Next Article in Journal
Response of Organic Matter Decomposition to No-Tillage Adoption Evaluated by the Tea Bag Technique
Next Article in Special Issue
Interacting Controls of Pyrolysis Temperature and Plant Taxa on the Degradability of PyOM in Fire-Prone Northern Temperate Forest Soil
Previous Article in Journal
Analytical Solutions of One-Dimensional Contaminant Transport in Soils with Source Production-Decay
Previous Article in Special Issue
Conversion of a Semiarid Nevada Soil to Irrigated Agriculture Preferentially Removes Labile Carbon
Article

Controls on Soil Organic Carbon Partitioning and Stabilization in the California Sierra Nevada

1
Department of Soil, Water, and Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
2
Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
3
College of Agriculture, California State University, Chico, CA 95929, USA
4
Northern Research Station, USDA Forest Service, Houghton, MI 49931, USA
*
Author to whom correspondence should be addressed.
Soil Syst. 2018, 2(3), 41; https://doi.org/10.3390/soilsystems2030041
Received: 14 June 2018 / Revised: 16 July 2018 / Accepted: 17 July 2018 / Published: 20 July 2018
(This article belongs to the Special Issue Soil Organic Matter Dynamics)
There is a critical need to quantify the role of soil mineral composition on organic carbon (C) stabilization in forest soils. Here, we address this need by studying a matrix of forest ecosystems and soil parent materials with the objective of quantifying controls on the physical partitioning and residence time of soil organic carbon. We sampled soil profiles across a climate gradient on the western slope of the California Sierra Nevada, focusing on three distinct forest ecosystems dominated by ponderosa pine, white fir, or red fir, on three igneous parent materials that included granite, andesite, and basalt. Results indicated that short-range order mineral phases were the dominant factors accounting for the variation in soil carbon content and residence time. The results further suggested an interaction between ecosystem fire regime and the degree of soil weathering on the partitioning, chemical composition, and residence time of C in density separated soil physical fractions. These results suggest a link between the degree of soil weathering and C storage capacity, with a greater divergence in storage capacity and residence time in the Inceptisols, Entisols, and Andisols of the white fir and red fir ecosystems relative to minimal variation in the highly weathered Ultisols and Alfisols of the ponderosa pine ecosystem. View Full-Text
Keywords: soil organic carbon; density fractionation; radiocarbon; conifer forest; minerals soil organic carbon; density fractionation; radiocarbon; conifer forest; minerals
Show Figures

Figure 1

MDPI and ACS Style

Rasmussen, C.; Throckmorton, H.; Liles, G.; Heckman, K.; Meding, S.; Horwath, W.R. Controls on Soil Organic Carbon Partitioning and Stabilization in the California Sierra Nevada. Soil Syst. 2018, 2, 41. https://doi.org/10.3390/soilsystems2030041

AMA Style

Rasmussen C, Throckmorton H, Liles G, Heckman K, Meding S, Horwath WR. Controls on Soil Organic Carbon Partitioning and Stabilization in the California Sierra Nevada. Soil Systems. 2018; 2(3):41. https://doi.org/10.3390/soilsystems2030041

Chicago/Turabian Style

Rasmussen, Craig, Heather Throckmorton, Garrett Liles, Katherine Heckman, Stephen Meding, and William R. Horwath 2018. "Controls on Soil Organic Carbon Partitioning and Stabilization in the California Sierra Nevada" Soil Systems 2, no. 3: 41. https://doi.org/10.3390/soilsystems2030041

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop