Estimating Soil Water Retention Curve by Inverse Modelling from Combination of In Situ Dynamic Soil Water Content and Soil Potential Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Data Collection
2.1.1. Experimental Sites
2.1.2. Experimental Set-Up
2.1.3. Soil Measurement
2.2. Instrumentation
2.3. 5-Min Timestep Reference Evapotranspiration Computation
2.4. Partitioning Crop Evapotranspiration
2.5. Model Set-Up
Air-Entry Value
2.6. Time-Variable Boundary and Initial Conditions
2.7. Inverse Solution
3. Results
3.1. Evapotranspiration Computation
3.1.1. 5-Min Timestep
3.1.2. Partition of Crop Evapotranspiration
3.2. Inversion Estimation
3.2.1. Estimated Parameters and Model Evaluation
3.2.2. Soil Water Retention Curves
3.2.3. Dynamic Soil Water Content
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zijlstra, J.; Dane, J.H. Identification of Hydraulic Parameters in Layered Soils Based on a Quasi-Newzon Method. J. Hydrol. 1996, 181, 233–250. [Google Scholar] [CrossRef]
- Schwen, A.; Bodner, G.; Loiskandl, W. Time-Variable Soil Hydraulic Properties in near-Surface Soil Water Simulations for Different Tillage Methods. Agric. Water Manag. 2011, 99, 42–50. [Google Scholar] [CrossRef]
- Huang, J.; Purushothaman, R.; McBratney, A.; Bramley, H. Soil Water Extraction Monitored Per Plot across a Field Experiment Using Repeated Electromagnetic Induction Surveys. Soil Syst. 2018, 2, 11. [Google Scholar] [CrossRef]
- Lai, J.; Ren, L. Estimation of Effective Hydraulic Parameters in Heterogeneous Soils at Field Scale. Geoderma 2016, 264, 28–41. [Google Scholar] [CrossRef]
- Le Bourgeois, O.; Bouvier, C.; Brunet, P.; Ayral, P.A. Inverse Modeling of Soil Water Content to Estimate the Hydraulic Properties of a Shallow Soil and the Associated Weathered Bedrock. J. Hydrol. 2016, 541, 116–126. [Google Scholar] [CrossRef]
- Vereecken, H.; Schnepf, A.; Hopmans, J.W.; Javaux, M.; Or, D.; Roose, T.; Vanderborght, J.; Young, M.H.; Amelung, W.; Aitkenhead, M.; et al. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 2016, 15, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Peters, A.; Durner, W. Simplified Evaporation Method for Determining Soil Hydraulic Properties. J. Hydrol. 2008, 356, 147–162. [Google Scholar] [CrossRef]
- Moret-Fernández, D.; Latorre, B. Estimate of the Soil Water Retention Curve from the Sorptivity and β Parameter Calculated from an Upward Infiltration Experiment. J. Hydrol. 2017, 544, 352–362. [Google Scholar] [CrossRef]
- Hopmans, J.; Simunek, J. Review of Inverse Estimation of Soil Hydraulic Properties. In Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media; van Genuchten, M.T., Leij, F.J., Eds.; University of California: Riverside, CA, USA, 1999; pp. 643–659. [Google Scholar]
- Gupta, S.C.; Larson, W.E. Estimating Soil Water Retention Characteristics from Particle Size Distribution, Organic Matter Percent, and Bulk Density. Water Resour. Res. 1979, 15, 1633–1635. [Google Scholar] [CrossRef]
- Botula, Y.D.; Van Ranst, E.; Cornelis, W.M. Pedotransfer Functions to Predict Water Retention for Soils of the Humid Tropics: A Review. Rev. Bras. Cienc. Solo 2014, 38, 679–698. [Google Scholar] [CrossRef]
- Rashid, N.S.A.; Askari, M.; Tanaka, T.; Simunek, J.; van Genuchten, M.T. Inverse Estimation of Soil Hydraulic Properties under Oil Palm Trees. Geoderma 2015, 241–242, 306–312. [Google Scholar] [CrossRef]
- Smagin, A.V. Column-Centrifugation Method for Determining Water Retention Curves of Soils and Disperse Sediments. Eurasian Soil Sci. 2012, 45, 416–422. [Google Scholar] [CrossRef]
- Ramos, T.B.; Gonçalves, M.C.; Martins, J.C.; van Genuchten, M.T.; Pires, F.P. Estimation of Soil Hydraulic Properties from Numerical Inversion of Tension Disk Infiltrometer Data. Vadose Zone J. 2006, 5, 684–696. [Google Scholar] [CrossRef]
