The Ongoing Struggle to Find a Gold Standard for PJI Diagnosis
Abstract
1. Introduction
2. Serum Biomarkers
2.1. Serum CRP and ESR
2.2. Serum Interleukin-6
2.3. Serum Procalcitonin
2.4. Serum D-Dimers
2.5. Serum Intercellular Adhesion Molecule-1
3. Synovial Biomarkers
3.1. Synovial CRP
3.2. Synovial Antimicrobial Peptides
3.3. Synovial Lipocalin-2
3.4. Synovial Leukocyte Esterase
3.5. Synovial IL-6
3.6. Synovial Calprotectin
4. Tissue Biomarkers
- Type I—particle disease;
- Type II—infectious tissue (presence of a large number of neutrophils);
- Type III—mixed tissue (I and II);
- Type IV—indeterminate tissue—predominantly connective—fibrous.
4.1. CD15
4.2. Tissue AMPs
4.3. TLR 1,6
5. Bacterial Identification
5.1. Bacteriological Cultures
5.2. Molecular Techniques—PCR, MALDI-TOF/MS, mNGS
5.3. Microcalorimetry
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- OECD. Health at a Glance 2023: OECD Indicators; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Phillips, J.E.; Crane, T.P.; Noy, M.; Elliott, T.S.J.; Grimer, R.J. The incidence of deep prosthetic infections in a specialist orthopaedic hospital: A 15-year prospective survey. J. Bone Jt. Surg. Br. 2006, 88-B, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.J.; Hevesi, M.; Visscher, S.L.; Ransom, J.E.; Lewallen, D.G.; Berry, D.J.; Kremers, H.M. Direct Inpatient Medical Costs of Operative Treatment of Periprosthetic Hip and Knee Infections Are Twofold Higher Than Those of Aseptic Revisions. J. Bone Jt. Surg. 2021, 103, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Palan, J.; Nolan, C.; Sarantos, K.; Westerman, R.; King, R.; Foguet, P. Culture-negative periprosthetic joint infections. EFORT Open Rev. 2019, 4, 585–594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, S.-J.; Cho, Y.J. Current Guideline for Diagnosis of Periprosthetic Joint Infection: A Review Article. Hip Pelvis 2021, 33, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M.; Rao, N.; Hanssen, A.; Wilson, W.R. Diagnosis and Management of Prosthetic Joint Infection: Clinical Practice Guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2013, 56, e1–e25. [Google Scholar] [CrossRef]
- McNally, M.; Sousa, R.; Wouthuyzen-Bakker, M.; Chen, A.F.; Soriano, A.; Vogely, H.C.; Clauss, M.; Higuera, C.A.; Trebše, R. The EBJIS definition of periprosthetic joint infection. Bone Jt. J. 2021, 103-B, 18–25. [Google Scholar] [CrossRef]
- Parvizi, J.; Tan, T.L.; Goswami, K.; Higuera, C.; Della Valle, C.; Chen, A.F.; Shohat, N. The 2018 Definition of Periprosthetic Hip and Knee Infection: An Evidence-Based and Validated Criteria. J. Arthroplast. 2018, 33, 1309–1314.e2. [Google Scholar] [CrossRef]
- Izakovicova, P.; Borens, O.; Trampuz, A. Periprosthetic joint infection: Current concepts and outlook. EFORT Open Rev. 2019, 4, 482–494. [Google Scholar] [CrossRef]
- Huang, C.; Huang, Y.; Wang, Z.; Lin, Y.; Li, Y.; Chen, Y.; Chen, X.; Zhang, C.; Li, W.; Zhang, W.; et al. Multiplex PCR-based next generation sequencing as a novel, targeted and accurate molecular approach for periprosthetic joint infection diagnosis. Front. Microbiol. 2023, 14, 1181348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, A.F.; Riedel, S. A Case Illustrating the Practical Application of the AAOS Clinical Practice Guideline: Diagnosis and Prevention of Periprosthetic Joint Infection. J. Am. Acad. Orthop. Surg. 2020, 28, e1081–e1085. [Google Scholar] [CrossRef]
- Qin, L.; Wang, H.; Zhao, C.; Chen, C.; Chen, H.; Li, X.; Wang, J.; Hu, N.; Huang, W. Serum and Synovial Biomarkers for Distinguishing Between Chronic Periprosthetic Joint Infections and Rheumatoid Arthritis: A Prospective Cohort Study. J. Arthroplast. 2022, 37, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Grzelecki, D.; Kocon, M.; Mazur, R.; Grajek, A.; Kowalczewski, J. The diagnostic accuracy of blood C-reactive protein and erythrocyte sedimentation rate in periprosthetic joint infections—A 10-year analysis of 1510 revision hip and knee arthroplasties from a single orthopaedic center. J. Orthop. Surg. Res. 2025, 20, 276. [Google Scholar] [CrossRef]
