Microglia and Macrophages in Central Nervous System Homeostasis and Disease Progression: Guardians and Executioners
Abstract
1. Introduction
2. Origin and Developmental Ontogeny of CNS-Resident Immune Cells
3. Roles in CNS Homeostasis
4. Dysregulation and Disease Progression
4.1. Neurodegenerative Diseases: Alzheimer’s, Parkinson’s, and Beyond
4.2. Neuroinflammatory Disorders: Multiple Sclerosis and Autoimmunity
4.3. Trauma and Stroke: Inflammatory Activation and Tissue Repair
4.4. Aging and Neurodegenerative Progression
4.5. Cancer and the Tumor Microenvironment
4.6. The Neuroimmune Interface in the CNS
5. Nanotechnology-Based Modulation of Microglia and Macrophages
Nanotechnology Approach | Targeted Cell Type | Mechanism of Action | Therapeutic Application |
---|---|---|---|
Polymeric Nanoparticles (e.g., PLGA, PEG-PLA) [128] | Microglia | Deliver anti-inflammatory agents (e.g., minocycline, dexamethasone) to modulate activation states | Attenuation of neuroinflammation in neurodegenerative diseases |
siRNA-Loaded Nanocarriers [129] | Microglia | Gene silencing of pro-inflammatory cytokines (e.g., TNF-α, IL-1β) | Reduction in neurotoxic responses in Alzheimer’s disease models |
Exosome-Mimetic Nanovesicles [130] | Microglia and Macrophages | Transfer of therapeutic cargoes (e.g., miRNAs, neurotrophic factors) to reprogram immune cell phenotypes | Promotion of neuroprotection and repair mechanisms |
Superparamagnetic Iron Oxide Nanoparticles (SPIONs) [131,132] | Microglia | Enable magnetic resonance imaging (MRI) tracking of microglial migration and activation | Visualization of inflammatory processes in CNS disorders |
Gold Nanorods/Nanoshells [133,134] | Microglia | Facilitate photothermal modulation of immune responses | Targeted modulation of neuroinflammation |
Light-Responsive Nanomaterials [135] | Microglia | Integration with optogenetic tools to control activation states via light stimulation | Non-invasive modulation of microglial behavior |
6. Mechanobiology Techniques for Intracellular Probing
6.1. Optogenetics and Its Application in Mechanotransduction of Intracellular Organelles
6.2. Nanorobots
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maldonado-Ruiz, R.; Fuentes-Mera, L.; Camacho, A. Central Modulation of Neuroinflammation by Neuropeptides and Energy-Sensing Hormones during Obesity. BioMed Res. Int. 2017, 2017, 7949582. [Google Scholar] [CrossRef]
- Plemel, J.R.; Stratton, J.A.; Michaels, N.J.; Rawji, K.S.; Zhang, E.; Sinha, S.; Baaklini, C.S.; Dong, Y.; Ho, M.; Thorburn, K.; et al. Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Sci. Adv. 2020, 6, eaay6324. [Google Scholar] [CrossRef]
- Shang, Y.; Yuan, J.; Wang, S.; He, W.; Wang, B.; Zheng, D.; Yang, N.; Jin, J.; He, Q. Lipophagy in immune cells and immune response modulation: Mechanisms and therapeutic potential. Int. Immunopharmacol. 2025, 162, 115172. [Google Scholar] [CrossRef]
- Xu, F.; Liu, Z.; Wang, Z.; Zhang, Y.; Zhao, Y.; Fang, W. Progress of p53 Involvement in Central Nervous System Diseases and Targeted Drug Discovery. Cell Biochem. Funct. 2025, 43, e70089. [Google Scholar] [CrossRef] [PubMed]
- Casali, B.T.; Reed-Geaghan, E.G. Microglial Function and Regulation during Development, Homeostasis and Alzheimer’s Disease. Cells 2021, 10, 957. [Google Scholar] [CrossRef] [PubMed]
- Dermitzakis, I.; Theotokis, P.; Evangelidis, P.; Delilampou, E.; Evangelidis, N.; Chatzisavvidou, A.; Avramidou, E.; Manthou, M.E. CNS Border-Associated Macrophages: Ontogeny and Potential Implication in Disease. Curr. Issues Mol. Biol. 2023, 45, 4285–4300. [Google Scholar] [CrossRef] [PubMed]