- Schwartz, R.C.; Evett, S.R. Estimating Hydraulic Properties of a Fine-Textured Soil Using a Disc Infiltrometer. Soil Sci. Soc. Am. J. 2002, 66, 1409–1423. [Google Scholar] [CrossRef]
- Ventrella, D.; Losavio, N.; Vonella, A.V.; Leij, F.J. Estimating Hydraulic Conductivity of a Fine-Textured Soil Using Tension Infiltrometry. Geoderma 2005, 124, 267–277. [Google Scholar] [CrossRef]
- Lazarovitch, N.; Ben-Gal, A.; Šimunek, J.; Shani, U. Uniqueness of Soil Hydraulic Parameters Determined by a Combined Wooding Inverse Approach. Soil Sci. Soc. Am. J. 2007, 71, 860–865. [Google Scholar] [CrossRef]
- Verbist, K.; Cornelis, W.M.; Gabriels, D.; Alaerts, K.; Soto, G.; Serena, L. Using an Inverse Modelling Approach to Evaluate the Water Retention in a Simple Water Harvesting Technique. Hydrol. Earth Syst. Sci. 2009, 13, 1979–1992. [Google Scholar] [CrossRef]
- Latorre, B.; Moret-Fernández, D.; Peña, C. Estimate of Soil Hydraulic Properties from Disc Infiltrometer Three-Dimensional Infiltration Curve: Theoretical Analysis and Field Applicability. Procedia Environ. Sci. 2013, 19, 580–589. [Google Scholar] [CrossRef]
- Degré, A.; van der Ploeg, M.; Caldwell, T.M.; Gooren, H. Comparison of Soil Water Potential Sensors: A Drying Experiment. Vadose Zone J. 2017, 16, 4. [Google Scholar] [CrossRef]
- Asgarzadeh, H.; Mosaddeghi, M.R.; Dexter, A.R.; Mahboubi, A.A.; Neyshabouri, M.R. Determination of Soil Available Water for Plants: Consistency between Laboratory and Field Measurements. Geoderma 2014, 226–227, 8–20. [Google Scholar] [CrossRef]
- Li, Y.B.; Liu, Y.; Nie, W.B.; Ma, X.Y. Inverse Modeling of Soil Hydraulic Parameters Based on a Hybrid of Vector-Evaluated Genetic Algorithm and Particle Swarm Optimization. Water 2018, 10, 84. [Google Scholar] [CrossRef]
- Wang, T.; Franz, T.E.; Yue, W.; Szilagyi, J.; Zlotnik, V.A.; You, J.; Chen, X.; Shulski, M.D.; Young, A. Feasibility Analysis of Using Inverse Modeling for Estimating Natural Groundwater Recharge from a Large-Scale Soil Moisture Monitoring Network. J. Hydrol. 2016, 533, 250–265. [Google Scholar] [CrossRef]
- Van den Berg, M.; Klamt, E.; Van Reeuwijk, L.P. Pedotransfer Functions for the Estimation of Moisture Retention Characteristics of Ferralsols and Related Soils. Geoderma 1997, 78, 161–180. [Google Scholar] [CrossRef]
- Werisch, S.; Grundmann, J.; Al-Dhuhli, H.; Algharibi, E.; Lennartz, F. Multiobjective Parameter Estimation of Hydraulic Properties for a Sandy Soil in Oman. Environ. Earth Sci. 2014, 72, 4935–4956. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Schulin, R.; Van Genuchten, M.T. Estimating Unsaturated Soil Hydraulic Parameters Using Ant Colony Optimization. Adv. Water Resour. 2001, 24, 827–841. [Google Scholar] [CrossRef]
- Wohling, T.; Vrugt, J.A.; Barkle, G.F. Comparison of Three Multiobjective Optimization Algorithms for Inverse Modeling of Vadose Zone Hydraulic Properties. Soil Sci. Soc. Am. J. 2008, 72, 305–319. [Google Scholar] [CrossRef]
- Kumar, S.; Sekhar, M.; Reddy, D.V.; Mohan Kumar, M.S. Estimation of Soil Hydraulic Properties and Their Uncertainty: Comparison between Laboratory and Field Experiment. Hydrol. Process. 2010, 24, 3426–3435. [Google Scholar] [CrossRef]
- Osorio-Murillo, C.A.; Over, M.W.; Savoy, H.; Ames, D.P.; Rubin, Y. Software Framework for Inverse Modeling and Uncertainty Characterization. Environ. Model. Softw. 2015, 66, 98–109. [Google Scholar] [CrossRef]
- Van Dam, J.C.; Stricker, J.N.M.; Droogers, P. Inverse Method for Determining Soil Hydraulic Functions from One-Step Outflow Experiments. Soil Sci. Soc. Am. J. 1992, 56, 1042–1050. [Google Scholar] [CrossRef]
- Gardner, W.R. Some Steady-State Solutions of the Unsaturated Moisture Flow Equation with Application to Evaporation from a Water Table. Soil Sci. 1958, 85, 228–232. [Google Scholar] [CrossRef]
- Durner, W. Hydraulic Conductivity Estimation for Soils with Heterogeneous Pore Structure. Water Resour. Res. 1994, 30, 211–223. [Google Scholar] [CrossRef]