- Saleh, A.; George, J.; Faour, M.; Klika, A.K.; Higuera, C.A. Serum biomarkers in periprosthetic joint infections. Bone Jt. Res. 2018, 7, 85–93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sigmund, I.K.; Puchner, S.E.; Windhager, R. Serum Inflammatory Biomarkers in the Diagnosis of Periprosthetic Joint Infections. Biomedicines 2021, 9, 1128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fink, B.; Schlumberger, M.; Beyersdorff, J.; Schuster, P. C-reactive protein is not a screening tool for late periprosthetic joint infection. J. Orthop. Traumatol. 2020, 21, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pérez-Prieto, D.; Portillo, M.E.; Puig-Verdié, L.; Alier, A.; Martínez, S.; Sorlí, L.; Horcajada, J.P.; Monllau, J.C. C-reactive protein may misdiagnose prosthetic joint infections, particularly chronic and low-grade infections. Int. Orthop. 2017, 41, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Renz, N.; Mudrovcic, S.; Perka, C.; Trampuz, A. Orthopedic implant-associated infections caused by Cutibacterium spp.—A remaining diagnostic challenge. PLoS ONE 2018, 13, e0202639. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghanem, E.; Antoci, V., Jr.; Pulido, L.; Joshi, A.; Hozack, W.; Parvizi, J. The use of receiver operating characteristics analysis in determining erythrocyte sedimentation rate and C-reactive protein levels in diagnosing periprosthetic infection prior to revision total hip arthroplasty. Int. J. Infect. Dis. 2009, 13, e444–e449. [Google Scholar] [CrossRef]
- Barton, B.E. IL-6: Insights into novel biological activities. Clin. Immunol. Immunopathol. 1997, 85, 16–20. [Google Scholar] [CrossRef]
- Povoa, P. C-reactive protein: A valuable marker of sepsis. Intensive Care Med. 2002, 28, 235–243. [Google Scholar] [CrossRef]
- Berbari, E.; Mabry, T.; Tsaras, G.; Spangehl, M.; Erwin, P.J.; Murad, M.H.; Steckelberg, J.; Osmon, D. Inflammatory blood laboratory levels as markers of prosthetic joint infection: A systematic review and meta-analysis. J. Bone Jt. Surg. 2010, 92, 2102–2109. [Google Scholar] [CrossRef]
- Xie, K.; Dai, K.; Qu, X.; Yan, M. Serum and Synovial Fluid Interleukin-6 for the Diagnosis of Periprosthetic Joint Infection. Sci. Rep. 2017, 7, 1496. [Google Scholar] [CrossRef]
- Song, M.; Kellum, J.A. Interleukin-6. Crit. Care Med. 2005, 33, S463–S465. [Google Scholar] [CrossRef]
- Becker, K.L.; Snider, R.; Nylen, E.S. Procalcitonin assay in systemic inflammation, infection, and sepsis: Clinical utility and limitations. Crit. Care Med. 2008, 36, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, Y.; Lv, Y.; Liu, Y.; Lai, Z.; Zeng, Y.; Zhang, H. Diagnostic value of procalcitonin in patients with periprosthetic joint infection: A diagnostic meta-analysis. Front. Surg. 2024, 11, 1211325. [Google Scholar] [CrossRef]
- Brunkhorst, F.M.; Wegscheider, K.; Forycki, Z.F.; Brunkhorst, R. Procalcitonin for early diagnosis and differentiation of SIRS, sepsis, severe sepsis, and septic shock. Intensive Care Med. 2000, 26 (Suppl. 2), S148–S152. [Google Scholar] [CrossRef] [PubMed]
- Bouaicha, S.; Blatter, S.; Moor, B.K.; Spanaus, K.; Dora, C.; Werner, C.M.L. Early serum procalcitonin level after primary total hip replacement. Mediat. Inflamm. 2013, 2013, 927636. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gando, S. Role of fibrinolysis in sepsis. Semin. Thromb. Hemost. 2013, 39, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, H.; Ding, P.; Jiao, Q. The accuracy of D-dimer in the diagnosis of periprosthetic infections: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2022, 17, 99. [Google Scholar] [CrossRef]
- van de Stolpe, A.; van der Saag, P.T. Intercellular adhesion molecule-1. J. Mol. Med. 1996, 74, 13–33. [Google Scholar] [CrossRef]
