# Quantum Effects on the Mesoscale

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Mesoscopic Structure Formation in Shock-Induced Processes

## 3. New Approach to the Multi-Scale Processes far from Equilibrium

## 4. Integral Model of the Elastic-Plastic Wave Propagation in Condensed Matter

## 5. Interference of Elastic-Plastic Waves

## 6. Discrete Spectra of Meso-Scale Structure in the Shocked Material

## 7. Evolution of the Turbulent Structure Lifetimes

## 8. Mathematical Apparatus to Solve the Problem

## 9. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Rudyak, V.Y.; Minakov, A.V. Thermophysical properties of nanofluids. Eur. Phys. J. E
**2018**, 41, 15. [Google Scholar] [CrossRef] - Rudyak, V.; Belkin, A. Statistical mechanics of transport processes of fluids under confined conditions. Nanosyst. Phys. Chem. Math.
**2015**, 6, 366–377. [Google Scholar] [CrossRef] [Green Version] - Asay, J.R.; Chhabildas, L.C. Paradigms and Challenges in Shock Wave Research. In High-Pressure Compression of Solids VI: Old Paradigms and New Challenges; Horie, Y., Davison, L., Thadhani, N.N., Eds.; Springer: New York, NY, USA, 2003; pp. 57–108. [Google Scholar]
- Panin, V.E.; Egorushkin, V.E.; Panin, A.V. Physical mesomechanics of a deformed solid as a multilevel system. 1. Physical fundamentals of the multilevel approach. Phys. Mesomech.
**2006**, 9, 9–20. [Google Scholar] - Makarov, P.V. On the hierarchical nature of deformation and fracture of solids. Phys. Mesomech.
**2004**, 7, 25–34. [Google Scholar] - Meshcheryakov, Y.I.; Khantuleva, T.A. Nonequilibrium processes in condensed media. Part 1. Experimental studies in light of nonlocal transport theory. Phys. Mesomech.
**2015**, 18, 228–243. [Google Scholar] [CrossRef] - Lebon, G.; Jou, D.; Casas-Vazquez, J. Understanding Non-Equilibrium Thermodynamics; Springer: Berlin, Germany, 2008. [Google Scholar]
- Haken, H. Information and Self-Organization. A Macroscopic Approach to Complex Systems; Springer: Berlin, Germany, 2006. [Google Scholar]
- Nicolis, G.; Prigogine, I. Self-Organization in Nonequilibrium Systems. From Dissipative Structure to Order through Fluctuations; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Lee, J. The universal role of turbulence in the propagation of strong shocks and detonation waves. In High-Pressure Compression of Solids VI: Old Paradigms and New Challenges; Horie, Y., Davison, L., Thadhani, N.N., Eds.; Springer: New York, NY, USA, 2003; pp. 121–144. [Google Scholar]
- Meshcheryakov, Y.I.; Divakov, A.K.; Zhigacheva, N.I.; Makarevich, I.P.; Barakhtin, B.K. Dynamic structures in shock-loaded copper. Phys. Rev. B
**2008**, 78, 064301. [Google Scholar] [CrossRef] - Meshcheryakov, Y.I.; Divakov, A.K.; Zhigacheva, N.I.; Barakhtin, B.K. Regimes of interscale momentum exchange in shock deformed solids. Int. J. Impact Eng.
**2013**, 57, 99–107. [Google Scholar] [CrossRef] - Khantuleva, T.A. The shock wave as a nonequilibrium transport process. In High-Pressure Compression of Solids VI: Old Paradigms and New Challenges; Horie, Y., Davison, L., Thadhani, N.N., Eds.; Springer: New York, NY, USA, 2003; pp. 215–254. [Google Scholar]
- Khantuleva, T.A. Self-organization at the mesolevel at high-rate deformation of condensed media. Khim. Fiz.
**2005**, 24, 36–48. [Google Scholar] - Morozov, V.; Kats, V.; Savenkov, G.; Lukin, A. Mechanisms of fracture of ring samples made of FCC metals on loading with magnetic-pulse method. AIP Conf. Proc.
**2018**, 1959, 100006. [Google Scholar] - Morozov, V.A.; Bogatko, V.I.; Atroshenko, S.A.; Kats, V.M.; Gazizullina, A.R. Loading, Deformation, and destruction of cylindrical samples of polymethylmethacrylate and fluoroplastic using an electric explosion of conductors. Tech. Phys.
**2020**, 65, 221–225. [Google Scholar] [CrossRef] - Chabildas, L.C.; Trott, W.M.; Reinhart, W.D.; Cogar, J.R.; Mann, G.A. Incipient spall studies in tantalum—Microstructural effects. AIP Conf. Proc.
**2002**, 620, 483–486. [Google Scholar] - Furnish, M.D.; Trott, W.M.; Mason, J.; Podsednik, J.; Reinhart, W.D.; Hall, C. Assessing mesoscale material response via high resolution line-imaging VISAR. AIP Conf. Proc.
**2003**, 706, 1159–1163. [Google Scholar] - Swegle, J.W.; Grady, D.E. Shock velocity and the prediction of shock-wave times. J. Appl. Phys.
**1985**, 58, 692–699. [Google Scholar] [CrossRef] - Gilman, J.J. Mechanical states of solids. AIP Conf. Proc.
**2002**, 620, 36–41. [Google Scholar] - Gilman, J.J. Response of condensed matter to impact. In High-Pressure Compression of Solids VI: Old Paradigms and New Challenges; Horie, Y., Davison, L., Thadhani, N.N., Eds.; Springer: New York, NY, USA, 2003; pp. 279–296. [Google Scholar]
- Meshcheryakov, Y.I.; Atroshenko, S.A. Multiscale rotations in dynamically deformed solids. Int. J. Solids Struct.
