Dissipation Triggers Dynamical Two-Stream Instability
Abstract
:1. Introduction and Conclusions
2. Single Fluid
2.1. Setup
2.2. Sound Modes at in the Rest Frame of the Fluid
2.3. Sound Modes at Nonzero T in General Frame
3. Two Fluids
3.1. Setup
3.2. Dynamical Instability Triggered by Dissipation
- The sound speeds themselves show a dynamical instability at large velocities: Where the real parts of two branches coincide, their imaginary parts (not shown in the figure) have opposite signs, i.e., one of the modes grows exponentially. Since the results linear in k are not affected by dissipative effects, this is the same observation as already made in References [22,23]. As a consequence, the system is dynamically unstable for all : First, due to with a growth time for the instability , i.e., at the onset the growth time is infinite. Then, due to with growth time , while there is no instability in the terms in this regime, i.e., . Interestingly, just before and just after this regime, diverges, indicating an extreme instability with infinitesimally short growth time. Then, at the highest velocities, the instability is given again by the second-order contribution, .
- There is a “role reversal” between damped and undamped modes as a function of the counterflow velocity: For small , there is a pair of upstream modes () and a pair of downstream modes (). Each pair has a strongly damped and weakly damped mode. As increases, the strongly damped mode becomes weakly damped and vice versa. For small coupling, this role reversal happens in the stable regime, i.e., before the dynamical instability sets in.
3.3. Analogue of the r-Mode Instability
4. Non-Relativistic Limit
4.1. Single Fluid
4.2. Two Fluids
Author Contributions
Funding
Conflicts of Interest
References
- Ferrier-Barbut, I.; Delehaye, M.; Laurent, S.; Grier, A.T.; Pierce, M.; Rem, B.S.; Chevy, F.; Salomon, C. A mixture of Bose and Fermi superfluids. Science 2014, 345, 1035–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delehaye, M.; Laurent, S.; Ferrier-Barbut, I.; Jin, S.; Chevy, F.; Salomon, C. Critical Velocity and Dissipation of an Ultracold Bose-Fermi Counterflow. Phys. Rev. Lett. 2015, 115, 265303. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.C.; Chen, H.Z.; Wu, Y.P.; Liu, X.P.; Wang, X.Q.; Jiang, X.; Deng, Y.; Chen, Y.A.; Pan, J.W. Observation of Coupled Vortex Lattices in a Mass-Imbalance Bose and Fermi Superfluid Mixture. Phys. Rev. Lett. 2016, 117, 145301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldreich, P.; Reisenegger, A. Magnetic field decay in isolated neutron stars. Astrophys. J. 1992, 395, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Comer, G.; Joynt, R. A Relativistic mean field model for entrainment in general relativistic superfluid neutron stars. Phys. Rev. D 2003, 68, 023002. [Google Scholar] [CrossRef]
- Gusakov, M.E.; Kantor, E.M.; Haensel, P. The relativistic entrainment matrix of a superfluid nucleon-hyperon mixture at zero temperature. Phys. Rev. C 2009, 79, 055806. [Google Scholar] [CrossRef]
- Glampedakis, K.; Jones, D.I.; Samuelsson, L. Ambipolar diffusion in superfluid neutron stars. Mon. Not. Roy. Astron. Soc. 2011, 413, 2021. [Google Scholar] [CrossRef]
- Chamel, N.; Haensel, P. Physics of Neutron Star Crusts. Living Rev. Rel. 2008, 11, 10. [Google Scholar] [CrossRef]
- Schmitt, A.; Shternin, P. Reaction rates and transport in neutron stars. Astrophys. Space Sci. Libr. 2018, 457, 455–574. [Google Scholar] [CrossRef]
- Wu, B.; Niu, Q. Landau and dynamical instabilities of the superflow of Bose-Einstein condensates in optical lattices. Phys. Rev. A 2001, 64, 061603. [Google Scholar] [CrossRef] [Green Version]
- Tisza, L. Transport Phenomena in Helium II. Nature 1938, 141, 913. [Google Scholar] [CrossRef]
- Landau, L. Theory of the Superfluidity of Helium II. Phys. Rev. 1941, 60, 356. [Google Scholar] [CrossRef]
- Alford, M.G.; Mallavarapu, S.K.; Schmitt, A.; Stetina, S. From a complex scalar field to the two-fluid picture of superfluidity. Phys. Rev. D 2013, 87, 065001. [Google Scholar] [CrossRef]