- Maziz, M.N.H.; Chakravarthi, S.; Aung, T.; Htoo, P.M.; Shwe, W.H.; Gupalo, S.; Udayah, M.W.; Singh, H.; Kabir, M.S.; Thangarajan, R. Microglia-Mediated Neuroinflammation Through Phosphatidylinositol 3-Kinase Signaling Causes Cognitive Dysfunction. Int. J. Mol. Sci. 2025, 26, 7212. [Google Scholar] [CrossRef]
- Coclitu, C.I.; Constantinescu, C.S.; Tanasescu, R. Neuroprotective strategies in multiple sclerosis: A status update and emerging paradigms. Expert Rev. Neurother. 2025, 25, 791–817. [Google Scholar] [CrossRef]
- Van Hove, H.; De Feo, D.; Greter, M.; Becher, B. Central Nervous System Macrophages in Health and Disease. Annu. Rev. Immunol. 2025, 43, 589–613. [Google Scholar] [CrossRef]
- Mildenberger, W.; Stifter, S.A.; Greter, M. Diversity and function of brain-associated macrophages. Curr. Opin. Immunol. 2022, 76, 102181. [Google Scholar] [CrossRef]
- Balkhi, S.; Di Spirito, A.; Poggi, A.; Mortara, L. Immune Modulation in Alzheimer’s Disease: From Pathogenesis to Immunotherapy. Cells 2025, 14, 264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, H.; Zhao, Y.; Zhao, T.; Wang, Z.; Tang, Q. Neuronal injury after ischemic stroke: Mechanisms of crosstalk involving necroptosis. J. Mol. Neurosci. 2025, 75, 15. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Sun, Y.; Guo, M.; Sun, X.; Sun, J.; Jiang, R.; Wang, N.; Huang, G. Lysosomes: Guardians and healers within cells-multifaceted perspective and outlook from injury repair to disease treatment. Cancer Cell Int. 2025, 25, 136. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, J.; Zhang, J.; Sun, C. Magnesium Deficiency: The Insidious Executor of the Liver Disease. J. Am. Nutr. Assoc. 2025, 44, 439–453. [Google Scholar] [CrossRef]
- Dalmau Gasull, A.; Glavan, M.; Samawar, S.K.R.; Kapupara, K.; Kelk, J.; Rubio, M.; Fumagalli, S.; Sorokin, L.; Vivien, D.; Prinz, M. The niche matters: Origin, function and fate of CNS-associated macrophages during health and disease. Acta Neuropathol. 2024, 147, 37. [Google Scholar] [CrossRef]
- Jones, H.E.; Abrams, K.A.; Siegenthaler, J.A. Techniques for visualizing fibroblast-vessel interactions in the developing and adult CNS. Neurophotonics 2022, 9, 021911. [Google Scholar] [CrossRef]
- Utz, S.G.; See, P.; Mildenberger, W.; Thion, M.S.; Silvin, A.; Lutz, M.; Ingelfinger, F.; Rayan, N.A.; Lelios, I.; Buttgereit, A.; et al. Early Fate Defines Microglia and Non-parenchymal Brain Macrophage Development. Cell 2020, 181, 557–573.e518. [Google Scholar] [CrossRef]
- Bruzelius, A.; Hidalgo, I.; Boza-Serrano, A.; Hjelmér, A.G.; Tison, A.; Deierborg, T.; Bengzon, J.; Ramos-Moreno, T. The human bone marrow harbors a CD45(-) CD11B(+) cell progenitor permitting rapid microglia-like cell derivative approaches. Stem Cells Transl. Med. 2021, 10, 582–597. [Google Scholar] [CrossRef]
- Van Deren, D.A.; De, S.; Xu, B.; Eschenbacher, K.M.; Zhang, S.; Capecchi, M.R. Defining the Hoxb8 cell lineage during murine definitive hematopoiesis. Development 2022, 149, dev200200. [Google Scholar] [CrossRef]
- Wylot, B.; Mieczkowski, J.; Niedziolka, S.; Kaminska, B.; Zawadzka, M. Csf1 Deficiency Dysregulates Glial Responses to Demyelination and Disturbs CNS White Matter Remyelination. Cells 2019, 9, 99. [Google Scholar] [CrossRef]
- De, I.; Maklakova, V.; Litscher, S.; Boyd, M.M.; Klemm, L.C.; Wang, Z.; Kendziorski, C.; Collier, L.S. Microglial responses to CSF1 overexpression do not promote the expansion of other glial lineages. J. Neuroinflammation 2021, 18, 162. [Google Scholar] [CrossRef]
