Thermal Spectrum and Neutrino Cooling Rate of the Vela Pulsar
Abstract
:1. Introduction
2. Spectral Analysis of the Vela Pulsar
3. Vela’s Neutrino Cooling Rate
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
solar mass | |
NS | neutron star |
EOS | equation of state |
References
- Page, D.; Lattimer, J.M.; Prakash, M.; Steiner, A.W. Minimal Cooling of Neutron Stars: A New Paradigm. Astrophys. J. Suppl. Ser. 2004, 155, 623–650. [Google Scholar] [CrossRef] [Green Version]
- Lyne, A.G.; Pritchard, R.S.; Graham-Smith, F.; Camilo, F. Very low braking index for the Vela pulsar. Nature 1996, 381, 497–498. [Google Scholar] [CrossRef]
- Aschenbach, B.; Egger, R.; Trümper, J. Discovery of explosion fragments outside the Vela supernova remnant shock-wave boundary. Nature 1995, 373, 587–590. [Google Scholar] [CrossRef]
- Manchester, R.N.; Hobbs, G.B.; Teoh, A.; Hobbs, M. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 2005, 129, 1993–2006. [Google Scholar] [CrossRef] [Green Version]
- Dodson, R.; Legge, D.; Reynolds, J.E.; McCulloch, P.M. The Vela Pulsar’s Proper Motion and Parallax Derived from VLBI Observations. Astrophys. J. 2003, 596, 1137–1141. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, G.G.; Shibanov, Y.A.; Zavlin, V.E.; Meyer, R.D. Neutron Star Atmospheres. In NATO Advanced Science Institutes (ASI) Series C; Alpar, M.A., Kiziloglu, U., van Paradijs, J., Eds.; Springer: Berlin, Germany, 1995; Volume 450, p. 71. [Google Scholar]
- Pavlov, G.G.; Zavlin, V.E.; Sanwal, D.; Burwitz, V.; Garmire, G.P. The X-Ray Spectrum of the Vela Pulsar Resolved with the Chandra X-Ray Observatory. Astrophys. J. Lett. 2001, 552, L129–L133. [Google Scholar] [CrossRef]
- Mori, K.; Hailey, C.J.; Paerels, F.; Zane, S. XMM-Newton observations of the Vela pulsar. Adv. Space Res. 2004, 33, 503–506. [Google Scholar] [CrossRef] [Green Version]
- Manzali, A.; De Luca, A.; Caraveo, P.A. Phase-resolved Spectroscopy of the Vela Pulsar with XMM-Newton. Astrophys. J. 2007, 669, 570–578. [Google Scholar] [CrossRef]
- Viganò, D.; Rea, N.; Pons, J.A.; Perna, R.; Aguilera, D.N.; Miralles, J.A. Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models. Mon. Not. R. Astron. Soc. 2013, 434, 123–141. [Google Scholar] [CrossRef] [Green Version]
- Potekhin, A.Y.; Pons, J.A.; Page, D. Neutron Stars—Cooling and Transport. Space Sci. Rev. 2015, 191, 239–291. [Google Scholar] [CrossRef] [Green Version]
- Potekhin, A.Y.; Chabrier, G. Magnetic neutron star cooling and microphysics. Astron. Astrophys. 2018, 609, A74. [Google Scholar] [CrossRef] [Green Version]
- Ofengeim, D.D.; Yakovlev, D.G. Analytic description of neutron star cooling. Mon. Not. R. Astron. Soc. 2017, 467, 3598–3603. [Google Scholar] [CrossRef]
- Potekhin, A.Y.; Yakovlev, D.G.; Chabrier, G.; Gnedin, O.Y. Thermal Structure and Cooling of Superfluid Neutron Stars with Accreted Magnetized Envelopes. Astrophys. J. 2003, 594, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Potekhin, A.Y.; Chabrier, G.; Yakovlev, D.G. Internal temperatures and cooling of neutron stars with accreted envelopes. A&A 1997, 323, 415–428. [Google Scholar]
- Beznogov, M.V.; Potekhin, A.Y.; Yakovlev, D.G. Diffusive heat blanketing envelopes of neutron stars. Mon. Not. R. Astron. Soc. 2016, 459, 1569–1579. [Google Scholar] [CrossRef] [Green Version]
- Yakovlev, D.G.; Ho, W.C.G.; Shternin, P.S.; Heinke, C.O.; Potekhin, A.Y. Cooling rates of neutron stars and the young neutron star in the Cassiopeia A supernova remnant. Mon. Not. R. Astron. Soc. 2011, 411, 1977–1988. [Google Scholar] [CrossRef]
- Yakovlev, D.G.; Kaminker, A.D.; Gnedin, O.Y.; Haensel, P. Neutrino emission from neutron stars. Phys. Rep. 2001, 354, 1–155. [Google Scholar] [CrossRef] [Green Version]
- Beznogov, M.V.; Yakovlev, D.G. Statistical theory of thermal evolution of neutron stars. Mon. Not. R. Astron. Soc. 2015, 447, 1598–1609. [Google Scholar] [CrossRef]
- Ofengeim, D.D.; Fortin, M.; Haensel, P.; Yakovlev, D.G.; Zdunik, J.L. Neutrino luminosities and heat capacities of neutron stars in analytic form. Phys. Rev. D 2017, 96, 043002. [Google Scholar] [CrossRef] [Green Version]
- Fruscione, A.; McDowell, J.C.; Allen, G.E.; Brickhouse, N.S.; Burke, D.J.; Davis, J.E.; Durham, N.; Elvis, M.; Galle, E.C.; Harris, D.E.; et al. CIAO: Chandra’s data analysis system. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; International Society for Optics and Photonics: Washington, DC, USA, 2006; Volume 6270, p. 62701V. [Google Scholar]
