Persistent Lactate Elevation in a Patient with Asthma Exacerbation and a Congenital Portosystemic Shunt: A Case Report and Literature Review
Abstract
1. Introduction and Clinical Significance
2. Case Presentation
Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunnerson, K.J.; Saul, M.; He, S.; Kellum, J.A. Lactate versus Non-Lactate Metabolic Acidosis: A Retrospective Outcome Evaluation of Critically Ill Patients. Crit. Care 2006, 10, R22. [Google Scholar] [CrossRef] [PubMed]
- Van Hall, G. Lactate Kinetics in Human Tissues at Rest and during Exercise. Acta Physiol. 2010, 199, 499–508. [Google Scholar] [CrossRef]
- Dashty, M. A Quick Look at Biochemistry: Carbohydrate Metabolism. Clin. Biochem. 2013, 46, 1339–1352. [Google Scholar] [CrossRef] [PubMed]
- Madias, N.E. Lactic Acidosis. Kidney Int. 1986, 29, 752–774. [Google Scholar] [CrossRef] [PubMed]
- Kraut, J.A.; Madias, N.E. Lactic Acidosis. N. Engl. J. Med. 2014, 371, 2309–2319. [Google Scholar] [CrossRef] [PubMed]
- Huckabee, W.E. Abnormal Resting Blood Lactate. I. The Significance of Hyperlactatemia in Hospitalized Patients. Am. J. Med. 1961, 30, 840–848. [Google Scholar] [CrossRef]
- Pohanka, M. D-Lactic Acid as a Metabolite: Toxicology, Diagnosis, and Detection. Biomed. Res. Int. 2020, 2020, 3419034. [Google Scholar] [CrossRef]
- Kowlgi, N.G.; Chhabra, L. D-Lactic Acidosis: An Underrecognized Complication of Short Bowel Syndrome. Gastroenterol. Res. Pract. 2015, 2015, 476215. [Google Scholar] [CrossRef] [PubMed]
- Zanza, C.; Facelli, V.; Romenskaya, T.; Bottinelli, M.; Caputo, G.; Piccioni, A.; Franceschi, F.; Saviano, A.; Ojetti, V.; Savioli, G.; et al. Lactic Acidosis Related to Pharmacotherapy and Human Diseases. Pharmaceuticals 2022, 15, 1496. [Google Scholar] [CrossRef] [PubMed]
- Zabrodski, R.M.; Schnurr, L.P. Anion Gap Acidosis with Hypoglycemia in Acetaminophen Toxicity. Ann. Emerg. Med. 1984, 13, 956–959. [Google Scholar] [CrossRef] [PubMed]
- Acosta, B.S.; Grimsley, E.W. Zidovudine-Associated Type B Lactic Acidosis and Hepatic Steatosis in an HIV-Infected Patient. South. Med. J. 1999, 92, 421–423. [Google Scholar] [CrossRef]
- Mokrzycki, M.H.; Harris, C.; May, H.; Laut, J.; Palmisano, J. Lactic Acidosis Associated with Stavudine Administration: A Report of Five Cases. Clin. Infect. Dis. 2000, 30, 198–200. [Google Scholar] [CrossRef]
- Trêpanier, C.A.; Lessard, M.R.; Brochu, J.; Turcotte, G. Another Feature of TURP Syndrome: Hyperglycaemia and Lactic Acidosis Caused by Massive Absorption of Sorbitol. Br. J. Anaesth. 2001, 87, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Dalton, S.D.; Rahimi, A.R. Emerging Role of Riboflavin in the Treatment of Nucleoside Analogue-Induced Type B Lactic Acidosis. AIDS Patient Care STDS 2001, 15, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Vasseur, B.G.; Kawanishi, H.; Shah, N.; Anderson, M.L. Type B Lactic Acidosis: A Rare Complication of Antiretroviral Therapy after Cardiac Surgery. Ann. Thorac. Surg. 2002, 74, 1251–1252. [Google Scholar] [CrossRef]
