Multidimensional Evaluation of Combined Anticoagulation and Venoprotective Therapy in Deep Vein Thrombosis: A Retrospective Propensity Score-Matched Cohort Study of Clinical, Economic, and Resource Utilization Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Design and Data Collection Process
2.2. Variable Definitions
2.3. Group Definition
2.4. Multi-Method Propensity Score Matching and Ensemble Weighting
2.5. Ensemble Weighting Framework for Causal Effect Estimation
2.6. Comprehensive Causal Effect Analysis
2.7. Software and Code Availability
3. Results
3.1. Cohort Characteristics and Matching
3.2. Ensemble Weighting Evaluation
3.3. Causal Effect Analysis Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DVT | deep vein thrombosis |
CAV | combined anticoagulation and venoprotective therapy |
SAT | standard anticoagulation therapy |
IPR | improvement rate |
DIR | daily improvement rate |
CER | cost-effectiveness ratio |
DIC | daily improvement cost |
CLE | cost–LOS efficiency |
LOS | length of stay |
SMD | standardized mean difference |
ATE | average treatment effect |
ATT | average treatment effect on the treated |
ATC | average treatment effect on controls |
ITE | individual treatment effect |
APTT | activated partial thromboplastin time |
PT | prothrombin time |
INR | international normalized ratio |
TT | thrombin time |
Fib | fibrinogen |
FDP | fibrin degradation product |
WBC | white blood cell |
RBC | red blood cell |
Hgb | hemoglobin |
PLT | platelet |
HCT | hematocrit |
VTE | venous thromboembolism |
PE | pulmonary embolism |
DOACs | direct oral anticoagulants |
VKA | vitamin K antagonist |
CVI | chronic venous insufficiency |
PTS | post-thrombotic syndrome |
NOAC | novel oral anticoagulant |
PPPM | per patient per month |
COX | cyclooxygenase |
IL | interleukin |
TNF-α | Tumor Necrosis Factor-alpha |
ICAM-1 | Intercellular Adhesion Molecule-1 |
CEC | circulating endothelial cell |
ET-1 | Endothelin-1 |
sTM | soluble thrombomodulin |
PaO2 | arterial partial pressure of oxygen |
QALY | quality-adjusted life year |
PST | patient self-testing |
TTR | time in therapeutic range |
PSA | probabilistic sensitivity analysis |
SDV | source data verification |
GCP | good clinical practice |
References
- Stone, J.; Hangge, P.; Albadawi, H.; Wallace, A.; Shamoun, F.; Knuttien, M.G.; Naidu, S.; Oklu, R. Deep vein thrombosis: Pathogenesis, diagnosis, and medical management. Cardiovasc. Diagn. Ther. 2017, 7, S276–S284. [Google Scholar] [CrossRef] [PubMed]
- Colling, M.E.; Tourdot, B.E.; Kanthi, Y. Inflammation, Infection and Venous Thromboembolism. Circ. Res. 2021, 128, 2017–2036. [Google Scholar] [CrossRef] [PubMed]
- Dicks, A.B.; Moussallem, E.; Stanbro, M.; Walls, J.; Gandhi, S.; Gray, B.H. A Comprehensive Review of Risk Factors and Thrombophilia Evaluation in Venous Thromboembolism. J. Clin. Med. 2024, 13, 362. [Google Scholar] [CrossRef] [PubMed]
- D’Oria, M.; Girardi, L.; Amgad, A.; Sherif, M.; Piffaretti, G.; Ruaro, B.; Calvagna, C.; Dueppers, P.; Lepidi, S.; Donadini, M.P. Expert-Based Narrative Review on Compression UltraSonography (CUS) for Diagnosis and Follow-Up of Deep Venous Thrombosis (DVT). Diagnostics 2025, 15, 82. [Google Scholar] [CrossRef]
