The Variation and Driving Factors of Soil Organic Carbon Stocks and Soil CO2 Emissions in Urban Infrastructure: Case of a University Campus
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Research Approach
2.3. Soil Survey and SOC Stocks’ Spatial Variation on Campus
2.4. SOC Analysis and Monitoring Soil CO2 Emissions at the Key Plots
2.5. Data Analysis and Mapping
3. Results
3.1. Spatial Variability in Topsoil SOC Stocks on Campus
3.2. SOC Profile Distribution and Fractionation at the Key Plots
3.3. Spatio-Temporal Variation in Soil CO2 Emissions at the Key Plots
3.4. Spatio-Temporal Variation in Soil CO2 Emissions Extrapolated to the Campus Area
4. Discussion
4.1. SOC Stocks on Campus in Comparison to Other Urban Studies
4.2. The Effect of UGI Typology on SOC Stocks and CO2 Emissions
4.3. The Effect of UGI Age on SOC Stocks and CO2 Emissions
4.4. Spatial Patterns in Soil C-CO2 Emissions/SOC Stocks Ratio
4.5. Uncertainties of the Outcomes and Potential Implementation for Decision-Making
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Ariluoma, M.; Ottelin, J.; Hautamäki, R.; Tuhkanen, E.M.; Mänttäri, M. Carbon Sequestration and Storage Potential of Urban Green in Residential Yards: A Case Study from Helsinki. Urban For. Urban Green. 2021, 57, 126939. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and Adapting to Climate Change: Multi-Functional and Multi-Scale Assessment of Green Urban Infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef]
- Chen, W.; Jia, X.; Zha, T.; Wu, B.; Zhang, Y.; Li, C.; Wang, X.; He, G.; Yu, H.; Chen, G. Soil respiration in a mixed urban forest in China in relation to soil temperature and water content. Eur. J. Soil Biol. 2013, 54, 63–68. [Google Scholar] [CrossRef]
- Lv, H.; Wang, W.; He, X.; Xiao, L.; Zhou, W.; Zhang, B. Quantifying tree and soil carbon stocks in a temperate urban forest in northeast China. Forests 2016, 7, 200. [Google Scholar] [CrossRef]
- Dorr, E.; Goldstein, B.; Aubry, C.; Gabrielle, B.; Horvath, A. Best practices for consistent and reliable life cycle assessments of urban agriculture. J. Clean. Prod. 2023, 419, 138010. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- Elmqvist, T.; Setälä, H.; Handel, S.N.; van der Ploeg, S.; Aronson, J.; Blignaut, J.N.; Gómez-Baggethun, E.; Nowak, D.J.; Kronenberg, J.; de Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef]
- Shchepeleva, A.S.; Vasenev, V.I.; Mazirov, I.M.; Vasenev, I.I.; Prokhorov, I.S.; Gosse, D.D. Changes of soil organic carbon stocks and CO2 emissions at the early stages of urban turf grasses development. Urban Ecosyst. 2016, 20, 309–321. [Google Scholar] [CrossRef]
- Vasenev, V.I.; Varentsov, M.I.; Sarzhanov, D.A.; Makhinya, K.I.; Gosse, D.D.; Petrov, D.G.; Dolgikh, A.V. Influence of Meso- and Microclimatic Conditions on the CO2 Emission from Soils of the Urban Green Infrastructure of the Moscow Metropolis. Eurasian Soil Sci. 2023, 56, 1257–1269. [Google Scholar] [CrossRef]
- Bandaranayake, W.; Qian, Y.L.; Parton, W.J.; Ojima, D.S.; Follett, R.F. Estimation of soil organic carbon changes in turfgrass systems using the CENTURY model. Agron. J. 2003, 95, 558–563. [Google Scholar] [CrossRef]
- Qian, Y.L.; Bandaranayake, W.; Parton, W.J.; Mecham, B.; Harivandi, M.A.; Mosier, A.R. Long-Term Effects of Clipping and Nitrogen Management in Turfgrass on Soil Organic Carbon and Nitrogen Dynamics: The CENTURY Model Simulation. J. Environ. Qual. 2003, 32, 1694–1700. [Google Scholar] [CrossRef] [PubMed]
- Matthews, B.; Schume, H. Tall tower eddy covariance measurements of CO2 fluxes in Vienna, Austria. Atmos. Environ. 2022, 274, 118941. [Google Scholar] [CrossRef]