- Worthington, T.; Dunlop, D.; Casey, A.; Lambert, P.; Luscombe, J.; Elliott, T. Serum procalcitonin, interleukin-6, soluble intercellular adhesin molecule-1 and IgG to shortchain exocellular lipoteichoic acid as predictors of infection in total joint prosthesis revision. Br. J. Biomed. Sci. 2010, 67, 71–76. [Google Scholar] [CrossRef]
- Deirmengian, C.; Kardos, K.; Kilmartin, P.; Cameron, A.; Schiller, K.; Parvizi, J. Diagnosing periprosthetic joint infection: Has the era of the biomarker arrived? Clin. Orthop. Relat. Res. 2014, 472, 3254–3262. [Google Scholar] [CrossRef] [PubMed]
- Jacovides, C.L.; Parvizi, J.; Adeli, B.; Jung, K.A. Molecular markers for diagnosis of periprosthetic joint infection. J. Arthroplast. 2011, 26 (Suppl. 6), 99–103.e1. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J.; Jacovides, C.; Adeli, B.; Jung, K.A.; Hozack, W.J.; Mark, B. Coventry Award: Synovial C-reactive protein: A prospective evaluation of a molecular marker for periprosthetic knee joint infection. Clin. Orthop. Relat. Res. 2012, 470, 54–60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baker, C.M.; Goh, G.S.; Tarabichi, S.; Shohat, N.; Parvizi, J. Synovial C-Reactive Protein is a Useful Adjunct for Diagnosis of Periprosthetic Joint Infection. J. Arthroplast. 2022, 37, 2437–2443.e1. [Google Scholar] [CrossRef]
- Zhang, Q.-Y.; Yan, Z.-B.; Meng, Y.-M.; Hong, X.-Y.; Shao, G.; Ma, J.-J.; Cheng, X.-R.; Liu, J.; Kang, J.; Fu, C.-Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef]
- Hill, T.; Jain, V.K.; Iyengar, K.P. Antimicrobial peptides (AMP) in biofilm induced orthopaedic device-related infections. J. Clin. Orthop. Trauma 2022, 25, 101780. [Google Scholar] [CrossRef]
- Bonanzinga, T.; Zahar, A.; Dütsch, M.; Lausmann, C.; Kendoff, D.; Gehrke, T. How Reliable Is the Alpha-defensin Immunoassay Test for Diagnosing Periprosthetic Joint Infection? A Prospective Study. Clin. Orthop. Relat. Res. 2017, 475, 408–415. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Hirschmann, M.T.; Becker, R.; Shaker, A.; Ateschrang, A.; Keel, M.J.B.; Albers, C.E.; Buetikofer, L.; Maqungo, S.; Stöckle, U.; et al. A meta-analysis of synovial biomarkers in periprosthetic joint infection: Synovasure™ is less effective than the ELISA-based alpha-defensin test. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3039–3047. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, X.; Tao, J.; Zhang, Y.; Ying, C.; Lin, W. Reliability of synovial fluid alpha-defensin and leukocyte esterase in diagnosing periprosthetic joint infection (PJI): A systematic review and meta-analysis. J. Orthop. Surg. Res. 2019, 14, 453. [Google Scholar] [CrossRef]
- Gollwitzer, H.; Dombrowski, Y.; Prodinger, P.M.; Peric, M.; Summer, B.; Hapfelmeier, A.; Saldamli, B.; Pankow, F.; von Eisenhart-Rothe, R.; Imhoff, A.B.; et al. Antimicrobial Peptides and Proinflammatory Cytokines in Periprosthetic Joint Infection. J. Bone Jt. Surg. 2013, 95, 644–651. [Google Scholar] [CrossRef]
- Jaberi, S.A.; Cohen, A.; D’Souza, C.; Abdulrazzaq, Y.M.; Ojha, S.; Bastaki, S.; Adeghate, E.A. Lipocalin-2: Structure, function, distribution and role in metabolic disorders. Biomed. Pharmacother. 2021, 142, 112002. [Google Scholar] [CrossRef]
- Vergara, A.; Fernández-Pittol, M.J.; Muñoz-Mahamud, E.; Morata, L.; Bosch, J.; Vila, J.; Soriano, A.; Casals-Pascual, C. Evaluation of Lipocalin-2 as a Biomarker of Periprosthetic Joint Infection. J. Arthroplast. 2019, 34, 123–125. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Z.; Li, M.; Li, W.; Fang, X.; Zhang, W. Synovial fluid neutrophil gelatinase-associated lipocalin can be used to accurately diagnose prosthetic joint infection. Int. J. Infect. Dis. 2022, 123, 170–175. [Google Scholar] [CrossRef]
- Perry, J.L.; Matthews, J.S.; Weesner, D.E. Evaluation of leukocyte esterase activity as a rapid screening technique for bacteriuria. J. Clin. Microbiol. 1982, 15, 852–854. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Allam, A.A.E.-H.; Eltaras, S.M.; Hussin, M.H.; Salama, E.-S.I.; Hendy, O.M.; Allam, M.M.; Zakaria, H.M. Diagnosis of spontaneous bacterial peritonitis in children using leukocyte esterase reagent strips and granulocyte elastase immunoassay. Clin. Exp. Hepatol. 2018, 4, 247–252. [Google Scholar] [CrossRef]