- Parsapour, K.; Pullela, R.; Raff, G.; Pretzlaff, R. Type B Lactic Acidosis and Insulin-Resistant Hyperglycemia in an Adolescent Following Cardiac Surgery. Pediatr. Crit. Care Med. 2008, 9, e6–e9. [Google Scholar] [CrossRef] [PubMed]
- Claret, P.G.; Bobbia, X.; Boutin, C.; Rougier, M.; De La Coussaye, J.E. Lactic Acidosis as a Complication of β-Adrenergic Aerosols. Am. J. Emerg. Med. 2012, 30, 1319.e5–1319.e6. [Google Scholar] [CrossRef]
- Iragavarapu, C.; Gupta, T.; Chugh, S.S.; Aronow, W.S.; Frishman, W.H. Type B Lactic Acidosis Associated with Venlafaxine Overdose. Am. J. Ther. 2016, 23, e1082–e1084. [Google Scholar] [CrossRef] [PubMed]
- Teagarden, A.M.; Leland, B.D.; Rowan, C.M.; Lutfi, R. Thiamine Deficiency Leading to Refractory Lactic Acidosis in a Pediatric Patient. Case Rep. Crit. Care 2017, 2017, 5121032. [Google Scholar] [CrossRef]
- Oberg, C.L.; Hiensch, R.J.; Poor, H.D. Ombitasvir-Paritaprevir-Ritonavir-Dasabuvir (Viekira Pak)-Induced Lactic Acidosis. Crit. Care Med. 2017, 45, e321–e325. [Google Scholar] [CrossRef]
- Souki, F.G.; Ghaffaripour, S.; Martinez-Lu, K.; Mahmoudi, H. Severe Type B Lactic Acidosis and Insulin-Resistant Hyperglycemia Related to Cadaveric Kidney Transplantation. J. Clin. Anesth. 2018, 44, 100–101. [Google Scholar] [CrossRef] [PubMed]
- Hockstein, M.; Diercks, D. Significant Lactic Acidosis from Albuterol. Clin. Pract. Cases Emerg. Med. 2018, 2, 128–131. [Google Scholar] [CrossRef]
- Ahmed, H.H.; De Bels, D.; Attou, R.; Honore, P.M.; Redant, S. Elevated Lactic Acid During Ketoacidosis: Pathophysiology and Management. J. Transl. Int. Med. 2019, 7, 115. [Google Scholar] [CrossRef] [PubMed]
- Masy, V.; Sokal, E.; Ranguelov, N.; Brichard, B.; Laterre, P.F.; Hantson, P. Fatal Type B Lactic Acidosis in a Patient with End-Stage Liver Disease Related to Homozygous Sickle Cell Disease. Ann. Hematol. 2019, 98, 2627–2628. [Google Scholar] [CrossRef]
- Meegada, S.; Muppidi, V.; Siddamreddy, S.; Challa, T.; Katta, S.K. Albuterol-Induced Type B Lactic Acidosis: Not an Uncommon Finding. Cureus 2020, 12, e8269. [Google Scholar] [CrossRef] [PubMed]
- Thota, V.; Paravathaneni, M.; Konduru, S.; Buragamadagu, B.C.; Thota, M.; Lerman, G. Treatment of Refractory Lactic Acidosis with Thiamine Administration in a Non-Alcoholic Patient. Cureus 2021, 13, e16267. [Google Scholar] [CrossRef]
- Phoophiboon, V.; Singhagowinta, P.; Boonkaya, S.; Sriprasart, T. Salbutamol-Induced Lactic Acidosis in Status Asthmaticus Survivor. BMC Pulm. Med. 2021, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Govind, K.; Gaskin, G.L.; Naidoo, D.P. Resurgence of Shoshin Beriberi during the COVID-19 Pandemic. Cardiovasc. J. Afr. 2022, 34, 40. [Google Scholar] [CrossRef]
- Pina Cabral, J.; Sousa, D.L.; Carvalho, C.; Girao, A.; Pacheco Mendes, A.; Pina, R. Caffeine Intoxication: Unregulated, over-the-Counter Sale of Potentially Deadly Supplements. Cureus 2022, 14, e21045. [Google Scholar] [CrossRef]
