Next Article in Journal
Transformation or Progression from Adenocarcinoma to Small Cell Lung Cancer Detected by Serially Tracking Mutations in the Blood
Next Article in Special Issue
Parent Perspectives on Implementing Health Behavior Recommendations for Their Infants
Previous Article in Journal
Schizophrenic Psychosis Symptoms in a Background of Mild-To-Moderate Carnitine Palmitoyltransferase II Deficiency: A Case Report
Previous Article in Special Issue
A Feasibility Study of a Fit Kit School-Based Intervention to Improve the Health of Students and Their Families
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Body Composition versus BMI as Measures of Success in a Clinical Pediatric Weight Management Program

1
Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
2
School of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
*
Author to whom correspondence should be addressed.
Reports 2020, 3(4), 32; https://doi.org/10.3390/reports3040032
Submission received: 31 August 2020 / Revised: 15 October 2020 / Accepted: 17 October 2020 / Published: 20 October 2020
(This article belongs to the Special Issue Childhood Obesity: New Knowledge, Cases and Interventions)

Abstract

:
The high rates and long-term medical consequences of childhood obesity make it a public health crisis requiring effective diagnosis, treatment, and prevention. Although BMI is an adequate screening tool for obesity, monitoring BMI change is not always the best measure of success in treating patients in a pediatric weight management program. Our retrospective study evaluated the proportion of patients that achieved favorable changes in body composition by bioelectrical impedance analysis in the absence of improvements in BMI, BMI percentile, or percent of the 95th percentile for BMI. It was found that 30% of patients whose BMI increased by 1.0 kg/m2 or more, 31.6% of patients with stable or increasing BMI percentiles, and 28% with stable or increasing percent of the 95th percentile for BMI demonstrated an improvement in body composition (skeletal muscle mass and body fat percentage). Body composition is an important measure of success for a subset of patients who otherwise may believe that their efforts in lifestyle change have not been effective. Our results suggest that including body fat percentage as a measure of success in evaluating the progress of patients participating in a pediatric weight management program is appropriate and may more accurately track success than change in BMI or BMI percentile alone.