- Kurkela, A.; Mukhopadhyay, A.; Preis, F.; Rebhan, A.; Soloviev, A. Hybrid Fluid Models from Mutual Effective Metric Couplings. J. High Energy Phys. 2018, 8, 054. [Google Scholar] [CrossRef]
- Leung, S.C.; Chu, M.C.; Lin, L.M. Dark-matter admixed neutron stars. Phys. Rev. D 2011, 84, 107301. [Google Scholar] [CrossRef]
- Xiang, Q.F.; Jiang, W.Z.; Zhang, D.R.; Yang, R.Y. Effects of fermionic dark matter on properties of neutron stars. Phys. Rev. C 2014, 89, 025803. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Schaffner-Bielich, J. Quark stars admixed with dark matter. Phys. Rev. D 2016, 93, 083009. [Google Scholar] [CrossRef] [Green Version]
- Buneman, O. Dissipation of Currents in Ionized Media. Phys. Rev. 1959, 115, 503–517. [Google Scholar] [CrossRef]
- Farley, D.T. Two-Stream Plasma Instability as a Source of Irregularities in the Ionosphere. Phys. Rev. Lett. 1963, 10, 279–282. [Google Scholar] [CrossRef]
- Anderson, D.; Fedele, R.; Lisak, M. A tutorial presentation of the two stream instability and Landau damping. Am. J. Phys. 2001, 69, 1262–1266. [Google Scholar] [CrossRef] [Green Version]
- Livescu, D.; Wei, T.; Petersen, M.R. Direct Numerical Simulations of Rayleigh-Taylor instability. J. Phys. Conf. Ser. 2011, 318, 082007. [Google Scholar] [CrossRef]
- Andersson, N.; Comer, G.L.; Prix, R. The superfluid two-stream instability. Mon. Not. R. Astron. Soc. 2004, 354, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Haber, A.; Schmitt, A.; Stetina, S. Instabilities in relativistic two-component (super)fluids. Phys. Rev. D 2016, 93, 025011. [Google Scholar] [CrossRef] [Green Version]
- Ruostekoski, J.; Dutton, Z. Dynamical and energetic instabilities in multicomponent Bose-Einstein condensates in optical lattices. Phys. Rev. A 2007, 76, 063607. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.F.; Chai, X.D.; Xue, J.K. Energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice. Phys. Lett. A 2018, 382, 1231–1237. [Google Scholar] [CrossRef]
- Friedman, J.L.; Schutz, B.F. Lagrangian perturbation theory of nonrelativistic fluids. Astrophys. J. 1978, 221, 937–957. [Google Scholar] [CrossRef]
- Khalatnikov, I. An Introduction to the Theory of Superfluidity; Addison-Wesley: New York, NY, USA, 1989. [Google Scholar]
- Mannarelli, M.; Manuel, C. Bulk viscosities of a cold relativistic superfluid: Color-flavor locked quark matter. Phys. Rev. D 2010, 81, 043002. [Google Scholar] [CrossRef]
- Hiscock, W.A.; Lindblom, L. Generic instabilities in first-order dissipative relativistic fluid theories. Phys. Rev. D 1985, 31, 725–733. [Google Scholar] [CrossRef]
- Hiscock, W.A.; Lindblom, L. Linear plane waves in dissipative relativistic fluids. Phys. Rev. D 1987, 35, 3723–3732. [Google Scholar] [CrossRef]
- Kovtun, P. First-order relativistic hydrodynamics is stable. J. High Energy Phys. 2019, 2019, 34. [Google Scholar] [CrossRef] [Green Version]
- Bemfica, F.S.; Disconzi, M.M.; Noronha, J. Nonlinear causality of general first-order relativistic viscous hydrodynamics. arXiv 2019, arXiv:1907.12695. [Google Scholar]
- Amado, I.; Areán, D.; Jiménez-Alba, A.; Landsteiner, K.; Melgar, L.; Salazar Landea, I. Holographic Superfluids and the Landau Criterion. J. High Energy Phys. 2014, 2, 063. [Google Scholar] [CrossRef]
- Alford, M.G.; Mallavarapu, S.K.; Schmitt, A.; Stetina, S. Role reversal in first and second sound in a relativistic superfluid. Phys. Rev. D 2014, 89, 085005. [Google Scholar] [CrossRef]
- Schmitt, A. Superfluid two-stream instability in a microscopic model. Phys. Rev. D 2014, 89, 065024. [Google Scholar] [CrossRef]
- Peralta, C.; Melatos, A.; Giacobello, M.; Ooi, A. Transitions between turbulent and laminar superfluid vorticity states in the outer core of a neutron star. Astrophys. J. 2006, 651, 1079–1091. [Google Scholar] [CrossRef]
- Chamel, N.; Pearson, J.M.; Goriely, S. Superfluidity and entrainment in neutron-star crusts. ASP Conf. Ser. 2012, 466, 203. [Google Scholar]