- Yusim, D.; Tiru, B.; Abdullin, M.; Landry, D.L.; Hodgins, S.; Braden, G.L. Treatment of Severe Metformin-Associated Lactic Acidosis with Renal Replacement Therapy and Tris-Hydroxymethyl Aminomethane: A Case Report. J. Med. Case Rep. 2023, 17, 462. [Google Scholar] [CrossRef]
- Cummins, M.H.; Croft, B.J. Possible Cannabinoid-Induced Lactic Acidosis Requiring Emergent Dialysis. SAGE Open Med. Case Rep. 2024, 12, 2050313X241265069. [Google Scholar] [CrossRef] [PubMed]
- Gobinath, S.; Gobishangar, S.; Thanenthiran, A.J.; Thuraisamy Sarma, S.I.; Theepan, J.M.M.; Shathana, P. Challenging Refractory Type B Lactic Acidosis in Gastric Adenocarcinoma—A Successfully Managed Case. J. Surg. Case Rep. 2023, 2023, rjad412. [Google Scholar] [CrossRef] [PubMed]
- Vaupel, P.; Multhoff, G. Revisiting the Warburg Effect: Historical Dogma versus Current Understanding. J. Physiol. 2021, 599, 1745–1757. [Google Scholar] [CrossRef]
- Pérez-Tomás, R.; Pérez-Guillén, I. Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment. Cancers 2020, 12, 3244. [Google Scholar] [CrossRef] [PubMed]
- Walenta, S.; Mueller-Klieser, W.F. Lactate: Mirror and Motor of Tumor Malignancy. Semin. Radiat. Oncol. 2004, 14, 267–274. [Google Scholar] [CrossRef]
- O’Sullivan, E.D.; Hughes, J.; Ferenbach, D.A. Renal Aging: Causes and Consequences. J. Am. Soc. Nephrol. 2017, 28, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, J.R.; Anderson, S. THE AGING KIDNEY: PHYSIOLOGICAL CHANGES. Adv. Chronic Kidney Dis. 2010, 17, 302. [Google Scholar] [CrossRef] [PubMed]
- Schillaci, L.A.P.; DeBrosse, S.D.; McCandless, S.E. Inborn Errors of Metabolism with Acidosis: Organic Acidemias and Defects of Pyruvate and Ketone Body Metabolism. Pediatr. Clin. N. Am. 2018, 65, 209–230. [Google Scholar] [CrossRef] [PubMed]
- Appel, D.; Rubenstein, R.; Schrager, K.; Williams, M.H. Lactic Acidosis in Severe Asthma. Am. J. Med. 1983, 75, 580–584. [Google Scholar] [CrossRef]
- Orringer, C.E.; Eustace, J.C.; Wunsch, C.D.; Gardner, L.B. Natural History of Lactic Acidosis after Grand-Mal Seizures. N. Engl. J. Med. 1977, 297, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Dyatlova, N.; Tobarran, N.V.; Kannan, L.; North, R.; Wills, B.K. Metformin-Associated Lactic Acidosis (MALA). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Cox, K.; Cocchi, M.N.; Salciccioli, J.D.; Carney, E.; Howell, M.; Donnino, M.W. Prevalence and Significance of Lactic Acidosis in Diabetic Ketoacidosis. J. Crit. Care 2011, 27, 132. [Google Scholar] [CrossRef] [PubMed]
- Madl, C.; Kranz, A.; Liebisch, B.; Traindl, O.; Lenz, K.; Druml, W. Lactic Acidosis in Thiamine Deficiency. Clin. Nutr. 1993, 12, 108–111. [Google Scholar] [CrossRef]
- Heinig, R.E.; Clarke, E.F.; Waterhouse, C. Lactic Acidosis and Liver Disease. Arch. Intern. Med. 1979, 139, 1229–1232. [Google Scholar] [CrossRef] [PubMed]