- Alexander, P.; Visagan, S.; Issa, R.; Gorantla, V.R.; Thomas, S.E. Current Trends in the Duration of Anticoagulant Therapy for Venous Thromboembolism: A Systematic Review. Cureus 2021, 13, e18992. [Google Scholar] [CrossRef]
- Sun, K.X.; Cui, B.; Cao, S.S.; Huang, Q.X.; Xia, R.Y.; Wang, W.J.; Wang, J.W.; Yu, F.; Ding, Y. Cost-Effectiveness Analysis of Direct Oral Anticoagulants Versus Vitamin K Antagonists for Venous Thromboembolism in China. Front. Pharmacol. 2021, 12, 716224. [Google Scholar] [CrossRef] [PubMed]
- Fukasawa, T.; Seki, T.; Nakashima, M.; Kawakami, K. Comparative effectiveness and safety of edoxaban, rivaroxaban, and apixaban in patients with venous thromboembolism: A cohort study. J. Thromb. Haemost. 2022, 20, 2083–2097. [Google Scholar] [CrossRef]
- Drago, S.F.A.; Rottura, M.; Molonia, A.; Gianguzzo, V.M.; Pallio, G.; Irrera, N.; Orlando, L.; De Fazio, M.G.; Isgrò, M.; Zirilli, N.; et al. Effects of a Dietary Supplement Composed of Baicalin, Bromelain and Escin for Venous Chronic Insufficiency Treatment: Insights from a Retrospective Observational Study. Pharmaceuticals 2024, 17, 779. [Google Scholar] [CrossRef]
- Gwozdzinski, L.; Bernasinska-Slomczewska, J.; Hikisz, P.; Wiktorowska-Owczarek, A.; Kowalczyk, E.; Pieniazek, A. The Effect of Diosmin, Escin, and Bromelain on Human Endothelial Cells Derived from the Umbilical Vein and the Varicose Vein—A Preliminary Study. Biomedicines 2023, 11, 1702. [Google Scholar] [CrossRef]
- Bencsik, T.; Balázs, V.L.; Farkas, Á.; Csikós, E.; Horváth, A.; Ács, K.; Kocsis, M.; Doseděl, M.; Fialová, S.B.; Czigle, S.; et al. Herbal drugs in chronic venous disease treatment: An update. Fitoterapia 2024, 179, 106256. [Google Scholar] [CrossRef]
- Casili, G.; Lanza, M.; Campolo, M.; Messina, S.; Scuderi, S.; Ardizzone, A.; Filippone, A.; Paterniti, I.; Cuzzocrea, S.; Esposito, E. Therapeutic potential of flavonoids in the treatment of chronic venous insufficiency. Vasc. Pharmacol. 2021, 137, 106825. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Liu, Z. Diagnostic and Efficacy Criteria for Deep Venous Thrombosis of the Lower Extremities (Revised in 2015). Chin. J. Integr. Tradit. West. Med. Surg. 2016, 22, 520–521. [Google Scholar]
- Chen, A.; Stecker, E.A.; Warden, B. Direct Oral Anticoagulant Use: A Practical Guide to Common Clinical Challenges. J. Am. Heart Assoc. 2020, 9, e017559. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.J.; Roy, T.L. Catheter-Directed Interventions for the Treatment of Lower Extremity Deep Vein Thrombosis. Life 2022, 12, 1984. [Google Scholar] [CrossRef]
- Gallelli, L.; Cione, E.; Wang, T.; Zhang, L. Glucocorticoid-Like Activity of Escin: A New Mechanism for an Old Drug. Drug Des. Dev. Ther. 2021, 15, 699–704. [Google Scholar] [CrossRef]
- Lichota, A.; Gwozdzinski, L.; Gwozdzinski, K. Therapeutic potential of natural compounds in inflammation and chronic venous insufficiency. Eur. J. Med. Chem. 2019, 176, 68–91. [Google Scholar] [CrossRef]
- Gallelli, L. Escin: A review of its anti-edematous, anti-inflammatory, and venotonic properties. Drug Des. Dev. Ther. 2019, 13, 3425–3437. [Google Scholar] [CrossRef]