- Azoulay, E.; Fartoukh, M.; Galliot, R.; Baud, F.; Simonneau, G.; Le Gall, J.R.; Schlemmer, B.; Chevret, S. Rapid diagnosis of infectious pleural effusions by use of reagent strips. Clin. Infect. Dis. 2000, 31, 914–919. [Google Scholar] [CrossRef]
- Parvizi, J.; Jacovides, C.; Antoci, V.; Ghanem, E. Diagnosis of periprosthetic joint infection: The utility of a simple yet unappreciated enzyme. J. Bone Jt. Surg. 2011, 93, 2242–2248. [Google Scholar] [CrossRef]
- Zheng, Q.-Y.; Zhang, G.-Q. Application of leukocyte esterase strip test in the screening of periprosthetic joint infections and prospects of high-precision strips. Arthroplasty 2020, 2, 34. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Q.; Deng, B. Serum versus synovial fluid interleukin-6 for periprosthetic joint infection diagnosis: A systematic review and meta-analysis of 30 diagnostic test accuracy studies. J. Orthop. Surg. Res. 2022, 17, 564. [Google Scholar] [CrossRef]
- Inciarte-Mundo, J.; Frade-Sosa, B.; Sanmartí, R. From bench to bedside: Calprotectin (S100A8/S100A9) as a biomarker in rheumatoid arthritis. Front. Immunol. 2022, 13, 1001025. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, A.; Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 2004, 5, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Ometto, F.; Friso, L.; Astorri, D.; Botsios, C.; Raffeiner, B.; Punzi, L.; Doria, A. Calprotectin in rheumatic diseases. Exp. Biol. Med. 2017, 242, 859–873. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.; Anis, H.K.; Bowers, K.; Pannu, T.; Villa, J.; Klika, A.K.; Colon-Franco, J.; Piuzzi, N.S.; Higuera, C.A. Diagnostic Utility of a Novel Point-of-Care Test of Calprotectin for Periprosthetic Joint Infection After Total Knee Arthroplasty: A Prospective Cohort Study. J. Bone Jt. Surg. 2021, 103, 1009–1015. [Google Scholar] [CrossRef]
- Grzelecki, D.; Walczak, P.; Szostek, M.; Grajek, A.; Rak, S.; Kowalczewski, J. Blood and synovial fluid calprotectin as biomarkers to diagnose chronic hip and knee periprosthetic joint infections. Bone Jt. J. 2021, 103-B, 46–55. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, H.; Xin, P.; Bai, G.; Ge, Y.; Cai, M.; Wang, R.; Fan, Y.; Pang, Z. Synovial calprotectin for the diagnosis of periprosthetic joint infection: A diagnostic meta-analysis. J. Orthop. Surg. Res. 2022, 17, 2. [Google Scholar] [CrossRef]
- Parvizi, J.; Zmistowski, B.; Berbari, E.F.; Bauer, T.W.; Springer, B.D.; Della Valle, C.J.; Garvin, K.L.; Mont, M.A.; Wongworawat, M.D.; Zalavras, C.G. New definition for periprosthetic joint infection: From the Workgroup of the Musculoskeletal Infection Society. Clin. Orthop. Relat. Res. 2011, 469, 2992–2994. [Google Scholar] [CrossRef]
- Pandey, R.; Drakoulakis, E.; Athanasou, N.A. An assessment of the histological criteria used to diagnose infection in hip revision arthroplasty tissues. J. Clin. Pathol. 1999, 52, 118–123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, X.; Guo, C.; Zhao, G.-S.; Lin, T.; Shi, Z.-L.; Yan, S.-G. Ten versus five polymorphonuclear leukocytes as threshold in frozen section tests for periprosthetic infection: A meta-analysis. J. Arthroplast. 2013, 28, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Bori, G.; Soriano, A.; García, S.; Gallart, X.; Casanova, L.; Mallofre, C.; Almela, M.; Martínez, J.A.; Riba, J.; Mensa, J. Low sensitivity of histology to predict the presence of microorganisms in suspected aseptic loosening of a joint prosthesis. Mod. Pathol. 2006, 19, 874–877. [Google Scholar] [CrossRef] [PubMed]
- Morawietz, L.; Classen, R.A.; Schröder, J.H.; Dynybil, C.; Perka, C.; Skwara, A.; Neidel, J.; Gehrke, T.; Frommelt, L.; Hansen, T.; et al. Proposal for a histopathological consensus classification of the periprosthetic interface membrane. J. Clin. Pathol. 2006, 59, 591–597. [Google Scholar] [CrossRef]