- Raciti, S.M.; Hutyra, L.R.; Rao, P.; Finzi, A.C. Inconsistent definitions of “urban” result in different conclusions about the size of urban carbon and nitrogen stocks. Ecol. Appl. 2012, 22, 1015–1035. [Google Scholar] [CrossRef]
- Khodakarami, L.; Pourmanafi, S.; Soffianian, A.R.; Lotfi, A. Modeling Spatial Distribution of Carbon Sequestration, CO2 Absorption, and O2 Production in an Urban Area: Integrating Ground-Based Data, Remote Sensing Technique, and GWR Model. Earth Space Sci. 2022, 9, e2022EA002261. [Google Scholar] [CrossRef]
- Sushko, S.; Ananyeva, N.; Ivashchenko, K.; Vasenev, V.; Kudeyarov, V. Soil CO2 emission, microbial biomass, and microbial respiration of woody and grassy areas in Moscow (Russia). J. Soils Sediments 2019, 19, 3217–3225. [Google Scholar] [CrossRef]
- Fabbri, D.; Pizzol, R.; Calza, P.; Malandrino, M.; Gaggero, E.; Padoan, E.; Ajmone-Marsan, F. Constructed technosols: A strategy toward a circular economy. Appl. Sci. 2021, 11, 3432. [Google Scholar] [CrossRef]
- Ivashchenko, K.; Lepore, E.; Vasenev, V.; Ananyeva, N.; Demina, S.; Khabibullina, F.; Vaseneva, I.; Selezneva, A.; Dolgikh, A.; Sushko, S.; et al. Assessing soil-like materials for ecosystem services provided by constructed technosols. Land 2021, 10, 1185. [Google Scholar] [CrossRef]
- Gorbov, S.N.; Vasenev, V.I.; Minaeva, E.N.; Tagiverdiev, S.S.; Skripnikov, P.N.; Bezuglova, O.S. Short-Term Dynamics of CO2 Emission and Carbon Content in Urban Soil Constructions in the Steppe Zone. Eurasian Soil Sci. 2023, 56, 1270–1280. [Google Scholar] [CrossRef]
- Bae, J.; Ryu, Y. Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landsc. Urban Plan. 2015, 136, 57–67. [Google Scholar] [CrossRef]
- Tao, Y.; Li, F.; Wang, R.; Zhao, D. Effects of land use and cover change on terrestrial carbon stocks in urbanized areas: A study from Changzhou, China. J. Clean. Prod. 2015, 103, 651–657. [Google Scholar] [CrossRef]
- Zirkle, G.; Lal, R.; Augustin, B. Modeling carbon sequestration in home lawns. HortScience 2011, 46, 808–814. [Google Scholar] [CrossRef]
- Ghosh, S.; Yeo, D.; Wilson, B.; Ow, L.F. Application of char products improves urban soil quality. Soil Use Manag. 2012, 28, 329–336. [Google Scholar] [CrossRef]
- Selhorst, A.; Lal, R. Net carbon sequestration potential and emissions in home lawn turfgrasses of the United States. Environ. Manag. 2013, 51, 198–208. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Change Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Ouédraogo, R.A.; Chartin, C.; Kambiré, F.C.; van Wesemael, B.; Delvaux, B.; Milogo, H.; Bielders, C.L. Short and long-term impact of urban gardening on soil organic carbon fractions in Lixisols (Burkina Faso). Geoderma 2020, 362, 114110. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Lavallee, J.M. Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. Adv. Agron. 2022, 172, 1–66. [Google Scholar] [CrossRef]
- Goncharova, O.; Matyshak, G.; Udovenko, M.; Semenyuk, O.; Epstein, H.; Bobrik, A. Temporal dynamics, drivers, and components of soil respiration in urban forest ecosystems. Catena 2020, 185, 104299. [Google Scholar] [CrossRef]
- Gorbov, S.N.; Bezuglova, O.S.; Skripnikov, P.N.; Tishchenko, S. Soluble Organic Matter in Soils of the Rostov Agglomeration. Eurasian Soil Sci. 2022, 55, 957–970. [Google Scholar] [CrossRef]
- Künnemann, T.; Cannavo, P.; Guérin, V.; Guénon, R. Soil CO2, CH4 and N2O fluxes in open lawns, treed lawns and urban woodlands in Angers, France. Urban Ecosyst. 2023, 26, 1659–1672. [Google Scholar] [CrossRef]