- Jung, H. Hyaluronidase: An overview of its properties, applications, and side effects. Arch. Plast. Surg. 2020, 47, 297–300. [Google Scholar] [CrossRef]
- D’iakonova, E.N.; Fedin, A.I.; Makerova, V.V.; Gorbunov, V.N. The use of L-lysine aescinat in the treatment of microcirculatory disturbances in patients young and middle age with violation of the intracranial venous outflow. Zhurnal Nevrol. I Psikhiatrii Im. SS Korsakova 2016, 116, 42. [Google Scholar] [CrossRef]
- Raffetto, J.D.; Khalil, R.A. Mechanisms of Lower Extremity Vein Dysfunction in Chronic Venous Disease and Implications in Management of Varicose Veins. Vessel Plus 2021, 5, 36. [Google Scholar] [CrossRef]
- Foley, J.H.; Conway, E.M. Cross Talk Pathways Between Coagulation and Inflammation. Circ. Res. 2016, 118, 1392–1408. [Google Scholar] [CrossRef] [PubMed]
- Landes Bioscience. Cytokines as Regulators of Coagulation. In Madame Curie Bioscience Database [Internet]; van der Poll, T., de Jonge, E., Cate an, H.T., Eds.; Landes Bioscience: Philadelphia, PA, USA, 2000. [Google Scholar]
- Patel, S.K.; Surowiec, S.M. Venous Insufficiency. In StatPearls [Internet]; StatPearls Publishing LLC: Orlando, FL, USA, 2024. [Google Scholar]
- Ren, S.Y.; Liu, Y.S.; Zhu, G.J.; Liu, M.; Shi, S.H.; Ren, X.D.; Hao, Y.G.; Gao, R.D. Strategies and challenges in the treatment of chronic venous leg ulcers. World J. Clin. Cases 2020, 8, 5070–5085. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, C.G.; Kogut, S.; Willey, C. Real-World Health Care Costs Based on Medication Adherence and Risk of Stroke and Bleeding in Patients Treated with Novel Anticoagulant Therapy. J. Manag. Care Spec. Pharm. 2018, 24, 430–439. [Google Scholar] [CrossRef]
- Wells, P.S.; Prins, M.H.; Beyer-Westendorf, J.; Lensing, A.W.A.; Haskell, L.; Levitan, B.S.; Laliberté, F.; Ashton, V.; Xiao, Y.; Lejeune, D.; et al. Health-care Cost Impact of Continued Anticoagulation With Rivaroxaban vs Aspirin for Prevention of Recurrent Symptomatic VTE in the EINSTEIN-CHOICE Trial Population. Chest 2018, 154, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Schulman, S.; Dowlatshahi, D.; Holbrook, A.M.; Simpson, C.S.; Shepherd, L.E.; Wells, P.S.; Giulivi, A.; Gomes, T.; Mamdani, M.; et al. Healthcare resource utilization and costs among patients with direct oral anticoagulant or warfarin-related major bleeding. Thromb. Res. 2019, 182, 12–19. [Google Scholar] [CrossRef]
- Chaudhry, R.; Usama, S.M.; Babiker, H.M. Physiology, Coagulation Pathways. In StatPearls [Internet]; StatPearls Publishing LLC: Orlando, FL, USA, 2023. [Google Scholar]
- Demetz, G.; Ott, I. The Interface between Inflammation and Coagulation in Cardiovascular Disease. Int. J. Inflam. 2012, 2012, 860301. [Google Scholar] [CrossRef]
- Hou, H.; Ge, Z.; Ying, P.; Dai, J.; Shi, D.; Xu, Z.; Chen, D.; Jiang, Q. Biomarkers of deep venous thrombosis. J. Thromb. Thrombolysis 2012, 34, 335–346. [Google Scholar] [CrossRef]
- Rabinovich, A.; Cohen, J.M.; Cushman, M.; Wells, P.S.; Rodger, M.A.; Kovacs, M.J.; Anderson, D.R.; Tagalakis, V.; Lazo-Langner, A.; Solymoss, S.; et al. Inflammation markers and their trajectories after deep vein thrombosis in relation to risk of post-thrombotic syndrome. J. Thromb. Haemost. 2015, 13, 398–408. [Google Scholar] [CrossRef]