- Campbell, G. A Simple Method for Determining Unsaturated Conductivity from Moisture Retention Data. Soil Sci. 1974, 117, 311–314. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Lambot, S. A Global Multilevel Coordinate Search Procedure for Estimating the Unsaturated Soil Hydraulic Properties. Water Resour. Res. 2002, 38, 1–15. [Google Scholar] [CrossRef]
- Fuentes, C.; Haverkamp, R.; Parlange, J.Y. Parameter Constraints on Closed-Form Soil Water Relationships. J. Hydrol. 1992, 134, 117–142. [Google Scholar] [CrossRef]
- Shi, L.; Song, X.; Tong, J.; Zhu, Y.; Zhang, Q. Impacts of Different Types of Measurements on Estimating Unsaturated Flow Parameters. J. Hydrol. 2015, 524, 549–561. [Google Scholar] [CrossRef]
- Kool, J.B.; Parker, J.C.; Van Genuchten, M.T. Determining Soil Hydraulic Properties from One-Step Outflow Experiments by Parameter Estimation: I. Theory and Numerical Studies. Soil Sci. Soc. Am. J. 1985, 49, 1348–1354. [Google Scholar] [CrossRef]
- Toorman, A.F.; Wierenga, P.J.; Hills, R.G. Parameter Estimation of Hydraulic Properties from One-step Outflow Data. Water Resour. Res. 1992, 28, 3021–3028. [Google Scholar] [CrossRef]
- Eching, S.O.; Hopmans, J.W. Optimization of Hydraulic Functions from Transient Outflow and Soil Water Pressure Data. Soil Sci. Soc. Am. J. 1993, 57, 1167–1175. [Google Scholar] [CrossRef]
- Simůnek, J.; van Genuchten, M.T. Estimating Unsaturated Soil Hydraulic Properties from Multiple Tension Disc Infiltrometer Data. Soil Sci. 1997, 162, 383–398. [Google Scholar] [CrossRef]
- Schelle, H.; Durner, W.; Iden, S.C.; Fank, J. Simultaneous Estimation of Soil Hydraulic and Root Distribution Parameters from Lysimeter Data by Inverse Modeling. Procedia Environ. Sci. 2013, 19, 564–573. [Google Scholar] [CrossRef]
- Kechavarzi, C.; Špongrová, K.; Dresser, M.; Matula, S.; Godwin, R.J. Laboratory and Field Testing of an Automated Tension Infiltrometer. Biosyst. Eng. 2009, 104, 266–277. [Google Scholar] [CrossRef]
- Wayllace, A.; Lu, N. A Transient Water Release and Imbibitions Method for Rapidly Measuring Wetting and Drying Soil Water Retention and Hydraulic Conductivity Functions. Geotech. Test. J. 2011, 35, 103–117. [Google Scholar]
- Wang, J.E.; Xiang, W. Transient Water Release and Imbibition Properties of Remolded Sliding Zone Soil of Huangtupo Landslide in Three Gorges Reservoir Area, China. In Global View of Engineering Geology and the Environment, Proceedings of the International Symposium and 9th Asian Regional Conference of IAEG, Beijing, China, 23–25 September 2013; CRC Press: London, UK, 2014; p. 228. [Google Scholar]
- Lu, N. Validating the Effective Stress Principle in Unsaturated Soil Using Non-Failure Tests. In Unsaturated Soils: Research & Applications; Khalili, N., Russell, A., Khoshghalb, A., Eds.; CRC Press: London, UK, 2014; pp. 31–41. [Google Scholar]
- Mun, W.; Teixeira, T.; Balci, M.C.; Svoboda, J.; Mccartney, J.S. Rate Effects on the Undrained Shear Strength of Compacted Clay. Soil Found. 2016, 56, 719–731. [Google Scholar] [CrossRef]
- Lu, N.; Wayllace, A.; Oh, S. Infiltration-Induced Seasonally Reactivated Instability of a Highway Embankment near the Eisenhower Tunnel, Colorado, USA. Eng. Geol. 2013, 162, 22–32. [Google Scholar] [CrossRef]
- Lu, N.; Godt, J.W. Hillslope Hydrology and Stability; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Ritter, A.; Hupet, F.; Munoz-Carpena, R.; Lambot, S.; Vanclooster, M. Using Inverse Methods for Estimating Soil Hydraulic Properties from Field Data as an Alternative to Direct Methods. Agric. Water Manag. 2003, 59, 77–96. [Google Scholar] [CrossRef]
- Köhne, J.M.; Köhne, S.; Šimůnek, J. A Review of Model Applications for Structured Soils: A) Water Flow and Tracer Transport. J. Contam. Hydrol. 2009, 104, 4–35. [Google Scholar] [CrossRef] [PubMed]
