± 0.008 | -- | 0.0058 ± 0.0008 | 0.961 | 1.09 |
Sharkey | 0.88 ± 0.02 | 0.016 ± 0.001 | -- | 0.0192 ± 0.0031 | 0.960 | 0.19 |
Nada | 1.28 ± 0.07 | 0.041 ± 0.005 | -- | 0.0015 ± 0.0011 | 0.966 | 1.69 |
Olney | 4.73 ± 5.65 | 0.018 ± 0.012 | -- | 1.5818 ± 0.2615 | 0.772 | 0.04 |
Houston | 11.68 ± 0.16 | 0.009 ± 0.001 | -- | 2.3836 ± 0.2477 | 0.627 | 0.01 |
Lincoln | 0.63 ± 0.14 | 0.009 ± 0.005 | -- | 0.0591 ± 0.0104 | 0.820 | 0.63 |
Morey | 0.48 ± 0.03 | 0.008 ± 0.001 | -- | 0.0877 ± 0.0061 | 0.963 | 0.06 |
One reversible kinetic site and one consecutive irreversible site | ||||||
Arapahoe | 0.8 ± 0.02 | 0.0065 ± 0.0005 | 0.0008 ± 0.0002 | -- | 0.914 | 0.07 |
Candor-surface | 0.38 ± 0.03 | 0.043 ± 0.005 | 0.0023 ± 0.0004 | -- | 0.991 | 1.69 |
Candor-subsurface | 0.23 ± 0.37 | 0.1893 ± 0.3496 | 0.0123 ± 0.0033 | -- | 0.993 | 2.08 |
Crowley | 1.12 ± 0.08 | 0.0449 ± 0.0046 | 0.0009 ± 0.0002 | -- | 0.962 | 1.09 |
Sharkey | 1.05 ± 0.02 | 0.0163 ± 0.0008 | 0.0006 ± 0.0001 | -- | 0.967 | 0.17 |
Nada | 1.5 ± 0.11 | 0.0528 ± 0.0059 | 0.001 ± 0.0002 | -- | 0.977 | 1.26 |
Olney | 0.3 ± 0.08 | 0.0006 ± 0.0003 | 0.0074 ± 0.0009 | -- | 0.813 | 0.03 |
Houston | 0.35 ± 0.03 | 0.0001 ± 0.0000 | 0.0016 ± 0.0005 | -- | 0.642 | 0.01 |
Lincoln | 2.65 ± 0.09 | 0.0551 ± 0.0022 | 0.0126 ± 0.0008 | -- | 0.820 | 0.64 |
Morey | 1.09 ± 0.02 | 0.0061 ± 0.0008 | 0.0001 ± 0.0003 | -- | 0.934 | 0.08 |
Soil | k1 (h−1) | k2 (h−1) | k3 (h−1) | kirr (h−1) | R2 | RMSE |
---|---|---|---|---|---|---|
One reversible kinetic site | ||||||
Arapahoe | 1.01 ± 0.01 | 0.0016 ± 0.0001 | -- | -- | 0.873 | 0.09 |
Candor-surface | 0.33 ± 0.04 | 0.0243 ± 0.0042 | -- | -- | 0.922 | 21.40 |
Candor-subsurface | 0.02 ± 0.004 | 0.0262 ± 0.0073 | -- | -- | 0.969 | 25.07 |
Crowley | 5.24 ± 0.16 | 0.0313 ± 0.0014 | -- | -- | 0.910 | 3.42 |
Sharkey | 5.31 ± 0.03 | 0.014 ± 0.0002 | -- | -- | 0.933 | 0.21 |
Nada | 17.91 ± 7.14 | 0.0979 ± 0.0388 | -- | -- | 0.928 | 4.93 |
Olney | 7.17 ± 0.01 | 00.000 ± 0.000 | -- | -- | 0.923 | 0.21 |
Houston | -- | -- | -- | -- | -- | -- |
Lincoln | 3.68 ± 0.06 | 0.0022 ± 0.0005 | -- | -- | 0.974 | 6.66 |
Morey | 3.21 ± 0.17 | 0.0084 ± 0.0009 | -- | -- | 0.977 | 11.66 |
One reversible kinetic site and one concurrent irreversible site | ||||||
Arapahoe | 0.73 ± 0.12 | 0.002 ± 0.0002 | -- | 0.0609 ± 0.0262 | 0.877 | 0.09 |
Candor-surface | 31.05 ± 5.35 | 4.8184 ± 0.9139 | -- | 0.0057 ± 0.0005 | 0.960 | 12.57 |
Candor-subsurface | 5.34 ± 0.30 | 15.0795 ± 0.6076 | -- | 0.0022 ± 0.0003 | 0.977 | 15.95 |
Crowley | 5.36 ± 0.26 | 0.0371 ± 0.0042 | -- | 0.0059 ± 0.0029 | 0.920 | 3.29 |
Sharkey | 4.88 ± 0.03 | 0.0145 ± 0.0002 | -- | 0.0114 ± 0.0002 | 0.928 | 0.22 |
Nada | 37.03 ± 0.87 | 0.207 ± 0.0055 | -- | 0.001 ± 0 | 0.923 | 5.10 |
Olney | 1.08 ± 0.004 | 0.0089 ± 0.000 | -- | 0.1491 ± 0.0003 | 0.995 | 0.03 |
Houston | -- | -- | -- | -- | -- | -- |
Lincoln | 1.65 ± 0.22 | 0.0094 ± 0.0036 | -- | 0.0253 ± 0.0025 | 0.984 | 5.07 |
Morey | 1.1 ± 0.2 | 0.005 ± 0.0029 | -- | 0.012 ± 0.0014 | 0.989 | 7.65 |
One reversible kinetic site and one consecutive irreversible site | ||||||
Arapahoe | 1.05 ± 0.01 | 0.0021 ± 0.0001 | 0.0007 ± 0.0002 | -- | 0.926 | 0.07 |
Candor-surface | 115.76 ± 2.95 | 2.2015 ± 0.0413 | 0.0026 ± 0.0001 | -- | 0.982 | 8.15 |
Candor-subsurface | 4.84 ± 0.75 | 14.0651 ± 0.303 | 0.0077 ± 0.0012 | -- | 0.979 | 15.85 |
Crowley | 6.11 ± 0.32 | 0.0424 ± 0.0033 | 0.0006 ± 0.0001 | -- | 0.951 | 2.41 |
Sharkey | 5.38 ± 0.05 | 0.0147 ± 0.0004 | 0.0001 ± 0.0001 | -- | 0.931 | 0.21 |
Nada | 21.81 ± 2.51 | 0.1233 ± 0.0142 | 0.0002 ± 0.0001 | -- | 0.932 | 4.61 |
Olney | 9.2 ± 0.01 | 0.0172 ± 0.0001 | 0.0000 ± 0.0000 | -- | 0.852 | 0.17 |
Houston | -- | -- | -- | -- | -- | -- |
Lincoln | 4.58 ± 0.24 | 0.021 ± 0.0043 | 0.0041 ± 0.0007 | -- | 0.974 | 6.72 |
Morey | 3.2 ± 0.17 | 0.0092 ± 0.0012 | 0.0014 ± 0.0003 | -- | 0.978 | 11.78 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbana, T.A.; Selim, H.M. Multireaction Modeling of Lead (Pb) and Copper (Cu) Sorption/Desorption Kinetics in Different Soils. Soil Syst. 2019, 3, 38. https://doi.org/10.3390/soilsystems3020038
Elbana TA, Selim HM. Multireaction Modeling of Lead (Pb) and Copper (Cu) Sorption/Desorption Kinetics in Different Soils. Soil Systems. 2019; 3(2):38. https://doi.org/10.3390/soilsystems3020038
Chicago/Turabian StyleElbana, Tamer A., and H. Magdi Selim. 2019. "Multireaction Modeling of Lead (Pb) and Copper (Cu) Sorption/Desorption Kinetics in Different Soils" Soil Systems 3, no. 2: 38. https://doi.org/10.3390/soilsystems3020038
APA StyleElbana, T. A., & Selim, H. M. (2019). Multireaction Modeling of Lead (Pb) and Copper (Cu) Sorption/Desorption Kinetics in Different Soils. Soil Systems, 3(2), 38. https://doi.org/10.3390/soilsystems3020038