- Sun, R.; Jiang, H. Border-associated macrophages in the central nervous system. J Neuroinflammation 2024, 21, 67. [Google Scholar] [CrossRef]
- Ziebell, J.M.; Taylor, S.E.; Cao, T.; Harrison, J.L.; Lifshitz, J. Rod microglia: Elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. J. Neuroinflammation 2012, 9, 247. [Google Scholar] [CrossRef]
- Muzio, L.; Viotti, A.; Martino, G. Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Front. Neurosci. 2021, 15, 742065. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhu, L. Multiple Roles of Peripheral Immune System in Modulating Ischemia/Hypoxia-Induced Neuroinflammation. Front. Mol. Biosci. 2021, 8, 752465. [Google Scholar] [CrossRef] [PubMed]
- Matejuk, A.; Vandenbark, A.A.; Offner, H. Cross-Talk of the CNS With Immune Cells and Functions in Health and Disease. Front. Neurol. 2021, 12, 672455. [Google Scholar] [CrossRef]
- Suchanek, O.; Clatworthy, M.R. Homeostatic role of B-1 cells in tissue immunity. Front. Immunol. 2023, 14, 1106294. [Google Scholar] [CrossRef]
- Guedes, J.R.; Ferreira, P.A.; Costa, J.M.; Cardoso, A.L.; Peça, J. Microglia-dependent remodeling of neuronal circuits. J. Neurochem. 2022, 163, 74–93. [Google Scholar] [CrossRef]
- Cowan, M.; Petri, W.A., Jr. Microglia: Immune Regulators of Neurodevelopment. Front. Immunol. 2018, 9, 2576. [Google Scholar] [CrossRef]
- Ribeiro Xavier, A.L.; Kress, B.T.; Goldman, S.A.; Lacerda de Menezes, J.R.; Nedergaard, M. A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone. J. Neurosci. 2015, 35, 11848–11861. [Google Scholar] [CrossRef]
- Park, J.; Chung, W.S. Astrocyte-dependent circuit remodeling by synapse phagocytosis. Curr. Opin. Neurobiol. 2023, 81, 102732. [Google Scholar] [CrossRef]
- Baum, M.L.; Wilton, D.K.; Fox, R.G.; Carey, A.; Hsu, Y.H.; Hu, R.; Jäntti, H.J.; Fahey, J.B.; Muthukumar, A.K.; Salla, N.; et al. CSMD1 regulates brain complement activity and circuit development. Brain Behav. Immun. 2024, 119, 317–332. [Google Scholar] [CrossRef]
- Itoh, N.; Enomoto, A.; Nagai, T.; Takahashi, M.; Yamada, K. Molecular mechanism linking BDNF/TrkB signaling with the NMDA receptor in memory: The role of Girdin in the CNS. Rev. Neurosci. 2016, 27, 481–490. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Yang, L.; Jiang, Y.; Xie, Y.; Li, K. Acupuncture improves learning and memory ability of posttraumatic stress disorder model rats through epigenetic regulation of microglial phosphatidylinositol 3-kinase pathway. Technol. Health Care 2023, 31, 409–421. [Google Scholar] [CrossRef]
- Traiffort, E.; Kassoussi, A.; Zahaf, A.; Laouarem, Y. Astrocytes and Microglia as Major Players of Myelin Production in Normal and Pathological Conditions. Front. Cell Neurosci. 2020, 14, 79. [Google Scholar] [CrossRef]
- Tripathi, A.; Rai, N.K.; Perles, A.; Courtney, H.; Jones, C.; Sapra, A.; Plemel, J.; Dutta, R. Dicer deficiency affects microglial function during demyelination and impairs remyelination. Neurobiol. Dis. 2025, 208, 106879. [Google Scholar] [CrossRef]
- Hayashida, S.; Masaki, K.; Suzuki, S.O.; Yamasaki, R.; Watanabe, M.; Koyama, S.; Isobe, N.; Matsushita, T.; Takahashi, K.; Tabira, T.; et al. Distinct microglial and macrophage distribution patterns in the concentric and lamellar lesions in Baló’s disease and neuromyelitis optica spectrum disorders. Brain Pathol. 2020, 30, 1144–1157. [Google Scholar] [CrossRef] [PubMed]