- Vasenev, V.I.; Smagin, A.V.; Ananyeva, N.D.; Ivashchenko, K.V.; Gavrilenko, E.G.; Prokofeva, T.V.; Paltseva, A.; Stoorvogel, J.J.; Gosse, D.D.; Valentini, R. Urban soil’s functions: Monitoring, assessment, and management. In Adaptive Soil Management: From Theory to Practices; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Serrani, D.; Ajmone-Marsan, F.; Corti, G.; Cocco, S.; Cardelli, V.; Adamo, P. Heavy metal load and effects on biochemical properties in urban soils of a medium-sized city, Ancona, Italy. Environ. Geochem. Health 2022, 44, 3425–3449. [Google Scholar] [CrossRef]
- Kaye, J.P.; McCulley, R.L.; Burke, I.C. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob. Change Biol. 2005, 11, 575–587. [Google Scholar] [CrossRef]
- Livesley, S.J.; Dougherty, B.J.; Smith, A.J.; Navaud, D.; Wylie, L.J.; Arndt, S.K. Soil-atmosphere exchange of carbon dioxide, methane and nitrous oxide in urban garden systems: Impact of irrigation, fertiliser and mulch. Urban Ecosyst. 2010, 13, 273–293. [Google Scholar] [CrossRef]
- Velasco, E.; Segovia, E.; Choong, A.M.F.; Lim, B.K.Y.; Vargas, R. Carbon dioxide dynamics in a residential lawn of a tropical city. J. Environ. Manag. 2021, 280, 111752. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 2013, 192, 189–201. [Google Scholar] [CrossRef]
- Meyer, N.; Meyer, H.; Welp, G.; Amelung, W. Soil respiration and its temperature sensitivity (Q10): Rapid acquisition using mid-infrared spectroscopy. Geoderma 2018, 323, 31–40. [Google Scholar] [CrossRef]
- Smagin, A.V.; Sadovnikova, N.B.; Vasenev, V.I.; Smagina, M.V. Biodegradation of some organic materials in soils and soil constructions: Experiments, modeling and prevention. Materials 2018, 11, 1889. [Google Scholar] [CrossRef]
- Vasenev, V.; Varentsov, M.; Konstantinov, P.; Romzaykina, O.; Kanareykina, I.; Dvornikov, Y.; Manukyan, V. Projecting urban heat island effect on the spatial-temporal variation of microbial respiration in urban soils of Moscow megalopolis. Sci. Total Environ. 2021, 786, 147457. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem. 2006, 38, 425–448. [Google Scholar] [CrossRef]
- Sapronov, D.V.; Kuzyakov, Y.V. Separation of root and microbial respiration: Comparison of three methods. Eurasian Soil Sci. 2007, 40, 775–784. [Google Scholar] [CrossRef]
- Chin, M.-Y.; Lau, S.Y.L.; Midot, F.; Jee, M.S.; Lo, M.L.; Sangok, F.E.; Melling, L. Root exclusion methods for partitioning of soil respiration: Review and methodological considerations. Pedosphere 2023, 33, 683–699. [Google Scholar] [CrossRef]
- Sarzhanov, D.A.; Vasenev, V.I.; Vasenev, I.I.; Sotnikova, Y.L.; Ryzhkov, O.V.; Morin, T. Carbon stocks and CO2 emissions of urban and natural soils in Central Chernozemic region of Russia. Catena 2017, 158, 131–140. [Google Scholar] [CrossRef]
- Abakumov, E.V.; Pavlova, T.A.; Dinkelaker, N.V.; Lemyakina, A.E. Sanitary evaluation of soil cover of the saint petersburg state university campus. Hyg. Sanit. 2019, 98, 22–27. [Google Scholar] [CrossRef]
- Martynenko, I.A.; Meshalkina, J.L.; Rappoport, A.V.; Shabarova, T.V. Spatial heterogeneity of some soil properties of the botanical garden of Lomonosov Moscow State University. In Proceedings of the International Congress on Soils of Urban, Industrial, Traffic, Mining and Military Areas; Springer Geography: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Goncharova, O.Y.; Matyshak, G.V.; Udovenko, M.M.; Bobrik, A.A.; Semenyuk, O.V. Seasonal and annual variations in soil respiration of the artificial landscapes (Moscow Botanical Garden). In Proceedings of the International Congress on Soils of Urban, Industrial, Traffic, Mining and Military Areas; Springer Geography: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Statistieken woonplaats Wageningen. Available online: https://allecijfers.nl/woonplaats/wageningen/ (accessed on 1 November 2025).