1. Introduction

Childhood obesity is a public health crisis. The rate of obesity among children living in the United States age 2 to 19 years old is 18.5% and 6.0% of US youth are classified as severely obese [1]. Rates of obesity and severe obesity in adolescents have doubled and quadrupled respectively over the past 30 years. The rate of obesity among adolescents, age 12–19 years old, increased from 10.5% in 1988–1994 to 20.6% in 2013–2014. Rates of severe obesity in adolescents increased from 2.6% to 9.1% during this time period [2]. The 2016 NHANES data reports even higher rates of obesity in older adolescents, with an obesity rate of 20.2% and severe obesity rate of 9.5% in 16 to 19 year olds [1].
Children with obesity have a higher prevalence of cardiometabolic risk factors including low HDL, elevated triglycerides, elevated blood pressure, and abnormal glucose metabolism in comparison to their normal weight peers [3]. The degree of cardiometabolic risk rises with worsening severity of obesity [3,4]. Additional comorbidities associated with obesity include obstructive sleep apnea, nonalcoholic fatty liver disease, orthopedic conditions, polycystic ovarian syndrome, type 2 diabetes mellitus, and mental health concerns such as being victims of bullying [4,5,6,7,8,9]. Pediatric obesity often leads to adult obesity and shortened life-span [4,5,10]. The World Obesity Federation predicts that if current trends in obesity continue, 268 million children age 5 to 17 year old will be overweight or obese worldwide in the year 2025. Of these children, approximately 4 million will suffer from type 2 diabetes mellitus, 38 million from hepatic steatosis, 27 million from hypertension, and 12 million will have impaired glucose tolerance [11].
Recognizing the high rate of childhood obesity and the medical complications associated with this disease, it is critical to properly diagnose, treat, and prevent this condition. Obesity and excess adiposity are defined by the Body Mass Index (weight/height2) [12]. In children, normal BMI values change with age and gender, so values are compared to gender- and age-specific references. For children age 2–19 years old, “overweight” is defined as having a BMI greater than or equal to 85% when plotted on the Centers for Disease Control and Prevention’s gender-specific BMI-For-Age growth chart. Obesity is defined as a BMI at or above 95%. Severe obesity is defined as having a BMI at or above 120% of the 95th percentile for BMI [13,14]. For public health purposes, BMI is a reliable anthropometric estimate of adiposity [15]. However, BMI does not differentiate between Fat Mass (FM) and Free Fat Mass (FFM). Changes in diet and exercise can affect FM and FFM without necessarily affecting weight and BMI or BMI percentile [15,16,17]. When treating a child or adolescent, BMI percentile is an adequate screening tool to diagnosis obesity but may not be sufficient in monitoring an individual patient’s treatment progress. Including body composition in the monitoring of a patient may provide a more accurate assessment of the patient’s progress. Bioelectrical impedance analysis (BIA) is a convenient method to assess the body composition of children and adolescents, and has been demonstrated to be accurate relative to dual x-ray absorptiometry (DXA) [18,19,20]. BIA reproducibly estimates body fat percentage, making it a reliable option to track changes in body composition over the course of treatment [18]. Unlike BMI, percentile norms for body fat mass or body fat percentage by age and gender are not well established. However, general trends in change in body fat percentage with age by gender are accepted, and studies have looked at establishing percentiles and reference curves for underweight, normal, overweight, and obese [21,22]. Starting at 5 years of age, the body fat percentage increases in both boys and girls until approximately age 11 years or the onset of puberty. At that time, males will increase muscle mass with a decrease in overall body fat. In contrast, females increase body fat percentage during puberty. These changes in body composition are not accounted for by BMI. A female entering puberty with a decrease or even stabilization of body fat percentage and an increase in muscle mass, weight, and height is an example of lifestyle change in a positive direction that would not be reflected through monitoring BMI percentile alone. The purpose of this study is to determine the proportion of patients that achieve favorable changes in body composition in the absence of improvements in BMI. We categorize favorable change in body composition as a decrease in body fat percentage and an increase in skeletal muscle mass. We recognize that for females in early puberty, a stabilization of body fat percentage may be considered favorable.

2. Methods

The Institutional Review Board at Cincinnati Children’s Hospital approved the study protocol. This was a retrospective chart review of clinical measures in children with overweight and obese weight status. Data from 52 months of clinical visits to a pediatric weight management program were extracted from electronic medical records. Height, weight, and body composition measurements were collected during clinical care. Height and weight were used to calculate BMI. BMI percentile (BMI%ile) for age and gender was determined, as well as percent of the 95th percentile for BMI (BMI%95). Bioelectrical impedance analyzers (InBody 230) were used to measure body fat percentage (PBF). Data were analyzed to determine what proportion of patients had a favorable decrease in PBF despite showing an increased or unchanged BMI.
Statistical Analysis Software (SAS®) was used to clean and process data. Changes in BMI, BMI%ile, BMI%95 and PBF were grouped as follows:
  • BMI: <−5 kg/m2, −5- < −1 kg/m2, −1 < 1 kg/m2, 1- < 5 kg/m2, 5+ kg/m2
  • BMI Percentile: <−1%, −1- < 0%, 0- < 0.4%, 0.4+%
  • BMI%95: <−5%, −5- < 0%, 0- < 5%, 5+%
  • PBF: <−5%, −5- < −2%, −2- < 0%, 0- < 3%, 3+%
Mean values and mean changes in these variables were calculated. Two-way frequency tables were constructed using these groupings. Proportions of individuals falling into specific cells of these tables were noted. Paired t-tests were performed to determine if changes were significant. Paired t-tests were performed by gender for subjects whose change in BMI was positive, and separately for a change in BMI greater than 1 kg/m2. Results were considered significant at a value of p ≤ 0.05.