- Filipović, V.; Weninger, T.; Filipović, L.; Schwen, A.; Bristow, K.L.; Zechmeister-Boltenstern, S.; Leitner, S. Inverse Estimation of Soil Hydraulic Properties and Water Repellency Following Artificially Induced Drought Stress. J. Hydrol. Hydromech. 2018, 66, 170–180. [Google Scholar] [CrossRef]
- Chann, S.; Wales, N.; Frewer, T. An Investigation of Land Cover and Land Use Change in Stung Chrey Bak Catchment, Cambodia; CDRI: Phnom Penh, Cambodia, 2011. [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations). Guidelines for Soil Description, 4th, ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Ket, P.; Garré, S.; Oeurng, C.; Hok, L.; Degré, A. Simulation of Crop Growth and Water-Saving Irrigation Scenarios for Lettuce: A Monsoon-Climate Case Study in Kampong Chhnang, Cambodia. Water 2018, 10, 666. [Google Scholar] [CrossRef]
- Andersland, O.B.; Ladanyi, B. Frozen Ground Engineering, 3rd, ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Liénard, A.; Colinet, G. Transfert En Cadmium et Zinc Vers l ’orge de Printemps En Sols Contaminés et Non Contaminés de Belgique: Évaluation et Prédiction. Cah. Agric 2018, 27, 1–10. [Google Scholar] [CrossRef]
- Wooding, R.A. Steady Infiltration from a Shallow Circular Pond. Water Resour. Res. 1968, 4, 1259–1273. [Google Scholar] [CrossRef]
- Fisher, D.K.; Gould, P.J. Open-Source Hardware Is a Low-Cost Alternative for Scientific Instrumentation and Research. Mod. Instrum. 2012, 1, 8–20. [Google Scholar] [CrossRef]
- Decagon Devices. MPS-2 & MPS-6 Dielectric Water Potential Sensors, Operator’s Manual; Decagon Devices, Inc.: Pullman, WA, USA, 2016. [Google Scholar]
- Decagon Devices. MPS-2 Dielectric Water Potential Sensor: Operator’s Manual; Decagon Devices, Inc.: Pullman, WA, USA, 2011. [Google Scholar]
- Decagon Devices. 10HS Soil Moisture Sensor Operator’s Manual; Version 3; Decagon Devices, Inc.: Pullman, WA, USA, 2010. [Google Scholar]
- Visconti, F.; de Paz, J.M.; Martínez, D.; Molina, M.J. Laboratory and Field Assessment of the Capacitance Sensors Decagon 10HS and 5TE for Estimating the Water Content of Irrigated Soils. Agric. Water Manag. 2014, 132, 111–119. [Google Scholar] [CrossRef]
- Mittelbach, H.; Lehner, I.; Seneviratne, S.I. Comparison of Four Soil Moisture Sensor Types under Field Conditions in Switzerland. J. Hydrol. 2012, 430–431, 39–49. [Google Scholar] [CrossRef]
- Cobos, D.; Chamber, C. Application Note Calibrating ECH2O Soil Moisture Sensors; Decagon Devices, Inc.: Pullman, WA, USA, 2005; pp. 1–5. [Google Scholar]
- Irmak, S.; Howell, T.A.; Allen, R.G.; Payero, J.O.; Martin, D.L. Standardized ASCE Penman-Monteith: Impact of Sum-of-Hourly vs. 24-Hour Timestep Computations at Reference Weather Station Sites. Trans. ASAE 2005, 48, 1063–1077. [Google Scholar] [CrossRef]
- Allen, R.; Walter, I.; Elliott, R. The ASCE Standardized Reference Evapotranspiration Equation; American Society of Civil Engineers: Reston, VA, USA, 2005. [Google Scholar]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Baselga, J.; et al. A Recommendation on Standardized Surface Resistance for Hourly Calculation of Reference ETo by the FAO56 Penman-Monteith Method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Tolk, J.A.; Evett, S.R.; Schwartz, R.C. Field-Measured, Hourly Soil Water Evaporation Stages in Relation to Reference Evapotranspiration Rate and Soil to Air Temperature Ratio. Vadose Zone J. 2015, 14, 1–14. [Google Scholar] [CrossRef]
- Kool, D.; Agam, N.; Lazarovitch, N.; Heitman, J.L.; Sauer, T.J.; Ben-gal, A. A Review of Approaches for Evapotranspiration Partitioning. Agric. For. Meteorol. 2014, 184, 56–70. [Google Scholar] [CrossRef]
- Paredes, P.; Rodrigues, G.C.; Alves, I.; Pereira, L.S. Partitioning Evapotranspiration, Yield Prediction and Economic Returns of Maize under Various Irrigation Management Strategies. Agric. Water Manag. 2014, 135, 27–39. [Google Scholar] [CrossRef]