- Bori, G.; McNally, M.A.; Athanasou, N. Histopathology in Periprosthetic Joint Infection: When Will the Morphomolecular Diagnosis Be a Reality? BioMed Res. Int. 2018, 2018, 1412701. [Google Scholar] [CrossRef]
- Bori, G.; Soriano, A.; García, S.; Mallofré, C.; Riba, J.; Mensa, J. Usefulness of histological analysis for predicting the presence of microorganisms at the time of reimplantation after hip resection arthroplasty for the treatment of infection. J. Bone Jt. Surg. 2007, 89, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.S.; Lonner, J.H.; Desai, P.; Zuckerman, J.D. The role of intraoperative frozen sections in revision total joint arthroplasty. J. Bone Jt. Surg. 1995, 77, 1807–1813. [Google Scholar] [CrossRef] [PubMed]
- Morawietz, L.; Tiddens, O.; Mueller, M.; Tohtz, S.; Gansukh, T.; Schroeder, J.H.; Perka, C.; Krenn, V. Twenty-three neutrophil granulocytes in 10 high-power fields is the best histopathological threshold to differentiate between aseptic and septic endoprosthesis loosening. Histopathology 2009, 54, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Kashima, T.G.; Inagaki, Y.; Grammatopoulos, G.; Athanasou, N.A. Use of chloroacetate esterase staining for the histological diagnosis of prosthetic joint infection. Virchows Arch. 2015, 466, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Gadhoum, S.Z.; Sackstein, R. CD15 expression in human myeloid cell differentiation is regulated by sialidase activity. Nat. Chem. Biol. 2008, 4, 751–757. [Google Scholar] [CrossRef]
- Banke, I.J.; Stade, N.; Prodinger, P.M.; Tübel, J.; Hapfelmeier, A.; von Eisenhart-Rothe, R.; van Griensven, M.; Gollwitzer, H.; Burgkart, R. Antimicrobial peptides in human synovial membrane as (low-grade) periprosthetic joint infection biomarkers. Eur. J. Med. Res. 2020, 25, 33. [Google Scholar] [CrossRef]
- Hopkins, P.A.; Sriskandan, S. Mammalian Toll-like receptors: To immunity and beyond. Clin. Exp. Immunol. 2005, 140, 395–407. [Google Scholar] [CrossRef]
- Patel, R.; Alijanipour, P.; Parvizi, J. Advancements in Diagnosing Periprosthetic Joint Infections after Total Hip and Knee Arthroplasty. Open Orthop. J. 2016, 10, 654–661. [Google Scholar] [CrossRef]
- Cipriano, C.; Maiti, A.; Hale, G.; Jiranek, W. The host response: Toll-like receptor expression in periprosthetic tissues as a biomarker for deep joint infection. J. Bone Jt. Surg. 2014, 96, 1692–1698. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, P.; Fink, B.; Sandow, D.; Margull, A.; Berger, I.; Frommelt, L. Prolonged bacterial culture to identify late periprosthetic joint infection: A promising strategy. Clin. Infect. Dis. 2008, 47, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Kheir, M.M.; Tan, T.L.; Ackerman, C.T.; Modi, R.; Foltz, C.; Parvizi, J. Culturing Periprosthetic Joint Infection: Number of Samples, Growth Duration, and Organisms. J. Arthroplast. 2018, 33, 3531–3536.e1. [Google Scholar] [CrossRef]
- Trampuz, A.; Piper, K.E.; Jacobson, M.J.; Hanssen, A.D.; Unni, K.K.; Osmon, D.R.; Mandrekar, J.N.; Cockerill, F.R.; Steckelberg, J.M.; Greenleaf, J.F.; et al. Sonication of removed hip and knee prostheses for diagnosis of infection. N. Engl. J. Med. 2007, 357, 654–663. [Google Scholar] [CrossRef]
- Watanabe, S.; Kamono, E.; Choe, H.; Ike, H.; Inaba, Y.; Kobayashi, N. Differences in Diagnostic Sensitivity of Cultures Between Sample Types in Periprosthetic Joint Infections: A Systematic Review and Meta-Analysis. J. Arthroplast. 2024, 39, 1939–1945. [Google Scholar] [CrossRef]
- Shahi, A.; Deirmengian, C.; Higuera, C.; Chen, A.; Restrepo, C.; Zmistowski, B.; Parvizi, J. Premature Therapeutic Antimicrobial Treatments Can Compromise the Diagnosis of Late Periprosthetic Joint Infection. Clin. Orthop. Relat. Res. 2015, 473, 2244–2249. [Google Scholar] [CrossRef]
- Tsai, S.-W.; Mu, W.; Parvizi, J. Culture-negative periprosthetic joint infections: Do we have an issue? J. Clin. Orthop. Trauma 2024, 52, 102430. [Google Scholar] [CrossRef]