- Falcó, V.; Rodríguez, D.; Ribera, E.; Martínez, E.; Miró, J.M.; Domingo, P.; Diazaraque, R.; Arribas, J.R.; González-García, J.J.; Montero, F.; et al. Severe Nucleoside-Associated Lactic Acidosis in Human Immunodeficiency Virus–Infected Patients: Report of 12 Cases and Review of the Literature. Clin. Infect. Dis. 2002, 34, 838–846. [Google Scholar] [CrossRef]
- Foucher, C.D.; Tubben, R.E. Lactic Acidosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Svedmyr, N. Action of Corticosteroids on Beta-Adrenergic Receptors. Clinical Aspects. Am. Rev. Respir. Dis. 1990, 141, S31–S38. [Google Scholar]
- Suter, P.M.; Fairley, H.B.; Isenberg, M.D. Optimum End-Expiratory Airway Pressure in Patients with Acute Pulmonary Failure. N. Engl. J. Med. 1975, 292, 284–289. [Google Scholar] [CrossRef]
- Jeppesen, J.B.; Mortensen, C.; Bendtsen, F.; Møller, S. Lactate Metabolism in Chronic Liver Disease. Scand. J. Clin. Lab. Investig. 2013, 73, 293–299. [Google Scholar] [CrossRef] [PubMed]
Year | Etiologies | Age/Gender | Lowest pH | Highest Lactate (mmol/L) | Source | Treatment | Outcome |
---|---|---|---|---|---|---|---|
1984 | Acetaminophen toxicity [10] | 29/F; 48/F | 6.98; 6.92 | 25.8; 17.6 | Arterial; Serum | Bicarbonate, thiamine, dialysis | Death |
1999 | Zidovudine use [11] | 34/F | 6.77 | 26.8 | Arterial | Supportive | Death |
2000 | Stavudine use [12] | 35/F; 34/M; 55/F; 38/F; 50/F | 7.3 | 10.3 | Arterial | Bicarbonate, thiamine | Resolution |
2001 | TURP syndrome [13] | 71/M | 7.29 | 6.8 | Arterial | Supportive | Resolution |
2001 | Nucleoside analog use [14] | 51/F | 7.35 | 5.03 | Arterial | Riboflavin | Resolution |
2002 | Nucleoside analog reverse transcriptase inhibitor use [15] | 47/F | 7.1 | 265 | Arterial | Bicarbonate, thiamine, riboflavin | Resolution |
2008 | Insulin resistant hyperglycemia [16] | 14/M | 7.31 | 10.3 | Serum | Supportive | Resolution |
2011 | β-adrenergic agents [17] | 49/F | 7.29 | 10.47 | Arterial | Discontinuation of beta-agonist | Resolution |
2016 | Venlafaxine overdose [18] | 55/M | 7.39 | 8.6 | Arterial | IV fluids | Resolution |
2017 | Thiamine deficiency [19] | Neonate/F | NR | 10.4 | NR | Intravenous thiamine | Resolution |
2017 | Ombitasvir/ Paritaprevir/Ritonavir/Dasabuvir use [20] | 64/F; 61/F; 59/M | NR | >15; >15; 5.9 | NR | Hemofiltration; hemodialysis | Death; Resolution; Resolution |
2018 | Thiamine deficiency [21] | 62/M | 7.17 | 14.5 | Arterial | Thiamine supplement | Resolution |
2018 | Albuterol use [22] | 50/M | 7.31 | 10.3 | NR | Discontinuation of albuterol | Resolution |
2019 | Mauriac syndrome [23] | 16/F | NR | 13.43 | NR | Glycemic control | Partial resolution |
2019 | End-stage liver disease [24] | 16/F | NR | 30.73 | Arterial | Bicarbonate, hemofiltration | Death |
2020 | Albuterol use [25] | 63/F | NR | 6.7 | NR | Discontinuation of albuterol | Resolution |
2021 | Thiamine deficiency [26] | 63/F | 7.15 | 24 | Arterial | Thiamine supplement | Resolution |
2021 | Salbutamol use [27] | 40/M | 6.98 | 4.6 | Serum | Intubation | Resolution |
2022 | Thiamine deficiency [28] | 54/F; 42/M | 6.94; 7.37 | 14; 20 | NR; Arterial | Thiamine supplement | Resolution |