- Gallardo, M.; Snyder, R.; Schulbach, K.; Jackson, L. Crop Growth and Water Use Model for Lettuce. J. Irrig. Drain. Eng. 1996, 122, 354–359. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1977. [Google Scholar]
- Šimůnek, J.; Šejna, M.; Saito, H.; Sakai, M.; Van Genuchten, M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water Heat, and Multiple Solutes in Variably-Saturated Media; Department of Environmental Sciences, University of California: Riverside, CA, USA, 2005. [Google Scholar]
- May, P.; Genuchten, V. Modeling Nonequilibrium Flow and Transport Processes Using HYDRUS. Vadose Zone J. 2008, 7, 782–797. [Google Scholar]
- Richards, L.A. Capillary Conduction of Liquids Throuhg Porous Media. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Mualem, Y. A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Šimůnek, J.; Jarvis, N.J.; van Genuchten, M.T.; Gärdenäs, A. Review and Comparison of Models for Describing Non-Equilibrium and Preferential Flow and Transport in the Vadose Zone. J. Hydrol. 2003, 272, 14–35. [Google Scholar] [CrossRef]
- Radcliffe, D.E.; Simunek, J. Soil Physics with Hydrus Modeling and Applications; CRC Press, Taylor and Francis Group, LLC: Boca Raton, FL, USA, 2010. [Google Scholar]
- Soltani, A.; Azimi, M.; Deng, A.; Taheri, A. A Simplified Method for Determination of the Soil—Water Characteristic Curve Variables. Int. J. Geotech. Eng. 2017, 1–10. [Google Scholar] [CrossRef]
- Zhai, Q.; Rahardjo, H. Quanti Fi Cation of Uncertainties in Soil—Water Characteristic Curve Associated with Fi Tting Parameters. Eng. Geol. 2013, 163, 144–152. [Google Scholar] [CrossRef]
- Barbour, S.L. Nineteenth Canadian Geotechnical Colloquium: The Soil-Water Characteristic Curve: A Historical Perspective. Can. J. Geotech 1998, 35, 873–894. [Google Scholar] [CrossRef]
- Assouline, S.; Tessier, D. A Conceptual Model of the Soil Water Retention Curve. Water Resour. Res 1998, 34, 223–231. [Google Scholar] [CrossRef]
- Gallage, C.P.K.; Uchimura, T. Effects of Dry Density and Grain Size Distribution on Soil-Water Characteristic Curves of Sandy Soils. Soil Found. 2010, 50, 161–172. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, L.; Wu, Q.J. Water-Entry Value as an Alternative Indicator of Soil Water-Repellency and Wettability. J. Hydrol. 2000, 231–232, 76–83. [Google Scholar] [CrossRef]
- Seki, K.; Ackerer, P.; Lehmann, F. Geoderma Sequential Estimation of Hydraulic Parameters in Layered Soil Using Limited Data. Geoderma 2015, 247–248, 117–128. [Google Scholar] [CrossRef]
- Yates, M.V. Measurement of Virus and Indicator Survival and Transport in the Subsurface; American Water Works Association: Denver, CO, USA, 2000. [Google Scholar]
- Mazzacavallo, M.G.; Kulmatiski, A. Modelling Water Uptake Provides a New Perspective on Grass and Tree Coexistence. PLoS ONE 2015, 10, e0144300. [Google Scholar] [CrossRef] [PubMed]
- Schaap, M.G.; Leij, F.J.; Van Genuchten, M.T. Rosetta: A Computer Program for Estimating Soil Hydraulic Parameters with Hierarchical Pedotransfer Functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Gutmann, E.D.; Small, E.E. A Comparison of Land Surface Model Soil Hydraulic Properties Estimated by Inverse Modeling and Pedotransfer Functions. Water Resour. Res. 2007, 43, 1–13. [Google Scholar] [CrossRef]
- Levenberg, K. A Method for the Solution of Certain Problems in Leaset Squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef]
- Vrugt, J.A.; van Wijk, M.T.; Hopmans, J.W. One-, Two-, and Three-Dimensional Root Water Uptake Functions for Transient Modeling. Water Resour. Res 2001, 37, 2457–2470. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Wendroth, O. Parameter Estimation Analysis of the Evaporation Method for Determining Soil Hydraulic Properties. Soil Sci. Soc. Am. J. 1998, 62, 894–905. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P. Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Quidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Autovino, D.; Rallo, G.; Provenzano, G. Predicting Soil and Plant Water Status Dynamic in Olive Orchards under Different Irrigation Systems with Hydrus-2D: Model Performance and Scenario Analysis. Agric. Water Manag. 2018, 203, 225–235. [Google Scholar] [CrossRef]