3. Results

Data were obtained for 1738 patients (941 females, 797 males), ages 4–21 years old, with at least two clinical visits. Initial age (±SD) was 12.2 ± 3.1 years. Initial BMI was 32.8 ± 7.0 kg/m2. Initial BMI%ile was 98.6 ± 1.7. Initial BMI%95 was 133.2 ± 23.3. Initial PBF was 44.0 ± 6.4% (Table 1).
At follow-up, there was an overall increase in BMI (1.2 ± 3.0 kg/m2, p < 0.0001) across the study population. However, BMI%ile, BMI%95, and PBF decreased (−0.3 ± 1.7, p < 0.0001; −0.8 ± 10.0, p = 0.0006; −0.66 ± 3.94%, p < 0.0001). While only 593 patients (34%) saw a decreased BMI, BMI%ile decreased in 986 patients (58%), BMI%95 decreased in 955 patients (55.8%), and PBF decreased in 928 patients (53%) (Table 2, Table 3 and Table 4).
Both males and females demonstrated a significant increase in BMI, yet both had significant decreases in BMI%ile. Only males had significant decreases in BMI%95 and PBF, while those measures remained stable in females (Table 5).
BMI increased or remained unchanged in 1148 patients (66%). By gender, 656 females (70%) and 492 males (62%) saw a stable or increased BMI. In those patients whose BMI increased or remained unchanged, overall BMI%ile, BMI%95 and PBF increased (0.15 ± 0.89, p < 0.001; 3.4 ± 7.6, p < 0.0001; 0.55 ± 3.15%, p < 0.0001). In males, the increase in PBF was small (0.06 ± 3.34, p = 0.7). Of the 779 patients whose BMI increased by 1.0 kg/m2 or more, 239 (30.1%) still saw a decrease in PBF (Table 2).
BMI%ile increased or remained unchanged in 715 patients with available data (42%). Of these patients, 226 (31.6%) had a decrease in PBF (Table 3). BMI%95 increased or remained unchanged in 756 patients with available data (44%). Of these, 214 (28%) had a decrease in PBF (Table 4).

4. Discussion

The children and adolescents reviewed in this study had, at baseline, a mean BMI%95 of 133.2%, which is classified as severe obesity/Class 2 Obesity, and a body fat percentage of 44%, which is in the obese range for every age and gender [21,22]. To decrease the risk of long-term health consequences of obesity, these patients participated in our pediatric weight management program. Accurately monitoring their progress in achieving improved health is critical in evaluating their treatment, as well as motivating them in continued efforts in lifestyle modification. At follow up, there was an overall increase in BMI. BMI increases with age throughout childhood and adolescence for males and females. For this reason, age- and gender-based BMI percentiles are used to clinically track the balance of weight and height in youth. BMI%95 is more accurate in assessing change in the upper extreme of the BMI percentile curve. The patients in this study had an overall improvement in BMI%ile and BMI%95 at −0.3% and −0.8% respectively. Additionally, the patients had an overall decrease in PBF of −0.66%. As children and adolescents focus on lifestyle change with healthy eating and exercise, as recommended by pediatric weight management programs, they typically gain skeletal muscle mass. This was seen in both the male and female patients reviewed in our study (3.13 kg and 2.25 kg respectively). As a group, the patients in this study would be considered to have made progress in lifestyle modification, thereby positively impacting their health. Looking at the patients by gender, males showed significant decrease in BMI%ile, BMI%95, and PBF, with an increase in muscle mass, while females showed decrease in BMI%ile but stable BMI%95 and PBF with increased muscle mass. For the male patients overall, each of these four markers would indicate success if used to monitor treatment progress alone. That is not the case in the female patients. When looking at the information in combination, however, a decrease in BMI% and an increase in skeletal muscle mass with a stable body fat percentage may indicate success, particularly in females for whom the trend is increasing body fat percentage. Although body composition in addition to BMI percentiles are helpful in evaluating the overall success of a program, the combined information is particularly helpful in tracking the success of an individual participating in a weight management program. Having information regarding body composition as well as BMI%ile allows for more precise evaluations of the success of treatment in individual patients participating in pediatric weight management programs.
Looking at our data, some patients with increasing muscle mass and decreasing body fat percentage had stable or increasing BMIs, BMI%ile, and BMI%95, despite positive lifestyle change. Overall, patients with stable or increasing BMIs did not show improvement in body fat percentage. However, in select patients, although the BMI remained unchanged or increased, the patient’s body fat percentage decreased. Among patients whose BMI increased by 1.0 kg/m2 or more, 30% demonstrated an improvement in body composition (skeletal muscle mass and body fat percentage). Similarly, 31.6% of patients with stable or increasing BMI%ile and 28% with stable or increasing BMI%95 showed improvement in body fat percentage. This additional information is helpful in tracking the progress of individuals participating in a weight management program. Body composition is an important measure of success for a subset of patients who otherwise may believe that their efforts in lifestyle change had not been beneficial. Noting improvement in body fat percentage and skeletal muscle mass may act as a motivator for patients to continue with lifestyle changes. Our results suggest that including body fat percentage as a measure of success in evaluating the progress of patients participating in a pediatric weight management program is appropriate and may more accurately track success than change in BMI, BMI%95, or BMI percentile alone. Further research is needed in this area to confirm our results and to evaluate the utility of body composition analysis by different age groups, class of obesity, gender, and how these variations change over time.