- Huang, A.L.; Vita, J.A. Effects of Systemic Inflammation on Endothelium-Dependent Vasodilation. Trends Cardiovasc. Med. 2006, 16, 15–20. [Google Scholar] [CrossRef]
- Aljabri, A.; Huckleberry, Y.; Karnes, J.; Gharaibeh, M.; Kutbi, H.I.; Raz, Y.; Yun, S.; Abraham, I.; Erstad, B. Cost-Effectiveness of Anticoagulants for the Management of Suspected Heparin-Induced Thrombocytopenia in the US. Blood 2016, 128, 3043–3051. [Google Scholar] [CrossRef]
- Diel, R.; Lampenius, N. Cost-benefit analysis of VKA versus NOAC treatment in German patients with atrial fibrillation utilizing patient self-testing. J. Health Econ. Outcomes Res. 2019, 6, 142–159. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Ma, A.; Chen, P.; Li, H. Factors influencing the cost-effectiveness of novel oral anticoagulants compared to vitamin K antagonists in patients with atrial fibrillation: A systematic review. Front. Pharmacol. 2025, 16, 1441754. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, M.; Razmovski-Naumovski, V.; Zubair, M.; Chang, D.; Zhou, X. Synergistic Effects of Natural Product Combinations in Protecting the Endothelium Against Cardiovascular Risk Factors. J. Evid. Based Integr. Med. 2022, 27, 2515690X221113327. [Google Scholar] [CrossRef]
- Du, H. The effect of rivaroxaban as an anticoagulant therapy for acute pulmonary embolism and the predictive role of vascular endothelial markers in assessing anticoagulant efficacy before treatment. Am. J. Transl. Res. 2025, 17, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Sandmann, F.G.; Robotham, J.V.; Deeny, S.R.; Edmunds, W.J.; Jit, M. Estimating the opportunity costs of bed-days. Health Econ. 2018, 27, 592–605. [Google Scholar] [CrossRef]
- Siverskog, J.; Henriksson, M. The health cost of reducing hospital bed capacity. Soc. Sci. Med. 2022, 313, 115399. [Google Scholar] [CrossRef]
Genetic Matching | Mahalanobis Distance Matching | Nearest Neighbor Caliper Matching | Optimal Exact Matching | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Characteristic | N | SAT (N = 48) | CAV (N = 48) | p-Value | N | SAT (N = 48) | CAV (N = 48) | p-Value | N | SAT (N = 48) | CAV (N = 48) | p-Value | N | SAT (N = 48) | CAV (N = 48) | p-Value |
Gender | 96 | 0.15 | 96 | 0.066 | 68 | 0.81 | 96 | >0.99 | ||||||||
Female | 26 (54%) | 19 (40%) | 28 (58%) | 19 (40%) | 15 (44%) | 16 (47%) | 19 (40%) | 19 (40%) | ||||||||
Male | 22 (46%) | 29 (60%) | 20 (42%) | 29 (60%) | 19 (56%) | 18 (53%) | 29 (60%) | 29 (60%) | ||||||||
Age | 96 | 68 (53, 76) | 63 (49, 74) | 0.27 | 96 | 66 (52, 77) | 63 (49, 74) | 0.23 | 68 | 64 (51, 74) | 63 (52, 75) | 0.72 | 96 | 64 (50, 74) | 63 (49, 74) | 0.54 |
Height | 96 | 159 (156, 163) | 162 (157, 170) | 0.1 | 96 | 158 (156, 162) | 162 (157, 170) | 0.037 | 68 | 160 (157, 165) | 160 (156, 167) | 0.86 | 96 | 160 (158, 166) | 162 (157, 170) | 0.54 |
Weight | 96 | 60 (57, 66) | 63 (57, 70) | 0.32 | 96 | 60 (55, 65) | 63 (57, 70) | 0.053 | 68 | 60 (57, 66) | 60 (56, 67) | 0.97 | 96 | 61 (56, 66) | 63 (57, 70) | 0.32 |
WBC | 96 | 9.75 (8.40, 11.30) | 9.25 (8.17, 10.60) | 0.066 | 96 | 10.21 (8.40, 11.58) | 9.25 (8.17, 10.60) | 0.034 | 68 | 9.45 (8.35, 11.18) | 9.94 (8.88, 10.69) | 0.83 | 96 | 9.95 (8.42, 11.56) | 9.25 (8.17, 10.60) | 0.038 |