- CBS. Inwoners per Gemeente; CBS: New York, NY, USA, 2021. [Google Scholar]
- Willem van Groenigen, J.; Velthof, G.L.; Bolt, F.J.V.D.; Vos, A.; Kuikman, P.J. Seasonal variation in N2O emissions from urine patches: Effects of urine concentration, soil compaction and dung. Plant Soil 2005, 273, 15–27. [Google Scholar] [CrossRef]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol. Biochem. 2014, 68, A4–A9. [Google Scholar] [CrossRef]
- Zhu, M.; Xue, W.; Xu, H.; Gao, Y.; Chen, S.; Li, B.; Zhang, Z. Diurnal and seasonal variations in soil respiration of four plantation forests in an urban park. Forests 2019, 10, 513. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Digital soil mapping: A brief history and some lessons. Geoderma 2016, 264, 301–311. [Google Scholar] [CrossRef]
- Veronesi, F.; Schillaci, C. Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation. Ecol. Indic. 2019, 101, 1032–1044. [Google Scholar] [CrossRef]
- Esri Nederland. Actueel Hoogtebestand Nederland, Versie 4; Esri Nederland: Delft, The Netherlands, 2021. [Google Scholar]
- Modified Copernicus Sentinel Data 2023. Available online: https://www.sentinel-hub.com/explore/copernicus-data-space-ecosystem/ (accessed on 1 November 2025).
- Duguay-Tetzlaff, A.; Bento, V.; Göttsche, F.; Stöckli, R.; Martins, J.; Trigo, I.; Olesen, F.; Bojanowski, J.; da Camara, C.; Kunz, H. Meteosat Land Surface Temperature Climate Data Record: Achievable Accuracy and Potential Uncertainties. Remote Sens. 2015, 7, 13139–13156. [Google Scholar] [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Oltra-Carrió, R.; Jiménez-Muñoz, J.C.; Julien, Y.; Sòria, G.; Franch, B.; Mattar, C. Emissivity mapping over urban areas using a classification-based approach: Application to the Dual-use European Security IR Experiment (DESIREX). Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 141–147. [Google Scholar] [CrossRef]
- Malakar, N.K.; Hulley, G.C.; Hook, S.J.; Laraby, K.; Cook, M.; Schott, J.R. An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5717–5735. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.M.; Trigo, I.F. Google Earth Engine open-source code for land surface temperature estimation from the Landsat series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Ghorbankhani, Z.; Zarrabi, M.M.; Ghorbankhani, M. The significance and benefits of green infrastructure using I-Tree canopy software with a sustainable approach Environment Development and Sustainability. Environ. Dev. Sustain. 2024, 26, 14893–14913. [Google Scholar] [CrossRef]
- Alpaidze, L.; Salukvadze, J. Green in the City: Estimating the Ecosystem Services Provided by Urban and Peri-Urban Forests of Tbilisi Municipality, Georgia. Forests 2023, 14, 121. [Google Scholar] [CrossRef]
- Richter, S.; Haase, D.; Thestorf, K.; Makki, M. Carbon Pools of Berlin, Germany: Organic Carbon in Soils and Aboveground in Trees. Urban For. Urban Green. 2020, 54, 126777. [Google Scholar] [CrossRef]
- Cambou, A.; Shaw, R.K.; Huot, H.; Vidal-Beaudet, L.; Hunault, G.; Cannavo, P.; Nold, F.; Schwartz, C. Estimation of soil organic carbon stocks of two cities, New York City and Paris. Sci. Total Environ. 2018, 644, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Vasenev, V.I.; Prokof’eva, T.V.; Makarov, O.A. The development of approaches to assess the soil organic carbon pools in megapolises and small settlements. Eurasian Soil Sci. 2013, 46, 685–696. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Biogeochemical C and N cycles in urban soils. Environ. Int. 2009, 35, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vasenev, V.; van Velthuijsen, R.; Hoosbeek, M.R.; Leuchner, M. Can University Campuses Be Urban Living Labs? Case Study of Soil and Tree Functions at Wageningen University Green Area. Eur. J. Soil Sci. 2025, 76, e70152. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Yesilonis, I.D.; Golubiewski, N.E. A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosyst. 2009, 12, 45–62. [Google Scholar] [CrossRef]