- Freeman, P.; Doe, S.; Siemiginowska, A. Sherpa: A mission-independent data analysis application. In Astronomical Data Analysis, Proceedings of the International Symposium on Optical Science and Technology; San Diego, CA, USA, 2001; Starck, J.L., Murtagh, F.D., Eds.; SPIE Digital Library: Bellingham, WA, USA, 2001; Volume 4477, pp. 76–87. [Google Scholar]
- Ho, W.C.G.; Potekhin, A.Y.; Chabrier, G. Model X-Ray Spectra of Magnetic Neutron Stars with Hydrogen Atmospheres. Astrophys. J. Suppl. Ser. 2008, 178, 102–109. [Google Scholar] [CrossRef]
- Biryukov, A.; Astashenok, A.; Beskin, G. Refinement of the timing-based estimator of pulsar magnetic fields. Mon. Not. R. Astron. Soc. 2017, 466, 4320–4331. [Google Scholar] [CrossRef] [Green Version]
- Fortin, M.; Providência, C.; Raduta, A.R.; Gulminelli, F.; Zdunik, J.L.; Haensel, P.; Bejger, M. Neutron star radii and crusts: Uncertainties and unified equations of state. Phys. Rev. C 2016, 94, 035804. [Google Scholar] [CrossRef]
- Akmal, A.; Pandharipande, V.R.; Ravenhall, D.G. Equation of state of nucleon matter and neutron star structure. Phys. Rev. C 1998, 58, 1804–1828. [Google Scholar] [CrossRef] [Green Version]
- Potekhin, A.Y.; Fantina, A.F.; Chamel, N.; Pearson, J.M.; Goriely, S. Analytical representations of unified equations of state for neutron-star matter. Astron. Astrophys. 2013, 560, A48. [Google Scholar] [CrossRef]
- Douchin, F.; Haensel, P. A unified equation of state of dense matter and neutron star structure. Astron. Astrophys. 2001, 380, 151–167. [Google Scholar] [CrossRef] [Green Version]
- Page, D.; Applegate, J.H. The cooling of neutron stars by the direct URCA process. Astrophys. J. 1992, 394, L17–L20. [Google Scholar] [CrossRef]
- Gusakov, M.E.; Kaminker, A.D.; Yakovlev, D.G.; Gnedin, O.Y. The cooling of Akmal-Pandharipande-Ravenhall neutron star models. Mon. Not. R. Astron. Soc. 2005, 363, 555–562. [Google Scholar] [CrossRef]
- Kaminker, A.D.; Kaurov, A.A.; Potekhin, A.Y.; Yakovlev, D.G. Thermal emission of neutron stars with internal heaters. Mon. Not. R. Astron. Soc. 2014, 442, 3484–3494. [Google Scholar] [CrossRef] [Green Version]
- Potekhin, A.Y. Atmospheres and radiating surfaces of neutron stars. Physics Uspekhi 2014, 57, 735–770. [Google Scholar] [CrossRef] [Green Version]
- Nättilä, J.; Steiner, A.W.; Kajava, J.J.E.; Suleimanov, V.F.; Poutanen, J. Equation of state constraints for the cold dense matter inside neutron stars using the cooling tail method. Astron. Astrophys. 2016, 591, A25. [Google Scholar] [CrossRef]
- Ofengeim, D.D.; Kaminker, A.D.; Klochkov, D.; Suleimanov, V.; Yakovlev, D.G. Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory. Mon. Not. R. Astron. Soc. 2015, 454, 2668–2676. [Google Scholar] [CrossRef]
- Friman, B.L.; Maxwell, O.V. Neutrino emissivities of neutron stars. Astrophys. J. 1979, 232, 541–557. [Google Scholar] [CrossRef]
- Voskresensky, D.N. Neutrino Cooling of Neutron Stars: Medium Effects. In Physics of Neutron Star Interiors; Blaschke, D., Glendenning, N.K., Sedrakian, A., Eds.; Lecture Notes in Physics; Springer: Berlin, Germany, 2001; Volume 578, p. 467. [Google Scholar]
- Blaschke, D.; Grigorian, H.; Voskresensky, D.N. Cooling of neutron stars. Hadronic model. Astron. Astrophys. 2004, 424, 979–992. [Google Scholar] [CrossRef] [Green Version]
- Suleimanov, V.F.; Klochkov, D.; Poutanen, J.; Werner, K. Probing the possibility of hotspots on the central neutron star in HESS J1731–347. Astron. Astrophys. 2017, 600, A43. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ofengeim, D.D.; Zyuzin, D.A. Thermal Spectrum and Neutrino Cooling Rate of the Vela Pulsar. Particles 2018, 1, 194-202. https://doi.org/10.3390/particles1010014
Ofengeim DD, Zyuzin DA. Thermal Spectrum and Neutrino Cooling Rate of the Vela Pulsar. Particles. 2018; 1(1):194-202. https://doi.org/10.3390/particles1010014
Chicago/Turabian StyleOfengeim, Dmitry D., and Dmitry A. Zyuzin. 2018. "Thermal Spectrum and Neutrino Cooling Rate of the Vela Pulsar" Particles 1, no. 1: 194-202. https://doi.org/10.3390/particles1010014
APA StyleOfengeim, D. D., & Zyuzin, D. A. (2018). Thermal Spectrum and Neutrino Cooling Rate of the Vela Pulsar. Particles, 1(1), 194-202. https://doi.org/10.3390/particles1010014