Body Composition versus BMI as Measures of Success in a Clinical Pediatric Weight Management Program
Abstract
:1. Introduction
2. Methods
- BMI: <−5 kg/m2, −5- < −1 kg/m2, −1 < 1 kg/m2, 1- < 5 kg/m2, 5+ kg/m2
- BMI Percentile: <−1%, −1- < 0%, 0- < 0.4%, 0.4+%
- BMI%95: <−5%, −5- < 0%, 0- < 5%, 5+%
- PBF: <−5%, −5- < −2%, −2- < 0%, 0- < 3%, 3+%
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Skinner, A.C.; Ravanbakht, S.N.; Skelton, J.A.; Perrin, E.M.; Armstrong, S.C. Prevalence of Obesity and Severe Obesity in US Children, 1999–2016. Pediatrics 2018, 141, e20173459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, C.L.; Carroll, M.D.; Lawman, H.G.; Fryar, C.D.; Kruszon-Moran, D.; Kit, B.K.; Flegal, K.M. Trends in Obesity Prevalence Among Children and Adolescents in the United States, 1988–1994 Through 2013–2014. JAMA 2016, 315, 2292–2299. [Google Scholar] [CrossRef] [PubMed]
- Skinner, A.C.; Perrin, E.M.; Moss, L.A.; Skelton, J.A. Cardiometabolic risks and severity of obesity in children and young adults. N. Engl. J. Med. 2015, 373, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.S.; Mei, Z.; Srinivasan, S.R.; Berenson, G.S.; Dietz, W.H. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: The bogalusa heart study. J. Pediatr. 2007, 150, 12.e2–17.e2. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.S.; Lawman, H.G.; Galuska, D.A.; Goodman, A.B.; Berenson, G.S. Tracking and Variability in Childhood Levels of BMI: The Bogalusa Heart Study. Obesity 2018, 26, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.R.; Kelly, A.S. Pediatric Severe Obesity: Time to Establish Serious Treatments for a Serious Disease. Child Obes. 2014, 10, 283–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, A.S.; Barlow, S.E.; Rao, G.; Inge, T.H.; Hayman, L.L.; Steinberger, J.; Urbina, E.M.; Ewing, L.J.; Daniels, S.R. Severe Obesity in Children and Adolescents: Identification, Associated Health Risks, and Treatment Approaches. Circulation 2013, 128, 1689–1712. [Google Scholar] [CrossRef]
- Dietz, W.H. Health Consequences of Obesity in Youth: Childhood Predictors of Adult Disease. Pediatrics 1998, 101 Pt 2, 518–525. [Google Scholar]
- Maggio, A.B.; Martin, X.E.; Gasser, C.S.; Gal-Duding, C.; Beghetti, M.; Farpour-Lambert, N.J.; Chamay-Weber, C. Medical and Non-Medical Complications Among Children and Adolescents with Excessive Body Weight. BMC Pediatr. 2014, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Reilly, J.J.; Kelly, J. Long-Term Impact of Overweight and Obesity in Childhood and Adolescence on Morbidity and Premature Mortality in Adulthood: Systematic Review. Int. J. Obes. 2011, 35, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Lobstein, T.; Jackson-Leach, R. Planning for the worst: Estimates of obesity and comorbidities in school-age children in 2025. Pediatr. Obes. 2016, 11, 321–325. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. Body Mass Index: Considerations for Practitioners. Available online: https://www.cdc.gov/obesity/downloads/BMIforpactitioners.pdf (accessed on 18 October 2020).
- Flegal, K.M.; Wei, R.; Ogden, C.L.; Freedman, D.S.; Johnson, C.L.; Curtin, L.R. Characterizing extreme values of body mass index-for-age by using the 2000 Centers for Disease Control and Prevention growth charts. Am. J. Clin. Nutr. 2009, 90, 1314–1320. [Google Scholar] [CrossRef] [PubMed]
- Gulati, A.K.; Kaplan, D.W.; Daniels, S.R.; Baumgartner, S.E.; Sumter, S.R.; Peter, J.; Valkenburg, P.M. Clinical tracking of severely obese children: A new growth chart. Pediatrics 2012, 130, 1136–1140. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.M.B.; Cole, T.J. What use is the BMI? Arch. Dis. Child. 2006, 91, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.R. The Use of BMI in the Clinical Setting. Pediatrics 2009, 124 (Suppl. 1), S35–S41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbeau, P.; Gutin, B.; Litaker, M.; Owens, S.; Riggs, S.; Okuyama, T. Correlates of individual differences in body-composition changes resulting from physical training in obese children. Am. J. Clin. Nutr. 1999, 69, 705–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Castro, J.A.C.; De Lima, T.R.; Silva, D.A.S. Body composition estimation in children and adolescents by bioelectrical impedance analysis: A systematic review. J. Bodyw. Mov. Ther. 2018, 22, 134–146. [Google Scholar] [CrossRef]