**1992**, 29, 2761–2778. [Google Scholar] [CrossRef] - Meshcheryakov, Y.I.; Divakov, A.K. Multiscale kinetics and strain-rate dependence of materials. Dymat J.
**1994**, 1, 271–287. [Google Scholar] - Panin, V.E. (Ed.) Physical Mesomechanics and Computer-Aided Design of Materials; Nauka: Novosibirsk, Russia, 1995. [Google Scholar]
- Panin, V.E. Foundations of physical mesomechanics. Phys. Mesomech.
**1998**, 1, 5–20. [Google Scholar] - Zubarev, D.N. Non-Equilibrium Statistical Thermodynamics; Springer: New York, NY, USA, 1974. [Google Scholar]
- Khantuleva, T.A. Nonlocal Theory of Nonequilibrium Transport Processes; St Petersburg University Publishing: St Petersburg, Russia, 2013. (In Russian) [Google Scholar]
- Khantuleva, T.A. Thermodynamic evolution far from equilibrium. AIP Conf. Proc.
**2018**, 1959, 100003. [Google Scholar] - Khantuleva, T.A. On the description of non-equilibrium transport processes and formation of dynamic structures in liquid media. Fundam. Prikl. Gidrofiz.
**2020**, 13, 3–14. [Google Scholar] - Khantuleva, T.A.; Meshcheryakov, Y.I. Mesoscale plastic flow instability in a solid under high-rate deformation. Phys. Mesomech.
**2017**, 20, 417–424. [Google Scholar] [CrossRef] - Khantuleva, T.; Shalymov, D. Modelling non-equilibrium thermodynamic systems from the speed-gradient principle. Philos. Trans. Royal Soc. A
**2017**, 375, 20160220. [Google Scholar] [CrossRef] [PubMed] - Bogoliubov, N.N. Problems of Dynamic Theory in Statistical Physics; Technical Information Service: Oak Ridge, TN, USA, 1960. [Google Scholar]
- Jaynes, E. The Maximum Entropy Formalism; MIT: Cambridge, MA, USA, 1979. [Google Scholar]
- Fradkov, A.L. Cybernetical Physics: From Control of Chaos to Quantum Control; Springer: Berlin, Germany, 2007. [Google Scholar]
- Vavilov, S.A. Geometric methods of studying the solvability of a class of operator equations. Rus. Acad. Sci. Dokl. Math.
**1992**, 45, 276–280. [Google Scholar] - Vavilov, S.A. On the solvability of one class of boundary value problems. Differ. Integral Equ.
**1990**, 3, 175–179. [Google Scholar] - Ivanov, M.G. How to Understand Quantum Mechanics; R&C Dynamics: Moscow-Izhevsk, Russia, 2012. (In Russian) [Google Scholar]
- Chaoqun, L.; Yonghua, Y.; Ping, L. Physics of turbulence generation and sustenance in a boundary layer. Comput. Fluids
**2014**, 102, 353–384. [Google Scholar] - Ravichandran, G.; Rosakis, A.J.; Hodovany, J.; Rosakis, P. On the convention of plastic work into heat during high-strain-rate deformation. AIP Conf. Proc.
**2002**, 620, 557–562. [Google Scholar] - Fradkov, A.L.; Khantuleva, T.A. Cybernetic model of the shock induced wave evolution in solids. Procedia Struct. Integrity
**2016**, 2, 994–1001. [Google Scholar] [CrossRef] [Green Version] - Khantuleva, T.; Shalymov, D. Nonlocal hydrodynamic modeling high-rate shear processes in condensed matter. J. Phys. Conf. Ser.
**2020**, 1560, 012057. [Google Scholar] [CrossRef]

**Figure 1.**Structures formed on fracture surfaces of polymethylmethacrylate (

**a**) and fluoroplastic (

**b**) samples being rapidly fractured with electric explosion of wire [16]. Regions of increased roughness (1), mirror areas (2), and areas of geometric shapes (3) were identified for a polymethylmethacrylate sample (

**a**).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Khantuleva, T.A.; Kats, V.M.
Quantum Effects on the Mesoscale. *Particles* **2020**, *3*, 562-575.
https://doi.org/10.3390/particles3030038

**AMA Style**

Khantuleva TA, Kats VM.
Quantum Effects on the Mesoscale. *Particles*. 2020; 3(3):562-575.
https://doi.org/10.3390/particles3030038

**Chicago/Turabian Style**

Khantuleva, Tatiana A., and Victor M. Kats.
2020. "Quantum Effects on the Mesoscale" *Particles* 3, no. 3: 562-575.
https://doi.org/10.3390/particles3030038