Diagnostic Accuracy of Routine Laboratory Tests for COVID-19
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johns Hopkins University. Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/data/mortality (accessed on 20 May 2022).
- Zhang, S.; Diao, M.; Yu, W.; Pei, L.; Lin, Z.; Chen, D. Estimation of the reproductive number of novel coronavirus COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. Int. J. Infect. Dis. 2020, 93, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Sayampanathan, A.A.; Heng, C.S.; Pin, P.H.; Pang, J.; Leong, T.Y.; Lee, V.J. Infectivity of asymptomatic versus symptomatic COVID-19. Lancet 2021, 397, 93–94. [Google Scholar] [CrossRef]
- Kirkpatrick, J.N.; Hull, S.C.; Fedson, S.; Mullen, B.; Goodlin, S.J. Scarce-resource allocation and patient triage during the COVID-19 pandemic: JACC review topic of the week. J. Am. Coll. Cardiol. 2020, 76, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.; Lindsley, A.; Courter, J.; Assa’ad, A. Clinical testing for COVID-19. J. Allergy Clin. Immunol. 2020, 146, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Dinnes, J.; Deeks, J.J.; Berhane, S.; Taylor, M.; Adriano, A.; Davenport, C.; Dittrich, S.; Emperador, D.; Takwoingi, Y.; Cunningham, J.; et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2021, 3, CD013705. [Google Scholar] [CrossRef]
- Gopaul, R.; Davis, J.; Gangai, L.; Goetz, L. Practical Diagnostic Accuracy of Nasopharyngeal Swab Testing for Novel Coronavirus Disease 2019 (COVID-19). West. J. Emerg. Med. 2020, 21, 1–4. [Google Scholar] [CrossRef]
- Böger, B.; Fachi, M.M.; Vilhena, R.O.; Cobre, A.F.; Tonin, F.S.; Pontarolo, R. Systematic review with meta-analysis of the accuracy of diagnostic tests for COVID-19. Am. J. Infect. Control 2021, 49, 21–29. [Google Scholar] [CrossRef]
- Araya, S.; Wordofa, M.; Mamo, M.A.; Tsegay, Y.G.; Hordofa, A.; Negesso, A.E.; Fasil, T.; Berhanu, B.; Begashaw, H.; Atlaw, A.; et al. The magnitude of hematological abnormalities among COVID-19 patients in Addis Ababa, Ethiopia. J. Multidiscip. Healthc. 2021, 14, 545–554. [Google Scholar] [CrossRef]
- Davis, J.; Umeh, U.; Saba, R. Treatment of SARS-CoV-2 (COVID-19): A safety perspective. World J. Pharmacol. 2021, 10, 1–32. [Google Scholar] [CrossRef]
- United States Centers for Disease Control and Prevention. Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). 2020. Available online: https://stacks.cdc.gov/view/cdc/88624 (accessed on 19 May 2022).
- Tavakolpour, S.; Rakhshandehroo, T.; Wei, E.X.; Rashidian, M. Lymphopenia during the COVID-19 infection: What it shows and what can be learned. Immunol. Lett. 2020, 225, 31–32. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhou, Q.; Xu, J. Mechanism of thrombocytopenia in COVID-19 patients. Ann. Hematol. 2020, 99, 1205–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanni, F.; Akker, E.; Zaman, M.M.; Figueroa, N.; Tharian, B.; Hupart, K.H. Eosinopenia and COVID-19. J. Am. Osteopath. Assoc, 2020; Epub ahead of print. [Google Scholar] [CrossRef]
- Djangang, N.N.; Peluso, L.; Talamonti, M.; Izzi, A.; Gevenois, P.A.; Garufi, A.; Goffard, J.-C.; Henrard, S.; Severgnini, P.; Vincent, J.-L.; et al. Eosinopenia in COVID-19 patients: A retrospective analysis. Microorganisms 2020, 8, 1929. [Google Scholar] [CrossRef] [PubMed]
- Bzeizi, K.; Abdulla, M.; Mohammed, N.; Alqamish, J.; Jamshidi, N.; Broering, D. Effect of COVID-19 on liver abnormalities: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 10599. [Google Scholar] [CrossRef] [PubMed]