Author Contributions

K.S.; R.S.; P.K.; A.G. have each contributed to the conception of the study, analysis and interpretation of the data, drafting and revision of the manuscript, and have approved the submitted version. Each author agrees to be personally accountable for the author’s own contributions and for ensuring that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and documented in the literature. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Skinner, A.C.; Ravanbakht, S.N.; Skelton, J.A.; Perrin, E.M.; Armstrong, S.C. Prevalence of Obesity and Severe Obesity in US Children, 1999–2016. Pediatrics 2018, 141, e20173459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. Ogden, C.L.; Carroll, M.D.; Lawman, H.G.; Fryar, C.D.; Kruszon-Moran, D.; Kit, B.K.; Flegal, K.M. Trends in Obesity Prevalence Among Children and Adolescents in the United States, 1988–1994 Through 2013–2014. JAMA 2016, 315, 2292–2299. [Google Scholar] [CrossRef] [PubMed]
  3. Skinner, A.C.; Perrin, E.M.; Moss, L.A.; Skelton, J.A. Cardiometabolic risks and severity of obesity in children and young adults. N. Engl. J. Med. 2015, 373, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
  4. Freedman, D.S.; Mei, Z.; Srinivasan, S.R.; Berenson, G.S.; Dietz, W.H. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: The bogalusa heart study. J. Pediatr. 2007, 150, 12.e2–17.e2. [Google Scholar] [CrossRef] [PubMed]
  5. Freedman, D.S.; Lawman, H.G.; Galuska, D.A.; Goodman, A.B.; Berenson, G.S. Tracking and Variability in Childhood Levels of BMI: The Bogalusa Heart Study. Obesity 2018, 26, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
  6. Daniels, S.R.; Kelly, A.S. Pediatric Severe Obesity: Time to Establish Serious Treatments for a Serious Disease. Child Obes. 2014, 10, 283–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  7. Kelly, A.S.; Barlow, S.E.; Rao, G.; Inge, T.H.; Hayman, L.L.; Steinberger, J.; Urbina, E.M.; Ewing, L.J.; Daniels, S.R. Severe Obesity in Children and Adolescents: Identification, Associated Health Risks, and Treatment Approaches. Circulation 2013, 128, 1689–1712. [Google Scholar] [CrossRef]
  8. Dietz, W.H. Health Consequences of Obesity in Youth: Childhood Predictors of Adult Disease. Pediatrics 1998, 101 Pt 2, 518–525. [Google Scholar]
  9. Maggio, A.B.; Martin, X.E.; Gasser, C.S.; Gal-Duding, C.; Beghetti, M.; Farpour-Lambert, N.J.; Chamay-Weber, C. Medical and Non-Medical Complications Among Children and Adolescents with Excessive Body Weight. BMC Pediatr. 2014, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
  10. Reilly, J.J.; Kelly, J. Long-Term Impact of Overweight and Obesity in Childhood and Adolescence on Morbidity and Premature Mortality in Adulthood: Systematic Review. Int. J. Obes. 2011, 35, 891–898. [Google Scholar] [CrossRef] [Green Version]