- Trampuz, A.; Osmon, D.R.; Hanssen, A.D.; Steckelberg, J.M.; Patel, R. Molecular and antibiofilm approaches to prosthetic joint infection. Clin. Orthop. Relat. Res. 2003, 414, 69–88. [Google Scholar] [CrossRef]
- Qu, X.; Zhai, Z.; Li, H.; Li, H.; Liu, X.; Zhu, Z.; Wang, Y.; Liu, G.; Dai, K. PCR-based diagnosis of prosthetic joint infection. J. Clin. Microbiol. 2013, 51, 2742–2746. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, D.; Wang, S.; Yi, Q.; Xia, Y.; Geng, B. Diagnostic Value of Next-Generation Sequencing in Periprosthetic Joint Infection: A Systematic Review. Orthop. Surg. 2022, 14, 190–198. [Google Scholar] [CrossRef]
- Indelli, P.F.; Ghirardelli, S.; Violante, B.; Amanatullah, D.F. Next generation sequencing for pathogen detection in periprosthetic joint infections. EFORT Open Rev. 2021, 6, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Bright, J.J.; Claydon, M.A.; Soufian, M.; Gordon, D.B. Rapid typing of bacteria using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry and pattern recognition software. J. Microbiol. Methods 2002, 48, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Beguiristain, I.; Henriquez, L.; Sancho, I.; Martin, C.; Hidalgo-Ovejero, A.; Ezpeleta, C.; Portillo, M.E. Direct Prosthetic Joint Infection Diagnosis from Sonication Fluid Inoculated in Blood Culture Bottles by Direct MALDI-TOF Mass Spectrometry. Diagnostics 2023, 13, 942. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuo, F.-C.; Chien, C.-C.; Lee, M.S.; Wang, J.-W.; Lin, P.-C.; Lee, C.-H. Rapid diagnosis of periprosthetic joint infection from synovial fluid in blood culture bottles by direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS ONE 2020, 15, e0239290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seng, P.; Drancourt, M.; Gouriet, F.; La Scola, B.; Fournier, P.-E.; Rolain, J.M.; Raoult, D. Ongoing revolution in bacteriology: Routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis. 2009, 49, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Popa, M.; Cursaru, A.; Popa, V.; Munteanu, A.; Șerban, B.; Crețu, B.; Iordache, S.; Smarandache, C.G.; Orban, C.; Cîrstoiu, C. Understanding orthopedic infections through a different perspective: Microcalorimetry growth curves. Exp. Ther. Med. 2022, 23, 263. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, E.; Hügle, T.; Daikeler, T.; Voide, C.; Borens, O.; Trampuz, A. The potential use of microcalorimetry in rapid differentiation between septic arthritis and other causes of arthritis. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, C.; Renz, N.; Cabric, S.; Maiolo, E.; Perka, C.; Trampuz, A. Thermogenic diagnosis of periprosthetic joint infection by microcalorimetry of synovial fluid. BMC Musculoskelet. Disord. 2020, 21, 345. [Google Scholar] [CrossRef]
- Cichos, K.H.; Ruark, R.J.; Ghanem, E.S. Isothermal microcalorimetry improves accuracy and time to bacterial detection of periprosthetic joint infection after total joint arthroplasty. J. Clin. Microbiol. 2023, 61, e0089323. [Google Scholar] [CrossRef]
- Sousa, R.; Ribau, A.; Alfaro, P.; Burch, M.-A.; Ploegmakers, J.; McNally, M.; Clauss, M.; Wouthuyzen-Bakker, M.; Soriano, A. The European Bone and Joint Infection Society definition of periprosthetic joint infection is meaningful in clinical practice: A multicentric validation study with comparison with previous definitions. Acta Orthop. 2023, 94, 8–18. [Google Scholar] [CrossRef]
- Li, H.; Xu, C.; Hao, L.; Chai, W.; Jun, F.; Chen, J. The concordance between preoperative aspiration and intraoperative synovial fluid culture results: Intraoperative synovial fluid re-cultures are necessary whether the preoperative aspiration culture is positive or not. BMC Infect. Dis. 2021, 21, 1018. [Google Scholar] [CrossRef] [PubMed]