- Andersson, N.; Glampedakis, K.; Ho, W.C.G.; Espinoza, C.M. Pulsar glitches: The crust is not enough. Phys. Rev. Lett. 2012, 109, 241103. [Google Scholar] [CrossRef]
- Haskell, B.; Melatos, A. Models of Pulsar Glitches. Int. J. Mod. Phys. D 2015, 24, 1530008. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Solutions of Two Problems in the Theory of Gravitational Radiation. Phys. Rev. Lett. 1970, 24, 611–615. [Google Scholar] [CrossRef]
- Ipser, J.R.; Lindblom, L. The oscillations of rapidly rotating Newtonian stellar models. II—Dissipative effects. Astrophys. J. 1991, 373, 213–221. [Google Scholar] [CrossRef]
- Gaertig, E.; Glampedakis, K.; Kokkotas, K.D.; Zink, B. The f-mode instability in relativistic neutron stars. Phys. Rev. Lett. 2011, 107, 101102. [Google Scholar] [CrossRef] [PubMed]
- Andersson, N. A New class of unstable modes of rotating relativistic stars. Astrophys. J. 1998, 502, 708–713. [Google Scholar] [CrossRef]
- Glampedakis, K.; Gualtieri, L. Gravitational waves from single neutron stars: an advanced detector era survey. Astrophys. Space Sci. Libr. 2018, 457, 673–736. [Google Scholar] [CrossRef]
- Friedman, J.L.; Schutz, B.F. Secular instability of rotating Newtonian stars. Astrophys. J. 1978, 222, 281. [Google Scholar] [CrossRef]
- Hunter, C. On Secular Stability, Secular Instability, and Points of Bifurcation of Rotating Gaseous Masses. Astrophys. J. 1977, 213, 497–517. [Google Scholar] [CrossRef]
- Kapusta, J.I.; Muller, B.; Stephanov, M. Relativistic Theory of Hydrodynamic Fluctuations with Applications to Heavy Ion Collisions. Phys. Rev. C 2012, 85, 054906. [Google Scholar] [CrossRef]
- Kovtun, P. Lectures on hydrodynamic fluctuations in relativistic theories. J. Phys. 2012, A45, 473001. [Google Scholar] [CrossRef]
- Strickland, M. Anisotropic Hydrodynamics: Three lectures. Acta Phys. Polon. 2014, B45, 2355–2394. [Google Scholar] [CrossRef]
- Eckart, C. The Thermodynamics of Irreversible Processes. III. Relativistic Theory of the Simple Fluid. Phys. Rev. 1940, 58, 919–924. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics, 2nd ed.; Pergamon: Oxford, UK, 1987. [Google Scholar]
- Bitaghsir Fadafan, K.; Kazemian, F.; Schmitt, A. Towards a holographic quark-hadron continuity. J. High Energy Phys. 2019, 3, 183. [Google Scholar] [CrossRef]
- Carter, B.; Langlois, D. The Equation of state for cool relativistic two constituent superfluid dynamics. Phys. Rev. D 1995, 51, 5855–5864. [Google Scholar] [CrossRef] [PubMed]
- Andersson, N.; Comer, G.L. Relativistic fluid dynamics: Physics for many different scales. Living Rev. Rel. 2007, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Andreev, A.F.; Bashkin, E.P. Three-velocity hydrodynamics of superfluid solutions. J. Exp. Theor. Phys. 1976, 42, 164. [Google Scholar]
- Atkins, K.R. Third and Fourth Sound in Liquid Helium II. Phys. Rev. 1959, 113, 962–965. [Google Scholar] [CrossRef]
- Yarom, A. Fourth sound of holographic superfluids. J. High Energy Phys. 2009, 7, 070. [Google Scholar] [CrossRef]
- Schmitt, A. Introduction to Superfluidity; Lecture Notes in Physics; Springer: Cham, Switzerland, 2015; Volume 888, pp. 1–155. [Google Scholar] [CrossRef]
Mode | 1 | k | |
---|---|---|---|
0 | |||
0 | |||
0 | |||
0 | |||
0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersson, N.; Schmitt, A. Dissipation Triggers Dynamical Two-Stream Instability. Particles 2019, 2, 457-480. https://doi.org/10.3390/particles2040028
Andersson N, Schmitt A. Dissipation Triggers Dynamical Two-Stream Instability. Particles. 2019; 2(4):457-480. https://doi.org/10.3390/particles2040028
Chicago/Turabian StyleAndersson, Nils, and Andreas Schmitt. 2019. "Dissipation Triggers Dynamical Two-Stream Instability" Particles 2, no. 4: 457-480. https://doi.org/10.3390/particles2040028
APA StyleAndersson, N., & Schmitt, A. (2019). Dissipation Triggers Dynamical Two-Stream Instability. Particles, 2(4), 457-480. https://doi.org/10.3390/particles2040028