RBC | 96 | 5.17 (4.92, 5.43) | 5.01 (4.75, 5.28) | 0.12 | 96 | 5.04 (4.83, 5.29) | 5.01 (4.75, 5.28) | 0.49 | 68 | 5.01 (4.75, 5.30) | 4.99 (4.77, 5.23) | 0.66 | 96 | 5.01 (4.79, 5.38) | 5.01 (4.75, 5.28) | 0.7 |
Hgb | 96 | 14.77 (14.15, 15.69) | 15.13 (14.67, 15.50) | 0.17 | 96 | 14.85 (14.30, 15.62) | 15.13 (14.67, 15.50) | 0.26 | 68 | 14.85 (14.31, 15.77) | 15.15 (14.52, 15.47) | 0.64 | 96 | 15.08 (14.34, 15.75) | 15.13 (14.67, 15.50) | 0.65 |
PLT | 96 | 154 (119, 203) | 146 (116, 168) | 0.29 | 96 | 160 (129, 201) | 146 (116, 168) | 0.091 | 68 | 156 (119, 193) | 147 (126, 189) | 0.76 | 96 | 158 (122, 203) | 146 (116, 168) | 0.12 |
HCT | 96 | 45.23 (44.57, 45.96) | 45.55 (44.43, 46.29) | 0.91 | 96 | 45.64 (44.64, 45.98) | 45.55 (44.43, 46.29) | 0.78 | 68 | 45.53 (44.52, 45.97) | 45.39 (43.99, 46.06) | 0.79 | 96 | 45.61 (44.57, 46.08) | 45.55 (44.43, 46.29) | 0.87 |
PT | 96 | 13.35 (12.07, 14.53) | 13.70 (12.47, 15.03) | 0.36 | 96 | 13.45 (11.75, 14.50) | 13.70 (12.47, 15.03) | 0.28 | 68 | 13.70 (12.45, 14.57) | 13.70 (12.55, 15.15) | 0.76 | 96 | 13.70 (12.38, 15.22) | 13.70 (12.47, 15.03) | >0.99 |
INR | 96 | 1.11 (0.94, 1.19) | 1.12 (1.01, 1.25) | 0.45 | 96 | 1.11 (0.93, 1.19) | 1.12 (1.01, 1.25) | 0.39 | 68 | 1.14 (1.05, 1.22) | 1.12 (1.01, 1.26) | 0.86 | 96 | 1.12 (1.00, 1.23) | 1.12 (1.01, 1.25) | 0.88 |
APTT | 96 | 32.4 (26.9, 36.3) | 28.9 (26.4, 32.5) | 0.13 | 96 | 31.6 (27.6, 36.3) | 28.9 (26.4, 32.5) | 0.095 | 68 | 29.4 (27.0, 34.5) | 29.1 (26.4, 34.1) | 0.83 | 96 | 31.4 (27.1, 35.2) | 28.9 (26.4, 32.5) | 0.24 |
TT | 96 | 24.8 (21.3, 29.9) | 27.0 (24.7, 30.4) | 0.082 | 96 | 24.8 (21.2, 28.8) | 27.0 (24.7, 30.4) | 0.028 | 68 | 27.9 (24.0, 30.3) | 26.8 (24.1, 29.4) | 0.72 | 96 | 27.9 (24.2, 30.2) | 27.0 (24.7, 30.4) | 0.97 |
Fib | 96 | 3.56 (3.04, 4.10) | 3.45 (2.88, 3.88) | 0.3 | 96 | 3.66 (3.06, 4.05) | 3.45 (2.88, 3.88) | 0.15 | 68 | 3.58 (3.07, 3.88) | 3.41 (2.96, 3.88) | 0.71 | 96 | 3.48 (3.01, 3.84) | 3.45 (2.88, 3.88) | 0.91 |
DDimer | 96 | 11.2 (7.9, 14.5) | 11.0 (7.8, 16.2) | 0.96 | 96 | 11.4 (8.3, 14.8) | 11.0 (7.8, 16.2) | 0.83 | 68 | 11.7 (7.9, 14.4) | 10.6 (7.9, 14.6) | 0.98 | 96 | 12.1 (8.2, 15.3) | 11.0 (7.8, 16.2) | 0.69 |
FDP | 96 | 19 (13, 25) | 21 (15, 27) | 0.5 | 96 | 20 (14, 24) | 21 (15, 27) | 0.51 | 68 | 21 (12, 24) | 20 (13, 26) | 0.63 | 96 | 20 (12, 26) | 21 (15, 27) | 0.6 |
Wells score on admission | 96 | 4.21 (3.18, 4.50) | 3.89 (3.70, 4.25) | 0.69 | 96 | 4.33 (3.18, 4.50) | 3.89 (3.70, 4.25) | 0.46 | 68 | 4.36 (3.54, 4.50) | 4.00 (3.82, 4.49) | >0.99 | 96 | 4.44 (3.55, 4.50) | 3.89 (3.70, 4.25) | 0.15 |
Outcome | Method | ATE | ATT | ATC | DR Effect |
---|---|---|---|---|---|
LOS | Genetic matching | 0.220938 | 0.138542 | 0.303333 | 0.234141 |
Mahalanobis matching | 0.030104 | 0.069583 | −0.009375 | 0.060673 | |
Nearest caliper matching | 0.184853 | 0.140294 | 0.229412 | 0.482037 | |
Optimal exact matching | 0.122396 | 0.093542 | 0.151250 | −0.089078 | |
Weighted average | 0.149940 | 0.115998 | 0.183882 | 0.215417 | |
IPR | Genetic matching | 7.250269 | 7.126380 | 7.374158 | 6.657812 |
Mahalanobis matching | 9.498363 | 10.104076 | 8.892649 | 7.468033 | |