- Roesly, H.; Archibeck, M.; Henrie, A.M.; Provo, J.; Foley, J.; Boyer, A.; Teramoto, M.; Cushman, D.M. Hip aspiration: A comparison of ultrasound and fluoroscopic guidance. J. Orthop. 2022, 34, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, N.D.; Jennings, J.M. Joint aspiration for diagnosis of chronic periprosthetic joint infection: When, how, and what tests? Arthroplasty 2023, 5, 43. [Google Scholar] [CrossRef] [PubMed]
- Iorio, R.; Viglietta, E.; Mazza, D.; Petrucca, A.; Borro, M.; Iolanda, S.; Simmaco, M.; Ferretti, A. Accuracy and Cost-Effectivenss of a Novel Method for Alpha Defensins Measurement in the Diagnosis of Periprosthetic Joint Infections. J. Arthroplast. 2021, 36, 3275–3281. [Google Scholar] [CrossRef]
- Wouthuyzen-Bakker, M. Cultures in periprosthetic joint infections, the imperfect gold standard? EFORT Open Rev. 2023, 8, 175–179. [Google Scholar] [CrossRef]
- Schmidt, B.; Hildebrandt, A. Deep learning in next-generation sequencing. Drug Discov. Today 2021, 26, 173–180. [Google Scholar] [CrossRef]
- Randhawa, G.S.; Hill, K.A.; Kari, L. ML-DSP: Machine Learning with Digital Signal Processing for ultrafast, accurate, and scalable genome classification at all taxonomic levels. BMC Genom. 2019, 20, 267. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Zhao, R.; Hao, L.; Chai, W.; Jiying, C.; Feng, Z.; Ji, Q.; Zhang, G. The Application of artificial intelligence in periprosthetic joint infection. J. Adv. Res. 2025; in press. [Google Scholar]
- Zheng, Q.-Y.; Li, R.; Ni, M.; Ren, P.; Ji, Q.-B.; Sun, J.-Y.; Li, J.-C.; Chen, J.-Y.; Zhang, G.-Q. What Is the Optimal Timing for Reading the Leukocyte Esterase Strip for the Diagnosis of Periprosthetic Joint Infection? Clin. Orthop. Relat. Res. 2021, 479, 1323–1330. [Google Scholar] [CrossRef]
PJI Definition | ||||
---|---|---|---|---|
ICM 2018 [8] (Probability of infection assessed by scoring system) | EBJIS 2021 [7] (Infection confirmed if one criterion is met) | IDSA 2013 [6] (Infection confirmed if one criterion is met) | ||
Major criteria (one criterion shows infection) | Two positive cultures of the same organism | Sinus tract with evidence of communication to the joint or visualization of the prosthesis | The presence of a sinus tract that communicates with the prosthesis | |
Sinus tract with evidence of communication to the joint or visualization of the prosthesis | ||||
Preoperative score ≥6 Infected 2–5 Possibly Infected 0–1 Not infected | Elevated CRP or D-Dimer in Serum | 2 | ||
Elevated Serum ESR | 1 | Acute inflammation on histopathologic examination of prosthetic tissue | ||
Elevated Synovial WBC or LE(++) | 3 | >3000 leukocytes/µL or >80% PMNs in synovial fluid | ||
Positive Synovial Alpha-defensin | 3 | |||
Elevated Synovial PMN% | 2 | Positive immunoassay or lateral-flow test for alpha-defensin from synovial fluid | Presence of purulence around the prosthesis without another known etiology | |
Elevated Synovial CRP | 1 | |||
Intraoperative score ≥6 Infected 4–5 Inconclusive ≤3 Not infected | Preoperative Score | - | ≥2 positive samples with the same microorganisms from intraoperative fluid or tissue or >50 CFU/mL of any organism from sonication fluid | |
Positive Histology | 3 | Two or more intraoperative cultures or combination of preoperative aspiration and intraoperative cultures that yield the same organism | ||
Positive Purulence | 3 | Presence of ≥5 neutrophils in ≥5 HPF (400× magnification) or presence of visible bacteria | ||
Positive Single Culture | 2 |
Article | Article Type | Diagnostic Criterion | Sensitivity | Specificity |
---|---|---|---|---|
Saleh A et al. (2018) [14] | Review | Serum CRP | 74–94% | 20–100% |
Saleh A et al. (2018) [14] | Review | Serum ESR | 42–94% | 33–87% |
E. Ghanem et al. (2009) [19] | Cohort study (479 patients) | Serum CRP | 91.1% | 76.6% |
E. Ghanem et al. (2009) [19] | Cohort study (479 patients) | Serum ESR | 94.3% | 70.2% |
Berbari E. et al. (2010) [22] | Meta-analysis (3 studies) | Serum IL-6 | 97% | 91% |
Kai Xie et al. (2017) [23] | Meta-analysis (17 studies) | Serum IL-6 | 72% | 89% |