- Jiang, J.; Feng, S.; Ma, J.; Huo, Z.; Zhang, C. Field Crops Research Irrigation Management for Spring Maize Grown on Saline Soil Based on SWAP Model. F. Crop. Res. 2016, 196, 85–97. [Google Scholar] [CrossRef]
- Nobuhiro, T.; Shimizu, A.; Kabeya, N.; Tamai, K.; Ito, E.; Araki, M.; Kubota, T.; Tsuboyama, Y.; Chann, S. Advanced Bash-Scripting Guide An in-Depth Exploration of the Art of Shell Scripting Table of Contents. Hydrol. Process. 2010, 22, 2267–2274. [Google Scholar]
- Schwartz, R.C.; Evett, S.R. Conjunctive Use of Tension Infiltrometry and Time-Domain Reflectometry for Inverse Estimation of Soil Hydraulic Properties. Vadose Zone J. 2003, 2, 530–538. [Google Scholar] [CrossRef]
- Abbasi, F.; Simunek, J.; Feyen, J.; Shouse, P.J. Simulataneous Inverse Estimation of Soil Hydraulic and Solute Transport Parameters from Transient Field Experiments: Homogeneous Soil. Am. Soc. Agric. Eng. 2003, 46, 1085–1095. [Google Scholar]
- Yoon, Y.; Kim, J.; Hyun, S. Estimating Soil Water Retention in a Selected Range of Soil Pores Using Tension Disc Infiltrometer Data. Soil Tillage Res. 2007, 97, 107–116. [Google Scholar] [CrossRef]
- March, P. Comparison of Tension Infiltrometer, Pressure Infiltrometer, and Soil Core Estimates of Saturated Hydraulic Conductivity. Soil Sci. Soc. Am. J. 2000, 64, 478–484. [Google Scholar]
- Roulier, Â.; Angulo-jaramillo, R.; Vandervaere, J.; Thony, J.; Gaudet, J.; Vauclin, M. Field Measurement of Soil Surface Hydraulic Properties by Disc and Ring Infiltrometers: A Review and Recent Developments. Soil Tillage Res. 2000, 55, 1–29. [Google Scholar]
- Rezaei, M.; Seuntjens, P.; Shahidi, R.; Joris, I.; Boënne, W.; Al-barri, B.; Cornelis, W. The Relevance of In-Situ and Laboratory Characterization of Sandy Soil Hydraulic Properties for Soil Water Simulations. J. Hydrol. 2016, 534, 251–265. [Google Scholar] [CrossRef]
- Kargas, G.; Soulis, K. Performance Analysis and Calibration of a New Low-Cost Capacitance Soil Moisture Sensor. J. Irrig. Drain. Eng. 2011, 138, 632–641. [Google Scholar] [CrossRef]
- Hao, D.R.; Liao, H.J.; Ning, C.M.; Shan, X.P. The Microstructure and Soil-Water Characteristic of Unsaturated Loess. In Unsaturated Soil Mechanics—From Theory to Practice, Proceedings of the 6th Asia Pacific Conference on Unsaturated Soils, Guilin, China, 23–26 October 2015; Taylor & Francis Group: London, UK, 2015; pp. 163–167. [Google Scholar]
- Konyai, S.; Sriboonlue, V.; Trelo-Ges, V. The Effect of Air Entry Values on Hysteresis of Water Retention Curve in Saline Soil. Am. J. Environ. Sci. 2009, 5, 341–345. [Google Scholar] [CrossRef]
Sites | Soil FAO Description |
---|---|
T1 (104°38′13.539″ E 12°14′33.951″ N, PreyMorn Village) | Horizon1 (Ap): Depth: 0–20 cm, texture: loamy sand, structure: blocky subangular, soil color: 10YR3/3, consistency of soil when dry: very friable, soil stickiness: slightly sticky, soil plasticity: slightly plastic, bulk density: 1.4–1.6 kg dm−3. Horizon2 (B1): Depth: 20–50 cm, texture: loamy sand, structure: blocky subangular, soil color: 7.5YR7/6, consistency of soil when dry: very friable, soil stickiness: non-sticky, soil plasticity: non-plastic, bulk density: 1.4–1.6 kg dm−3. Horizon 3 (B2): Depth: 50 cm+, texture: loamy sand, structure: Single grain, soil color: 7.5YR7/8, consistency of soil when dry: very friable, soil stickiness: non-sticky, soil plasticity: non-plastic, bulk density: 1.4–1.6 kg dm−3. |