- Nicese, F.P.; Colangelo, G.; Comolli, R.; Azzini, L.; Lucchetti, S.; Marziliano, P.A.; Sanesi, G. Estimating CO2 balance through the Life Cycle Assessment prism: A case—Study in an urban park. Urban For. Urban Green. 2021, 57, 126869. [Google Scholar]
- Flude, C.; Ficht, A.; Sandoval, F.; Lyons, E. Development of an Urban Turfgrass and Tree Carbon Calculator for Northern Temperate Climates. Sustainability 2022, 14, 12423. [Google Scholar] [CrossRef]
- Kortleve, A.J.; Mogollón, J.M.; Heimovaara, T.J.; Gebert, J. Topsoil Carbon Stocks in Urban Greenspaces of The Hague, the Netherlands. Urban Ecosyst. 2022, 26, 725–742. [Google Scholar] [CrossRef]
- Karvinen, E.; Backman, L.; Järvi, L.; Kulmala, L. Soil respiration across a variety of tree-covered urban green spaces in Helsinki, Finland. Soil 2024, 10, 381–406. [Google Scholar] [CrossRef]
- Livesley, S.J.; Ossola, A.; Threlfall, C.G.; Hahs, A.K.; Williams, N.S.G. Soil Carbon and Carbon/Nitrogen Ratio Change under Tree Canopy, Tall Grass, and Turf Grass Areas of Urban Green Space. J. Environ. Qual. 2016, 45, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Kotze, D.J.; Setälä, H.M. Evergreen trees stimulate carbon accumulation in urban soils via high root production and slow litter decomposition. Sci. Total Environ. 2021, 774, 145129. [Google Scholar] [CrossRef]
- Lerman, S.B.; Contosta, A.R. Lawn mowing frequency and its effects on biogenic and anthropogenic carbon dioxide emissions. Landsc. Urban Plan. 2019, 182, 114–123. [Google Scholar] [CrossRef]
- Contosta, A.R.; Lerman, S.B.; Xiao, J.; Varner, R.K. Biogeochemical and socioeconomic drivers of above- and below-ground carbon stocks in urban residential yards of a small city. Landsc. Urban Plan. 2020, 196, 103724. [Google Scholar] [CrossRef]
- Beesley, L. Carbon storage and fluxes in existing and newly created urban soils. J. Environ. Manag. 2012, 104, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Coull, M.; Butler, B.; Hough, R.; Beesley, L. A geochemical and agronomic evaluation of technosols made from construction and demolition fines mixed with green waste compost. Agronomy 2021, 11, 649. [Google Scholar] [CrossRef]
- Gao, X.; Huang, R.; Li, J.; Wang, C.; Lan, T.; Li, Q.; Deng, O.; Tao, Q.; Zeng, M. Temperature induces soil organic carbon mineralization in urban park green spaces, Chengdu, southwestern China: Effects of planting years and vegetation types. Urban For. Urban Green. 2020, 54, 126761. [Google Scholar] [CrossRef]
- Bongiorno, G.; Bünemann, E.K.; Oguejiofor, C.U.; Meier, J.; Gort, G.; Comans, R.; Mäder, P.; Brussaard, L.; de Goede, R. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecol. Indic. 2019, 99, 38–50. [Google Scholar] [CrossRef]
- Wang, Q.; Xiao, F.; He, T.; Wang, S. Responses of labile soil organic carbon and enzyme activity in mineral soils to forest conversion in the subtropics. Ann. For. Sci. 2013, 70, 579–587. [Google Scholar] [CrossRef]
- Gu, C.; Crane, J.; Hornberger, G.; Carrico, A. The effects of household management practices on the global warming potential of urban lawns. J. Environ. Manag. 2015, 151, 233–242. [Google Scholar] [CrossRef]