- Brantlov, S.; Ward, L.C.; Jødal, L.; Rittig, S.; Lange, A. Critical factors and their impact on bioelectrical impedance analysis in children: A review. J. Med. Eng. Technol. 2017, 41, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Xanthakos, S.; Hornung, L.; Arce-Clachar, C.; Siegel, R.; Kalkwarf, H. Relative accuracy of bioelectrical impedance analysis for assessing body composition in children with severe obesity. J. Pediatr. Gastroenterol. Nutr. 2020, 70, e129–e135. [Google Scholar] [CrossRef]
- McCarthy, H.; Cole, T.; Fry, T.; Jebb, S.; Prentice, A. Body fat reference curves for children. Int. J. Obes. 2006, 30, 598–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, W.; Harrist, R.; Labarthe, D. Percentiles of body composition from bioelectrical impedance and body measurements in U.S. adolescents 8–17 years old: Project HeartBeat! Am. J. Hum. Biol. 2004, 16, 135–150. [Google Scholar] [CrossRef] [PubMed]
Variables | Group (n = 1738) | Males (n = 797) | Females (n = 941) |
---|---|---|---|
Age (year) | 12.2 ± 3.1 | 12.2 ± 3.0 | 12.2 ± 3.1 |
BMI (kg/m2) | 32.8 ± 7.0 | 32.8 ± 6.9 | 32.9 ± 7.1 |
BMI%ile | 98.6 ± 1.7 | 98.8 ± 1.6 | 98.4 ± 1.8 |
BMI%95 | 133.2 ± 23.3 | 135.8 ± 23.7 | 131.0 ± 22.7 |
PBF | 44.0 ± 6.4 | 42.6 ± 6.8 | 45.2 ± 5.8 |
Change in BMI | Change in Body Fat Percentage | |||||
---|---|---|---|---|---|---|
<−5% | −5 to <−2% | −2 to <0% | 0 to <3% | 3%+ | TOTAL | |
<−5 kg/m2 | 18 | 2 | 1 | 0 | 0 | 21 |
1.21% | ||||||
−5 to <−1 kg/m2 | 87 | 76 | 65 | 16 | 1 | 245 |
14.15% | ||||||
−1 to <1 kg/m2 | 45 | 126 | 269 | 231 | 16 | 687 |
39.67% | ||||||
1 to <5 kg/m2 | 23 | 58 | 125 | 292 | 101 | 599 |
34.58% | ||||||
5+ kg/m2 | 4 | 12 | 17 | 67 | 80 | 180 |
10.39% | ||||||
TOTAL | 177 | 274 | 477 | 606 | 198 | 1732 |
10.22% | 15.82% | 27.54% | 34.99% | 11.43% |
Change in BMI Percentile | Change in Body Fat Percentage | |||||
---|---|---|---|---|---|---|
<−5% | −5 to <−2% | −2 to <0% | 0 to <3% | 3%+ | TOTAL | |
<−1% | 84 | 49 | 25 | 14 | 1 | 173 |
10.17% | ||||||
−1 to <0% | 70 | 170 | 289 | 248 | 36 | 813 |
47.80% | ||||||
0 to <0.4% | 17 | 40 | 137 | 274 | 85 | 553 |
32.51% | ||||||
0.4%+ | 3 | 13 | 16 | 61 | 69 | 162 |
9.51% | ||||||
TOTAL | 174 | 272 | 467 | 597 | 191 | 1701 |
10.23% | 15.99% | 27.45% | 35.10% | 11.23% |
Change in BMI%95 | Change in Body Fat Percentage | |||||
---|---|---|---|---|---|---|
<−5% | −5 to <−2% | −2 to <0% | 0 to <3% | 3%+ | TOTAL | |
<−5% | 134 | 123 | 125 | 54 | 4 | 440 |
25.72% | ||||||
−5 to <0% | 27 | 99 | 196 | 173 | 20 | 515 |
30.10% | ||||||
0 to <5% | 9 | 34 | 114 | 215 | 43 | 415 |
24.25% | ||||||
5%+ | 6 | 16 | 35 | 155 | 129 | 341 |
19.93% | ||||||
TOTAL | 176 | 272 | 470 | 597 | 196 | 1711 |
10.29% | 15.90% | 27.47% | 34.89% | 11.46% |
Gender | Variable | Mean Change | Significance |
---|---|---|---|
Female | BMI | 1.47 kg/m2 | p < 0.0001 |
BMI%ile | −0.25 | p < 0.0001 | |
BMI%95 | −0.06 | p = 0.83 | |
Skeletal Muscle | 2.25 kg | p < 0.0001 | |
Fat Mass | 3.57 kg | p < 0.0001 | |
% Body Fat | 0.07% | p = 0.47 | |
Male | BMI | 0.88 kg/m2 | p < 0.0001 |
BMI%ile | −0.38 | p < 0.0001 | |
BMI%95 | −1.73 | p < 0.0001 | |
Skeletal Muscle | 3.13 kg | p < 0.0001 | |
Fat Mass | 2.04 kg | p < 0.0001 | |
% Body Fat | −1.53% | p < 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stackpole, K.; Khoury, P.; Siegel, R.; Gier, A. Body Composition versus BMI as Measures of Success in a Clinical Pediatric Weight Management Program. Reports 2020, 3, 32. https://doi.org/10.3390/reports3040032
Stackpole K, Khoury P, Siegel R, Gier A. Body Composition versus BMI as Measures of Success in a Clinical Pediatric Weight Management Program. Reports. 2020; 3(4):32. https://doi.org/10.3390/reports3040032
Chicago/Turabian StyleStackpole, Kristin, Philip Khoury, Robert Siegel, and Amanda Gier. 2020. "Body Composition versus BMI as Measures of Success in a Clinical Pediatric Weight Management Program" Reports 3, no. 4: 32. https://doi.org/10.3390/reports3040032
APA StyleStackpole, K., Khoury, P., Siegel, R., & Gier, A. (2020). Body Composition versus BMI as Measures of Success in a Clinical Pediatric Weight Management Program. Reports, 3(4), 32. https://doi.org/10.3390/reports3040032