  11. Lobstein, T.; Jackson-Leach, R. Planning for the worst: Estimates of obesity and comorbidities in school-age children in 2025. Pediatr. Obes. 2016, 11, 321–325. [Google Scholar] [CrossRef] [PubMed]
  12. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. Body Mass Index: Considerations for Practitioners. Available online: https://www.cdc.gov/obesity/downloads/BMIforpactitioners.pdf (accessed on 18 October 2020).
  13. Flegal, K.M.; Wei, R.; Ogden, C.L.; Freedman, D.S.; Johnson, C.L.; Curtin, L.R. Characterizing extreme values of body mass index-for-age by using the 2000 Centers for Disease Control and Prevention growth charts. Am. J. Clin. Nutr. 2009, 90, 1314–1320. [Google Scholar] [CrossRef] [PubMed]
  14. Gulati, A.K.; Kaplan, D.W.; Daniels, S.R.; Baumgartner, S.E.; Sumter, S.R.; Peter, J.; Valkenburg, P.M. Clinical tracking of severely obese children: A new growth chart. Pediatrics 2012, 130, 1136–1140. [Google Scholar] [CrossRef] [Green Version]
  15. Hall, D.M.B.; Cole, T.J. What use is the BMI? Arch. Dis. Child. 2006, 91, 283–286. [Google Scholar] [CrossRef] [PubMed]
  16. Daniels, S.R. The Use of BMI in the Clinical Setting. Pediatrics 2009, 124 (Suppl. 1), S35–S41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  17. Barbeau, P.; Gutin, B.; Litaker, M.; Owens, S.; Riggs, S.; Okuyama, T. Correlates of individual differences in body-composition changes resulting from physical training in obese children. Am. J. Clin. Nutr. 1999, 69, 705–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  18. De Castro, J.A.C.; De Lima, T.R.; Silva, D.A.S. Body composition estimation in children and adolescents by bioelectrical impedance analysis: A systematic review. J. Bodyw. Mov. Ther. 2018, 22, 134–146. [Google Scholar] [CrossRef]
  19. Brantlov, S.; Ward, L.C.; Jødal, L.; Rittig, S.; Lange, A. Critical factors and their impact on bioelectrical impedance analysis in children: A review. J. Med. Eng. Technol. 2017, 41, 22–35. [Google Scholar] [CrossRef] [PubMed]
  20. Khan, S.; Xanthakos, S.; Hornung, L.; Arce-Clachar, C.; Siegel, R.; Kalkwarf, H. Relative accuracy of bioelectrical impedance analysis for assessing body composition in children with severe obesity. J. Pediatr. Gastroenterol. Nutr. 2020, 70, e129–e135. [Google Scholar] [CrossRef]
  21. McCarthy, H.; Cole, T.; Fry, T.; Jebb, S.; Prentice, A. Body fat reference curves for children. Int. J. Obes. 2006, 30, 598–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. Mueller, W.; Harrist, R.; Labarthe, D. Percentiles of body composition from bioelectrical impedance and body measurements in U.S. adolescents 8–17 years old: Project HeartBeat! Am. J. Hum. Biol. 2004, 16, 135–150. [Google Scholar] [CrossRef] [PubMed]
Table 1. Characteristics of participants.
Table 1. Characteristics of participants.
VariablesGroup
(n = 1738)
Males
(n = 797)
Females
(n = 941)
Age (year)12.2 ± 3.112.2 ± 3.012.2 ± 3.1