- Decina, S.M.; Hutyra, L.R.; Gately, C.K.; Getson, J.M.; Reinmann, A.B.; Short Gianotti, A.G.; Templer, P.H. Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area. Environ. Pollut. 2016, 212, 433–439. [Google Scholar] [CrossRef]
- Wan, S.; Luo, Y. Substrate regulation of soil respiration in a tallgrass prairie: Results of a clipping and shading experiment. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Law, Q.D.; Trappe, J.M.; Braun, R.C.; Patton, A.J. Greenhouse gas fluxes from turfgrass systems: Species, growth rate, clipping management, and environmental effects. J. Environ. Qual. 2021, 50, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Pataki, D.E.; Alig, R.J.; Fung, A.S.; Golubiewski, N.E.; Kennedy, C.A.; Mcpherson, E.G.; Nowak, D.J.; Pouyat, R.V.; Romero Lankao, P. Urban ecosystems and the North American carbon cycle. Glob. Change Biol. 2006, 12, 2092–2102. [Google Scholar] [CrossRef]
- Séré, G.; Schwartz, C.; Ouvrard, S.; Renat, J.C.; Watteau, F.; Villemin, G.; Morel, J.L. Early pedogenic evolution of constructed Technosols. J. Soils Sediments 2010, 10, 1246–1254. [Google Scholar] [CrossRef]
- Vialle, A.; Giampieri, M. Mapping urbanization as an anthropedogenetic process: A section through the times of urban soils. Urban Plan. 2020, 5, 262–279. [Google Scholar] [CrossRef]
- Brianskaia, I.P.; Vasenev, V.I.; Brykova, R.A.; Markelova, V.N.; Ushakova, N.V.; Gosse, D.D.; Gavrilenko, E.V.; Blagodatskaya, E.V. Analysis of Volume and Properties of Imported Soils for Prediction of Carbon Stocks in Soil Constructions in the Moscow Metropolis. Eurasian Soil Sci. 2020, 53, 1809–1817. [Google Scholar] [CrossRef]
- Rees, F.; Dagois, R.; Derrien, D.; Fiorelli, J.L.; Watteau, F.; Morel, J.L.; Schwartz, C.; Simonnot, M.O.; Séré, G. Storage of carbon in constructed technosols: In situ monitoring over a decade. Geoderma 2019, 337, 641–648. [Google Scholar] [CrossRef]
- Wan, S.Z.; Chen, F.S.; Hu, X.F.; Zhang, Y.; Fang, X.M. Urbanization aggravates imbalances in the active C, N and P pools of terrestrial ecosystems. Glob. Ecol. Conserv. 2020, 21, e00831. [Google Scholar] [CrossRef]
- Shahbaz, M.; Kuzyakov, Y.; Sanaullah, M.; Heitkamp, F.; Zelenev, V.; Kumar, A.; Blagodatskaya, E. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: Mechanisms and thresholds. Biol. Fertil. Soils 2017, 53, 287–301. [Google Scholar] [CrossRef]
- Vasenev, V.I.; Castaldi, S.; Vizirskaya, M.M.; Ananyeva, N.D.; Shchepeleva, A.S.; Mazirov, I.M.; Ivashchenko, K.V.; Valentini, R.; Vasenev, I.I. Urban soil respiration and its autotrophic and heterotrophic components compared to adjacent forest and cropland within the moscow megapolis. In Proceedings of the International Conference on Landscape Architecture to Support City Sustainable Development; Springer Geography: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Odebiri, O.; Mutanga, O.; Odindi, J.; Naicker, R. Modelling soil organic carbon stock distribution across different land-uses in South Africa: A remote sensing and deep learning approach. ISPRS J. Photogramm. Remote Sens. 2022, 188, 351–362. [Google Scholar] [CrossRef]
- Suleymanov, A.; Suleymanov, R.; Kulagin, A.; Yurkevich, M. Mercury Prediction in Urban Soils by Remote Sensing and Relief Data Using Machine Learning Techniques. Remote Sens. 2023, 15, 3158. [Google Scholar] [CrossRef]
- Villa, P.; Malucelli, F.; Scalenghe, R. Multitemporal mapping of peri-urban carbon stocks and soil sealing from satellite data. Sci. Total Environ. 2018, 612, 590–604. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, T.C.; Lee, X.; Ermida, S.; Zhan, W. On the land emissivity assumption and Landsat-derived surface urban heat islands: A global analysis. Remote Sens. Environ. 2021, 265, 112682. [Google Scholar] [CrossRef]