T2 (104°38′54.442″ E 12°9′15.482″ N, Chea Rov Village) | Horizon1 (Ap1): Depth: 0–10 cm, texture: sand, structure: single grain, soil color: 7.5YR5/3, consistency of soil when dry: loose, soil stickiness: slightly sticky, soil plasticity: slightly plastic, bulk density: 0.9–1.2 kg dm−3. Horizon2 (Ap2): Depth: 10–40 cm, texture: sand, structure: single grain and subangular, soil color: 7.5YR7/3, consistency of soil when dry: loose, soil stickiness: slightly sticky, soil plasticity: slightly plastic, bulk density: 1.2–1.4 kg dm−3. Horizon3 (B): Depth: 40 cm+, texture: sand, structure: single grain and subangular, soil color: 7.5Y5/4, consistency of soil when dry: loose, soil stickiness: slightly sticky, soil plasticity: slightly plastic, bulk density: 1.2–1.4 kg dm−3. |
T3 (104°38′35.317″ E 12°8′41.929″ N, Trapain Trach village) | Horizon1 (Ap): Depth: 0–20 cm, texture: sand, structure: single grain to subangular, soil color: 7.5YR5/6, consistency of soil when dry: loose, soil stickiness: slightly sticky, soil plasticity: slightly plastic, bulk density 1.2–1.4 kg dm−3. Horizon2 (B): Depth: 20–60 cm, texture: sand, structure: single grain to subangular, soil color: 7.5YR5/6, consistency of soil when dry: loose, soil stickiness: slightly sticky, soil plasticity: slightly plastic, bulk density 1.2–1.4 kg dm−3. Horizon3 (C): Depth: 60 cm+: Bed rock. |
T4 (104°37′16.24″ E 12°11′52.518″ N, Ou Roung Village) | Horizon1 (Ap1): Depth: 4–17 cm, texture: loam, structure: subangular, soil color: 7.5YR5/3, consistency of soil when dry: hard, soil stickiness: sticky, soil plasticity: plastic, bulk density: 1.4–1.6 kg dm−3. Horizon2 (A2): Depth: 10–40 cm, texture: loam, structure: massive subangular, soil color: 7.5YR6/3, consistency of soil when dry: very hard, soil stickiness: very sticky, soil plasticity: very plastic, bulk density: 1.0–1.2 kg dm−3. Horizon 3 (B): Depth: 17 cm+, texture: silty clay, structure: massive subangular, soil color: 7.5YR7/3, consistency of soil when dry: extremely hard, soil stickiness: very sticky, soil plasticity: very plastic, bulk density: 1.0–1.2 kg dm−3. |
T5 (104°35′15.321″ E 12°6′21.25″ N, Kouk Pouch Village) | Horizon1 (Ap): Depth: 0–30 cm, texture: loamy sand, structure: single grain to subangular, soil color: 7.5YR5/4, consistency of soil when dry: soft, soil stickiness: slightly sticky, soil plasticity: slightly plastic, bulk density: 0.9–1.2 kg dm−3. Horizon2 (B): Depth: 30 cm+, texture: sandy loam, structure single grain to subangular, soil color: 7.5YR7/3, consistency of soil when dry: hard, soil stickiness: sticky, soil plasticity: plastic, bulk density: 1.4–1.6 kg dm−3. |
Site | Depth | H | Clay (%) | Silt (%) | Sand (%) | Bd (g/cm3) | ∅ | e | pH Water | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | (0–10 cm) | Ap1 | 3.74 | 12.75 | 83.49 | 1.473 ± 0.01 | 0.44 | 0.80 | 0.13 | 4.66 | 1.41 ± 1.13 | 0.34 ± 0.01 |
(10–20 cm) | Ap2 | - | - | - | 1.840 ± 0.10 | 0.31 | 0.44 | 0.13 | - | - | ||
T2 | (0–10 cm) | Ap1 | 4.13 | 8.95 | 86.91 | 1.52 ± 0.06 | 0.43 | 0.74 | 0.27 | 5.17 | 0.46 ± 0.09 | 0.31 ± 0.015 |
(10–20 cm) | Ap2 | 3.64 | 7.28 | 89.07 | 1.66 ± 0.02 | 0.37 | 0.60 | 0.27 | 4.89 | - | ||
T3 | (0–10 cm) | Ap1 | 4.31 | 8.12 | 87.55 | 1.52 ± 0.02 | 0.43 | 0.74 | 0.13 | 4.46 | 1.45 ± 0.83 | 0.33 ± 0.007 |
(10–20 cm) | Ap2 | - | - | - | 1.72 ± 0.06 | 0.35 | 0.54 | 0.13 | - | |||
T4 | (0–10 cm) | Ap1 | 5.02 | 54.77 | 40.19 | 1.47 ± 0.08 | 0.45 | 0.80 | 0.19 | 6.25 | 0.26 ± 0.21 | 0.43 ± 0.023 |
(10–20 cm) | Ap2 | 7.41 | 43.56 | 49.01 | 1.67 ± 0.01 | 0.37 | 0.59 | 0.19 | 4.87 | - | ||
T5 | (0–10 cm) | Ap1 | 3.80 | 17.89 | 78.31 | 1.48 ± 0.05 | 0.44 | 0.79 | 0.12 | 5.35 | 0.31 ± 0.16 | 0.35 ± 0.005 |
(10–20 cm) | A/Bp | 23.87 | 18.83 | 57.28 | 1.77 ± 0.03 | 0.33 | 0.50 | 6.06 | - |
Sites | Calibration Equation | R2 |
---|---|---|
T1 | VWC = 0.0005 raw − 0.3715 | 0.98 |
T2 | VWC = 0.0005 raw − 0.3712 | 0.95 |
T3 | VWC = 0.0004 raw − 0.2591 | 0.98 |
T4 | VWC = 7 × 10−7 raw2 − 0.0008 raw + 0.2724 | 0.99 |
T5 | VWC = 0.0005 raw − 0.3196 | 0.98 |