Sun X et al. (2024) [26] | Meta-analysis (9 studies) | Serum procalcitonin | 44.1% | 85.2% |
Wang R. et al. (2022) [30] | Meta-analysis (10 studies) | Serum D-dimers | 81% | 74% |
Worthington T. et al. (2010) [32] | Case–control study (46 patients) | Serum sICAM-1 | 94% | 74% |
Parvizi J. et al. (2012) [35] | Cohort study (59 samples) | Synovial CRP | 84% | 97.1% |
Colin M Baker et al. (2022) [36] | Cohort study (621 patients) | Synovial CRP | 74.2% | 98% |
Bonanzinga T. et al. (2016) [39] | Cohort study (156 patients) | Synovial alpha-defensin (immunoassay test) | 97% | 97% |
Sufian S. Ahmad et al. (2018) [40] | Meta-analysis (42 studies) | Synovial alpha-defensin (immunoassay test) | 80% | 89% |
Sufian S. Ahmad et al. (2018) [40] | Meta-analysis (42 studies) | Synovial alpha-defensin (ELISA test) | 97% | 97% |
Chen Y et al. (2019) [41] | Meta-analysis (28 studies) | Synovial alpha-defensin (immunoassay test) | 85% | 96% |
Chen Y et al. (2019) [41] | Meta-analysis (28 studies) | Synovial alpha-defensin (ELISA test) | 92% | 99% |
Deirmengian et al. (2014) [33] | Cohort study (95 patients) | Synovial lipocalin-2 | 100% | 100% |
Vergara A et al. (2019) [44] | Cohort study (72 patients) | Synovial lipocalin-2 | 86.3% | 77.2% |
Huang Z et al. (2022) [45] | Cohort study (78 patients) | Synovial lipocalin-2 | 92% | 98% |
J. Parvizi et al. (2011) [58] | Cohort study (108 patients) | Synovial leukocyte esterase | 80.6% | 100% |
Li J. et al. (2022) [51] | Meta-analysis (30 studies) | Synovial IL-6 | 87% | 90% |
Warren J. et al. (2021) [55] | Cohort study (123 patients) | Synovial calprotectin | 98.1% | 95.7% |
Peng X. et al. (2022) [57] | Meta-analysis (7 studies) | Synovial calprotectin | 94% | 93% |
Morawietz et al. (2009) [66] | Cohort study (147 samples) | CD15 marker—histopathology | 73% | 95% |
Banke et al. (2020) [69] | Case–control study (25 patients) | HBD-3 marker—histopathology | 100% | 100% |
Banke et al. (2020) [69] | Case–control study (25 patients) | LL-37 marker—histopathology | 100% | 100% |
Cipriano C. et al. (2014) [72] | Cohort study (59 patients) | TLR-1 marker—histopathology | 95% | 100% |
Watanabe S. et al. (2024) [77] | Meta-analysis (32 studies) | Preoperative fluid culture | 63% | 96% |
Watanabe S. et al. (2024) [77] | Meta-analysis (32 studies) | Intraoperative tissue culture | 71% | 92% |
Watanabe S. et al. (2024) [77] | Meta-analysis (32 studies) | Sonication fluid culture | 78% | 91% |
Qu X. et al. (2013) [81] | Meta-analysis (14 studies) | 16S rRNA—PCR | 86% | 91% |
Tang Y et al. (2021) [82] | Meta-analysis (9 studies) | mNGS | 63–96% | 73–100% |
Beguiristain I et al. (2023) [85] | Cohort study (107 patients) | Direct MALDI-TOF/MS | 69% | 94% |
Kuo FC et al. (2020) [86] | Cohort study (77 patients) | Direct MALDI-TOF/MS | 80% | - |
Morgenstern C. et al. (2020) [90] | Cohort study (107 patients) | Microcalorimetry | 39% | 98% |
Cichos KH et al. (2023) [91] | Cohort study (152 patients, 592 samples) | Microcalorimetry | 83% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandu, E.-C.; Cirstoiu, C.; Iordache, S.; Costache, M.A.; Iacobescu, G.L.; Cursaru, A. The Ongoing Struggle to Find a Gold Standard for PJI Diagnosis. Reports 2025, 8, 155. https://doi.org/10.3390/reports8030155
Sandu E-C, Cirstoiu C, Iordache S, Costache MA, Iacobescu GL, Cursaru A. The Ongoing Struggle to Find a Gold Standard for PJI Diagnosis. Reports. 2025; 8(3):155. https://doi.org/10.3390/reports8030155
Chicago/Turabian StyleSandu, Emanuel-Cristian, Catalin Cirstoiu, Sergiu Iordache, Mihai Aurel Costache, Georgian Longin Iacobescu, and Adrian Cursaru. 2025. "The Ongoing Struggle to Find a Gold Standard for PJI Diagnosis" Reports 8, no. 3: 155. https://doi.org/10.3390/reports8030155
APA StyleSandu, E.-C., Cirstoiu, C., Iordache, S., Costache, M. A., Iacobescu, G. L., & Cursaru, A. (2025). The Ongoing Struggle to Find a Gold Standard for PJI Diagnosis. Reports, 8(3), 155. https://doi.org/10.3390/reports8030155