- Ignatieva, M.; Haase, D.; Dushkova, D.; Haase, A. Lawns in cities: From a globalised urban green space phenomenon to sustainable nature-based solutions. Land 2020, 9, 73. [Google Scholar] [CrossRef]
- Paudel, S.; States, S.L. Urban green spaces and sustainability: Exploring the ecosystem services and disservices of grassy lawns versus floral meadows. Urban For. Urban Green. 2023, 84, 127932. [Google Scholar] [CrossRef]
- Jo, H.K.; McPherson, E.G. Carbon storage and flux in urban residential greenspace. J. Environ. Manag. 1995, 45, 109–133. [Google Scholar] [CrossRef]
- Yang, F.; Ignatieva, M.; Larsson, A.; Zhang, S.; Ni, N. Public perceptions and preferences regarding lawns and their alternatives in China: A case study of Xi’an. Urban For. Urban Green. 2019, 46, 126478. [Google Scholar] [CrossRef]
- Chen, C.; Deng, W.; Ignatieva, M.; Bi, L.; Du, A.; Yang, L. Synergy of urban green space planning and ecosystem services provision: A longitudinal exploration of China’s development. Urban For. Urban Green. 2023, 86, 127997. [Google Scholar] [CrossRef]
- Bouma, J.; Veerman, C.P. Developing Management Practices in: “Living Labs” That Result in Healthy Soils for the Future, Contributing to Sustainable Development. Land 2022, 11, 2178. [Google Scholar] [CrossRef]
- Dro, C.; Kapfinger, K.; Rakic, R. European Missions: Delivering on Europe’s Strategic Priorities; R&I Paper Series; Policy Brief EU-DG Science and Innovation; Directorate General for Research and Innovation (DG RTD) of the European Commission: Brussels, Belgium, 2022. [Google Scholar]







| C-Fraction | HI | LR | LI | LO | SR | SI | SO | TI |
|---|---|---|---|---|---|---|---|---|
| Topsoil (0–10 cm) | ||||||||
| MaOM | 6.7 | 15.5 | 11.3 | 11.3 | 18.4 | 7.4 | 8.8 | 15.9 |
| POM | 5.5 | 4.6 | 9.2 | 4.2 | 4.4 | 3.2 | 3.2 | 4.3 |
| MaOM/POM ratio | 1.2 | 3.3 | 1.2 | 2.7 | 4.2 | 2.3 | 2.8 | 3.7 |
| Subsoil | ||||||||
| MaOM | 7.7 | 7.0 | 13.0 | 8.6 | 10.4 | 1.3 | 10.6 | 16.5 |
| POM | 1.6 | 0.9 | 3.5 | 1.4 | 1.6 | - | 2.1 | 4.3 |
| MaOM/POM ratio | 4.7 | 7.5 | 3.7 | 6.2 | 6.4 | - | 5.0 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vasenev, V.; Velthuijsen, R.v.; Hoosbeek, M.R.; Dvornikov, Y.; Korneykova, M.V. The Variation and Driving Factors of Soil Organic Carbon Stocks and Soil CO2 Emissions in Urban Infrastructure: Case of a University Campus. Soil Syst. 2026, 10, 24. https://doi.org/10.3390/soilsystems10020024
Vasenev V, Velthuijsen Rv, Hoosbeek MR, Dvornikov Y, Korneykova MV. The Variation and Driving Factors of Soil Organic Carbon Stocks and Soil CO2 Emissions in Urban Infrastructure: Case of a University Campus. Soil Systems. 2026; 10(2):24. https://doi.org/10.3390/soilsystems10020024
Chicago/Turabian StyleVasenev, Viacheslav, Robin van Velthuijsen, Marcel R. Hoosbeek, Yury Dvornikov, and Maria V. Korneykova. 2026. "The Variation and Driving Factors of Soil Organic Carbon Stocks and Soil CO2 Emissions in Urban Infrastructure: Case of a University Campus" Soil Systems 10, no. 2: 24. https://doi.org/10.3390/soilsystems10020024
APA StyleVasenev, V., Velthuijsen, R. v., Hoosbeek, M. R., Dvornikov, Y., & Korneykova, M. V. (2026). The Variation and Driving Factors of Soil Organic Carbon Stocks and Soil CO2 Emissions in Urban Infrastructure: Case of a University Campus. Soil Systems, 10(2), 24. https://doi.org/10.3390/soilsystems10020024