Sites | Growing Stage | ||
---|---|---|---|
T1 | Mid-season | 1.1 | 35 |
T2 | Mid-season | 1.1 | 57 |
T3 | Development stage | 0.78 to 1.1 | 44 |
Sites | Soil Depth | vG Parameters | |||||
---|---|---|---|---|---|---|---|
α (cm−1) | n (-) | l (-) | |||||
T1 | 10 cm | 0.057 | 0.41 | 0.0124 | 2.28 | 1.41 | 0.5 |
(Loamy sand) | 20 cm | 0.057 | 0.41 | 0.0124 | 2.28 | 1.41 | 0.5 |
T2 | 10 cm | 0.045 | 0.43 | 0.0145 | 2.68 | 0.46 | 0.5 |
(Sand) | 20 cm | 0.045 | 0.43 | 0.0145 | 2.68 | 0.46 | 0.5 |
T3 | 10 cm | 0.045 | 0.43 | 0.0145 | 2.68 | 1.45 | 0.5 |
(Sand) | 20 cm | 0.045 | 0.43 | 0.0145 | 2.68 | 4.95 | 0.5 |
T4 | 10 cm | 0.078 | 0.43 | 0.0036 | 1.56 | 0.26 | 0.5 |
(Loam) | 20 cm | 0.078 | 0.43 | 0.0036 | 1.56 | 0.26 | 0.5 |
T5 (loamy sand) | 10 cm | 0.057 | 0.41 | 0.0124 | 2.28 | 0.31 | 0.5 |
Sites | Depth | θr (cm3 cm−3) | θs (cm3 cm−3) | α (mm−1) | n (-) | l | ||
---|---|---|---|---|---|---|---|---|
T1 | 10 cm | 0.041 | 0.35 | 0.0009 | 2.46 | 4.95 | 0.5 | 5.75 |
(Loamy sand) | 20 cm | 0.044 | 0.43 | 0.002 | 1.85 | 4.95 | 0.5 | 2.28 |
T2 | 10 cm | 0.038 | 0.30 | 0.0033 | 1.52 | 2.43 | 0.5 | 1.32 |
(Sand) | 20 cm | 0.003 | 0.35 | 0.0053 | 1.26 | 2.43 | 0.5 | 0.86 |
T3 | 10 cm | 0.015 | 0.33 | 0.0005 | 2.33 | 4.95 | 0.5 | 100.9 |
(Sand) | 20 cm | 0.026 | 0.35 | 0.0004 | 2.34 | 0.26 | 0.5 | 12.64 |
T4 | 10 cm | 0.08 | 0.32 | 0.0013 | 1.61 | 0.38 | 0.5 | 3.37 |
(Loam) | 20 cm | 0.08 | 0.37 | 0.0009 | 1.93 | 0.15 | 0.5 | 5.16 |
T5 (loamy sand) | 10 cm | 7.9871 × 10 −6 | 0.35 | 0.0005 | 2.09 | 0.29 | 0.5 | 9.60 |
Sites | Depth | Simulation with Initial Input Parameters | After Inversion | ||||
---|---|---|---|---|---|---|---|
RMSE (cm3 cm−3) | NSE | R2 | RMSE (cm3 cm−3) | NSE | R2 | ||
T1 | 20 cm | 0.044 | −3.78 | 0.20 | 0.010 | 0.73 | 0.99 |
T2 | 10 cm | 0.08 | −5.06 | 0.16 | 0.016 | 0.75 | 0.91 |
20 cm | 0.04 | 0.36 | 0.92 | 0.002 | 0.99 | 0.99 | |
T3 | 10 cm | 0.05 | −0.14 | 0.85 | 0.048 | 0.00 | 0.78 |
20 cm | 0.06 | 0.31 | 0.90 | 0.024 | 0.83 | 0.97 | |
T4 | 10 cm | 0.019 | 0.32 | 0.76 | 0.015 | 0.53 | 0.94 |
20 cm | 0.028 | 0.75 | 0.98 | 0.026 | 0.78 | 0.98 | |
T5 | 10 cm | 0.038 | −0.13 | 0.86 | 0.012 | 0.89 | 0.99 |
Sites | Depth | Simulation with Initial Input Parameters | After Inversion | ||||
---|---|---|---|---|---|---|---|
RMSE (cm3 cm−3) | NSE | R2 | RMSE (cm3 cm−3) | NSE | R2 | ||
T1 | 10 cm | 0.05 | 0.41 | 0.99 | 0.02 | 0.84 | 0.99 |
20 cm | 0.03 | 0.45 | 0.99 | 0.02 | 0.72 | 0.99 | |
T2 | 10 cm | 0.11 | −5.66 | 0.14 | 0.02 | 0.64 | 0.85 |
20 cm | 0.13 | −12.40 | 0.07 | 0.02 | 0.75 | 0.99 | |
T3 | 10 cm | 0.05 | 0.42 | 0.99 | 0.03 | 0.83 | 0.99 |
20 cm | 0.06 | 0.31 | 0.90 | 0.02 | 0.83 | 0.97 | |
T4 | 10 cm | 0.08 | −1.64 | 0.31 | 0.03 | 0.65 | 0.98 |
20 cm | 0.07 | −0.20 | 0.53 | 0.03 | 0.82 | 0.99 | |
T5 | 10 cm | 0.05 | −1.09 | 0.41 | 0.02 | 0.67 | 0.96 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ket, P.; Oeurng, C.; Degré, A. Estimating Soil Water Retention Curve by Inverse Modelling from Combination of In Situ Dynamic Soil Water Content and Soil Potential Data. Soil Syst. 2018, 2, 55. https://doi.org/10.3390/soilsystems2040055
Ket P, Oeurng C, Degré A. Estimating Soil Water Retention Curve by Inverse Modelling from Combination of In Situ Dynamic Soil Water Content and Soil Potential Data. Soil Systems. 2018; 2(4):55. https://doi.org/10.3390/soilsystems2040055
Chicago/Turabian StyleKet, Pinnara, Chantha Oeurng, and Aurore Degré. 2018. "Estimating Soil Water Retention Curve by Inverse Modelling from Combination of In Situ Dynamic Soil Water Content and Soil Potential Data" Soil Systems 2, no. 4: 55. https://doi.org/10.3390/soilsystems2040055
APA StyleKet, P., Oeurng, C., & Degré, A. (2018). Estimating Soil Water Retention Curve by Inverse Modelling from Combination of In Situ Dynamic Soil Water Content and Soil Potential Data. Soil Systems, 2(4), 55. https://doi.org/10.3390/soilsystems2040055