2023 | Caffeine intoxication [29] | 23/M | 7.3 | 6.26 | NR | Supportive | Resolution |
2024 | Metformin use [30] | 43/M | 6.9 | >30 | Arterial | Hemodialysis and tris-hydroxymethyl aminomethane | Resolution |
2024 | Cannabinoid use [31] | 42/M | 7.18 | 25.6 | Arterial | Hemodialysis | Resolution |
Differential Diagnosis | Mechanism | Reason for Exclusion | Ref. |
---|---|---|---|
Short-bowel syndrome and other malabsorptive conditions | Buildup of undigested carbohydrate fosters growth of D-lactate-producing bacteria | No surgical history or clinical evidence of malabsorption | [8] |
Malignancy | Multiple mechanisms including anaerobic metabolism by tumor cells and the Warburg effect | No fatigue, weight loss, cytopenia, or incidental findings on imaging. No evidence of cancers in labs and imaging studies | [32] |
Inborn errors of metabolism | Alterations in lactate production and utilization | No childhood symptoms | [38] |
Seizures, shivering, intense exercise, acute asthma | Hypermetabolic states | No history of seizures, shivering, or intense exercise | [39,40] |
Diabetes | Biguanides like metformin inhibit hepatocyte mitochondrial respiration leading to decreased lactate clearance. Patients in diabetic ketoacidosis may have lactic acidosis independent of biguanides. | No history of diabetes | [41,42] |
Thiamine deficiency | Shunting of pyruvate to anaerobic metabolism due to lack of pyruvate dehydrogenase complex cofactor | No history of alcoholism. Normal thiamine level. No signs of Wernicke’s encephalopathy or Korsakoff’s syndrome | [43] |
Cirrhosis | Impaired lactate clearance secondary to liver disease | No constitutional symptoms or physical exam findings. Normal liver function | [44] |
Antiretroviral therapy (ART) | Drug-induced mitochondrial toxicity | No history of ART use | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.F.; Fink, B.; Khan, R.; Luo, X.; Fahimuddin, M. Persistent Lactate Elevation in a Patient with Asthma Exacerbation and a Congenital Portosystemic Shunt: A Case Report and Literature Review. Reports 2025, 8, 8. https://doi.org/10.3390/reports8010008
Li WF, Fink B, Khan R, Luo X, Fahimuddin M. Persistent Lactate Elevation in a Patient with Asthma Exacerbation and a Congenital Portosystemic Shunt: A Case Report and Literature Review. Reports. 2025; 8(1):8. https://doi.org/10.3390/reports8010008
Chicago/Turabian StyleLi, Wing Fai, Bailey Fink, Rehnuma Khan, Xinmiao Luo, and Muhammad Fahimuddin. 2025. "Persistent Lactate Elevation in a Patient with Asthma Exacerbation and a Congenital Portosystemic Shunt: A Case Report and Literature Review" Reports 8, no. 1: 8. https://doi.org/10.3390/reports8010008
APA StyleLi, W. F., Fink, B., Khan, R., Luo, X., & Fahimuddin, M. (2025). Persistent Lactate Elevation in a Patient with Asthma Exacerbation and a Congenital Portosystemic Shunt: A Case Report and Literature Review. Reports, 8(1), 8. https://doi.org/10.3390/reports8010008