Nearest caliper matching | 4.425388 | 4.053835 | 4.796941 | 4.576757 | |
Optimal exact matching | 6.234179 | 5.597047 | 6.871312 | 4.811417 | |
Weighted average | 6.390419 | 6.185866 | 6.594972 | 5.609704 | |
CER | Genetic matching | 376.835863 | 331.227682 | 422.444043 | 49.228880 |
Mahalanobis matching | 234.975301 | 219.382172 | 250.568430 | −31.334780 | |
Nearest caliper matching | −382.278629 | −558.997681 | −205.559576 | 17.847259 | |
Optimal exact matching | 443.893589 | 152.772527 | 735.014650 | 204.663569 | |
Weighted average | 92.494279 | −53.786728 | 238.775285 | 60.460884 | |
DIR | Genetic matching | 1.126066 | 1.237232 | 1.014900 | 0.081863 |
Mahalanobis matching | 1.040437 | 0.868627 | 1.212247 | 0.054384 | |
Nearest caliper matching | −0.510985 | −0.746027 | −0.275944 | −0.546280 | |
Optimal exact matching | 0.854262 | 0.735216 | 0.973309 | 0.295889 | |
Weighted average | 0.453157 | 0.333016 | 0.573299 | −0.099355 | |
DIC | Genetic matching | −2223.558387 | −3261.261570 | −1185.855203 | −2897.334079 |
Mahalanobis matching | −2687.825196 | −3521.714681 | −1853.935712 | −3658.028076 | |
Nearest caliper matching | −4575.084249 | −5472.104670 | −3678.063828 | −2258.112576 | |
Optimal exact matching | −2914.259329 | −3844.182311 | −1984.336347 | −3252.662104 | |
Weighted average | −3323.379356 | −4247.677021 | −2399.081692 | −2887.947738 | |
CLE | Genetic matching | 146.768519 | 121.704870 | 171.832168 | 144.049049 |
Mahalanobis matching | 145.561282 | 123.163489 | 167.959075 | 159.493708 | |
Nearest caliper matching | 83.567817 | 92.234486 | 74.901147 | 117.317895 | |
Optimal exact matching | 202.467521 | 167.803752 | 237.131289 | 189.321178 | |
Weighted average | 136.974290 | 122.308297 | 151.640284 | 147.968124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, N.; Ng, T.H.; Foo, C.N.; Ling, L.; Lim, Y.M. Multidimensional Evaluation of Combined Anticoagulation and Venoprotective Therapy in Deep Vein Thrombosis: A Retrospective Propensity Score-Matched Cohort Study of Clinical, Economic, and Resource Utilization Outcomes. Reports 2025, 8, 83. https://doi.org/10.3390/reports8020083
Zhou N, Ng TH, Foo CN, Ling L, Lim YM. Multidimensional Evaluation of Combined Anticoagulation and Venoprotective Therapy in Deep Vein Thrombosis: A Retrospective Propensity Score-Matched Cohort Study of Clinical, Economic, and Resource Utilization Outcomes. Reports. 2025; 8(2):83. https://doi.org/10.3390/reports8020083
Chicago/Turabian StyleZhou, Nan, Teck Han Ng, Chai Nien Foo, Lloyd Ling, and Yang Mooi Lim. 2025. "Multidimensional Evaluation of Combined Anticoagulation and Venoprotective Therapy in Deep Vein Thrombosis: A Retrospective Propensity Score-Matched Cohort Study of Clinical, Economic, and Resource Utilization Outcomes" Reports 8, no. 2: 83. https://doi.org/10.3390/reports8020083
APA StyleZhou, N., Ng, T. H., Foo, C. N., Ling, L., & Lim, Y. M. (2025). Multidimensional Evaluation of Combined Anticoagulation and Venoprotective Therapy in Deep Vein Thrombosis: A Retrospective Propensity Score-Matched Cohort Study of Clinical, Economic, and Resource Utilization Outcomes. Reports, 8(2), 83. https://doi.org/10.3390/reports8020083