BMI (kg/m2)32.8 ± 7.032.8 ± 6.932.9 ± 7.1
BMI%ile98.6 ± 1.798.8 ± 1.698.4 ± 1.8
BMI%95133.2 ± 23.3135.8 ± 23.7131.0 ± 22.7
PBF44.0 ± 6.442.6 ± 6.845.2 ± 5.8
Table 2. Comparison of changes in BMI to changes in BIA.
Table 2. Comparison of changes in BMI to changes in BIA.
Change in BMIChange in Body Fat Percentage
<−5%−5 to <−2%−2 to <0%0 to <3%3%+TOTAL
<−5 kg/m218210021
1.21%
−5 to <−1 kg/m2877665161245
14.15%
−1 to <1 kg/m24512626923116687
39.67%
1 to <5 kg/m22358125292101599
34.58%
5+ kg/m2412176780180
10.39%
TOTAL1772744776061981732
10.22%15.82%27.54%34.99%11.43%
Table 3. Comparison of Changes in BMI Percentile to Changes in BIA.
Table 3. Comparison of Changes in BMI Percentile to Changes in BIA.
Change in BMI PercentileChange in Body Fat Percentage
<−5%−5 to <−2%−2 to <0%0 to <3%3%+TOTAL
<−1%844925141173
10.17%
−1 to <0%7017028924836813
47.80%
0 to <0.4%174013727485553
32.51%
0.4%+313166169162
9.51%
TOTAL1742724675971911701
10.23%15.99%27.45%35.10%11.23%
Table 4. Comparison of Changes in Percent of the 95th Percentile for BMI to Changes in BIA.
Table 4. Comparison of Changes in Percent of the 95th Percentile for BMI to Changes in BIA.
Change in BMI%95Change in Body Fat Percentage
<−5%−5 to <−2%−2 to <0%0 to <3%3%+TOTAL
<−5%134123125544440
25.72%
−5 to <0%279919617320515
30.10%
0 to <5%93411421543415
24.25%
5%+61635155129341
19.93%
TOTAL1762724705971961711
10.29%15.90%27.47%34.89%11.46%
Table 5. Mean Changes Between Visits by Gender.
Table 5. Mean Changes Between Visits by Gender.
GenderVariableMean ChangeSignificance
FemaleBMI1.47 kg/m2p < 0.0001
BMI%ile−0.25p < 0.0001
BMI%95−0.06p = 0.83
Skeletal Muscle2.25 kgp < 0.0001
Fat Mass3.57 kgp < 0.0001
% Body Fat0.07%p = 0.47
MaleBMI0.88 kg/m2p < 0.0001
BMI%ile−0.38p < 0.0001
BMI%95−1.73p < 0.0001
Skeletal Muscle3.13 kgp < 0.0001
Fat Mass2.04 kgp < 0.0001
% Body Fat−1.53%p < 0.0001
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Stackpole, K.; Khoury, P.; Siegel, R.; Gier, A. Body Composition versus BMI as Measures of Success in a Clinical Pediatric Weight Management Program. Reports 2020, 3, 32. https://doi.org/10.3390/reports3040032

AMA Style

Stackpole K, Khoury P, Siegel R, Gier A. Body Composition versus BMI as Measures of Success in a Clinical Pediatric Weight Management Program. Reports. 2020; 3(4):32. https://doi.org/10.3390/reports3040032

Chicago/Turabian Style

Stackpole, Kristin, Philip Khoury, Robert Siegel, and Amanda Gier. 2020. "Body Composition versus BMI as Measures of Success in a Clinical Pediatric Weight Management Program" Reports 3, no. 4: 32. https://doi.org/10.3390/reports3040032

APA Style

Stackpole, K., Khoury, P., Siegel, R., & Gier, A. (2020). Body Composition versus BMI as Measures of Success in a Clinical Pediatric Weight Management Program. Reports, 3(4), 32. https://doi.org/10.3390/reports3040032

Article Metrics

Back to TopTop