- Wander, P.; Epstein, M.; Bernstein, D. COVID-19 Presenting as Acute Hepatitis. Am. J. Gastroenterol. 2020, 115, 941–942. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Cheng, A.; Kumar, R.; Fang, Y.; Chen, G.; Zhu, Y.; Lin, S. Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbidity. J. Med. Virol. 2020, 92, 2152–2158. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.A.; Fossali, T.; Pandolfi, L.; Carsana, L.; Ottolina, D.; Frangipane, V.; Rech, R.; Tosoni, A.; Lopez, G.; Agarossi, A.; et al. Hypoalbuminemia in COVID-19: Assessing the hypothesis for underlying pulmonary capillary leakage. J. Intern. Med. 2021, 289, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Leeflang, M.M.; Rutjes, A.W.; Reitsma, J.B.; Hooft, L.; Bossuyt, P.M. Variation of a test’s sensitivity and specificity with disease prevalence. CMAJ 2013, 185, E537–E544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Fine, J.P. Assessing the dependence of sensitivity and specificity on prevalence in meta-analysis. Biostatistics 2011, 12, 710–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conte, G.; Cei, M.; Evangelista, I.; Colombo, A.; Vitale, J.; Mazzone, A.; Mumoli, N. The Meaning of D-Dimer value in COVID-19. Clin. Appl. Thromb. Hemost. 2021, 27, 10760296211017668. [Google Scholar] [CrossRef] [PubMed]
Laboratory Value | COVID (+) n | COVID (+) Mean | SD of (+) Group | COVID (−) n | COVID (−) Mean | SD of (−) Group | SD Both Groups | p Value |
---|---|---|---|---|---|---|---|---|
White Blood Cell Count | 65 | 6.09 | 2.54 | 487 | 10.46 | 5.92 | 3.09 | <0.001 |
Hemoglobin | 65 | 12.87 | 1.93 | 487 | 12.36 | 2.30 | 0.36 | 0.054 |
Platelet | 64 | 178.47 | 68.73 | 480 | 247.26 | 106.84 | 48.64 | <0.001 |
Abs Neutrophil Count | 64 | 4.1 | 5.30 | 469 | 7.7 | 2.29 | 2.55 | <0.001 |
Abs Lymphocyte Count | 64 | 0.94 | 0.61 | 468 | 1.72 | 1.52 | 0.55 | <0.001 |
Abs Eosinophil Count | 64 | 0.03 | 0.06 | 468 | 0.14 | 0.19 | 0.08 | <0.001 |
AST | 64 | 45.59 | 46.13 | 436 | 47.49 | 115.52 | 1.34 | 0.812 |
ALT | 64 | 33.05 | 30.69 | 443 | 43.7 | 138.15 | 7.53 | 0.162 |
Alkaline Phosphatase | 64 | 70.94 | 30.20 | 443 | 113.8 | 93.44 | 30.31 | <0.001 |
Total Bilirubin | 64 | 0.49 | 0.67 | 441 | 1.39 | 7.91 | 0.64 | 0.02 |
Albumin | 63 | 3.66 | 0.48 | 438 | 4.02 | 0.60 | 0.25 | <0.001 |
Lactate Dehydrogenase | 38 | 330.05 | 219.38 | 263 | 307.81 | 218.07 | 15.73 | 0.562 |
Troponin T | 36 | 0.01 | 0.03 | 240 | 0.06 | 0.30 | 0.04 | 0.013 |
Lactate | 43 | 1.38 | 0.64 | 299 | 1.81 | 1.08 | 0.30 | <0.001 |
D-DIMER | 4 | 0.43 | 0.14 | 81 | 1.57 | 2.98 | 0.81 | 0.001 |
INR | 4 | 1.4 | 0.67 | 93 | 1.54 | 0.76 | 0.10 | 0.708 |
Thromboplastin Time | 1 | 36 | 36.00 | 27 | 31.78 | 6.72 | 2.98 | - |
C Reactive Protein | 37 | 5.32 | 5.57 | 306 | 5.55 | 8.12 | 0.16 | 0.824 |
Erythrocyte Sedimentation Rate | 37 | 39.51 | 22.25 | 278 | 42.66 | 31.11 | 2.23 | 0.446 |
Procalcitonin | 52 | 0.14 | 0.19 | 356 | 1.64 | 7.11 | 1.06 | <0.001 |
Ferritin | 37 | 915.49 | 1125.75 | 301 | 542.01 | 1188.64 | 264.09 | 0.065 |
Direction | Sensitivity | Specificity | Area Under Curve | Cutoff | |
---|---|---|---|---|---|
White Blood Cell | Decr. | 26.7% | 95.8% | 82.7% | 7000 cells/hpf |
Platelet | Decr. | 14.6% | 95.0% | 73.2% | 250,000 cells/hpf |
Abs Neutrophil Count | Decr. | 18.1% | 95.6% | 77.2% | 6000 cellls/hpf |
Abs Lymphocyte Count | Decr. | 13.9% | 96.0% | 76.8% | 2000 cells/hpf |
Abs Eosinophil Count | Decr. | 23.1% | 96.1% | 94.0% | 25 cells/hpf |
Alkaline Phosphatase | Decr. | 50.0% | 93.4% | 81.4% | 80 Units/L |
Albumin | Decr. | 11.9% | 88.6% | 74.2% | 4.0 g/dL |
Troponin T | Decr. | 10.9% | 95.3% | 96.0% | 0.015 ng/mL |
Lactate | Decr. | 13.1% | 96.6% | 59.2% | 2.5 mmol/L |
Procalcitonin | Decr. | 13.6% | 93.5% | 61.2% | 0.16 ug/mL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, J.; Gilderman, G. Diagnostic Accuracy of Routine Laboratory Tests for COVID-19. Reports 2022, 5, 25. https://doi.org/10.3390/reports5030025
Davis J, Gilderman G. Diagnostic Accuracy of Routine Laboratory Tests for COVID-19. Reports. 2022; 5(3):25. https://doi.org/10.3390/reports5030025
Chicago/Turabian StyleDavis, Joshua, and Gina Gilderman. 2022. "Diagnostic Accuracy of Routine Laboratory Tests for COVID-19" Reports 5, no. 3: 25. https://doi.org/10.3390/reports5030025
APA StyleDavis, J., & Gilderman, G. (2022). Diagnostic Accuracy of Routine Laboratory Tests for COVID-19. Reports, 5(3), 25. https://doi.org/10.3390/reports5030025