- Manich, G.; Gómez-López, A.R.; Almolda, B.; Villacampa, N.; Recasens, M.; Shrivastava, K.; González, B.; Castellano, B. Differential Roles of TREM2+ Microglia in Anterograde and Retrograde Axonal Injury Models. Front. Cell Neurosci. 2020, 14, 567404. [Google Scholar] [CrossRef] [PubMed]
- Rosin, J.M.; Kurrasch, D.M. Emerging roles for hypothalamic microglia as regulators of physiological homeostasis. Front. Neuroendocrinol. 2019, 54, 100748. [Google Scholar] [CrossRef] [PubMed]
- Verkhratsky, A.; Sun, D.; Tanaka, J. Snapshot of microglial physiological functions. Neurochem. Int. 2021, 144, 104960. [Google Scholar] [CrossRef]
- Banerjee, P.; Paza, E.; Perkins, E.M.; James, O.G.; Kenkhuis, B.; Lloyd, A.F.; Burr, K.; Story, D.; Yusuf, D.; He, X.; et al. Generation of pure monocultures of human microglia-like cells from induced pluripotent stem cells. Stem Cell Res. 2020, 49, 102046. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, B.; Piermartiri, T.; Tasca, C.I. The impact of purine nucleosides on neuroplasticity in the adult brain. Purinergic Signal. 2025, 21, 113–131. [Google Scholar] [CrossRef]
- Jovanovic, M.Z.; Stanojevic, J.; Stevanovic, I.; Ninkovic, M.; Ilic, T.V.; Nedeljkovic, N.; Dragic, M. Prolonged intermittent theta burst stimulation restores the balance between A2AR-and A1R-mediated adenosine signaling in the 6-hydroxidopamine model of Parkinson’s disease. Neural Regen. Res. 2025, 20, 2053–2067. [Google Scholar] [CrossRef] [PubMed]
- Duret, T.; Elmallah, M.; Rollin, J.; Gatault, P.; Jiang, L.-H.; Roger, S. Role of purinoreceptors in the release of extracellular vesicles and consequences on immune response and cancer progression. Biomed. J. 2025, 48, 100805. [Google Scholar] [CrossRef]
- Kattner, A.A. Rhythms under tension: Circadian clocks in an Unsynced Society. Biomed. J. 2025, 48, 100873. [Google Scholar] [CrossRef]
- Ikezu, T.; Bodart-Santos, V.; Ravula, A.R.; You, Y.; Abdullah, M.; Ruan, Z.; Ellison, J.; Radhakishun, S.; Ray, N.B.; Melvin, B. P2RX7 regulates tauopathy progression via tau and mitochondria loading in extracellular vesicles. Res. Sq. 2025. [Google Scholar] [CrossRef]
- Guo, Y.; Mao, T.; Fang, Y.; Wang, H.; Yu, J.; Zhu, Y.; Shen, S.; Zhou, M.; Li, H.; Hu, Q. Comprehensive insights into potential roles of purinergic P2 receptors on diseases: Signaling pathways involved and potential therapeutics. J. Adv. Res. 2025, 69, 427–448. [Google Scholar] [CrossRef]
- Wikarska, A.; Roszak, K.; Roszek, K. Mesenchymal Stem Cells and Purinergic Signaling in Autism Spectrum Disorder: Bridging the Gap between Cell-Based Strategies and Neuro-Immune Modulation. Biomedicines 2024, 12, 1310. [Google Scholar] [CrossRef]
- da Silva, G.B.; de Carvalho Braga, G.; Simões, J.L.B.; Kempka, A.P.; Bagatini, M.D. Cytokine storm in human monkeypox: A possible involvement of purinergic signaling. Cytokine 2024, 177, 156560. [Google Scholar] [CrossRef]
- Jadhav, S.P. MicroRNAs in microglia: Deciphering their role in neurodegenerative diseases. Front. Cell Neurosci. 2024, 18, 1391537. [Google Scholar] [CrossRef]
- Qin, H.; Buckley, J.A.; Li, X.; Liu, Y.; Fox, T.H., 3rd; Meares, G.P.; Yu, H.; Yan, Z.; Harms, A.S.; Li, Y.; et al. Inhibition of the JAK/STAT Pathway Protects Against α-Synuclein-Induced Neuroinflammation and Dopaminergic Neurodegeneration. J. Neurosci. 2016, 36, 5144–5159. [Google Scholar] [CrossRef]
- Xue, S.; Lozinski, B.M.; Ghorbani, S.; Ta, K.; D’Mello, C.; Yong, V.W.; Dong, Y. Elevated Galectin-3 Is Associated with Aging, Multiple Sclerosis, and Oxidized Phosphatidylcholine-Induced Neurodegeneration. J. Neurosci. 2023, 43, 4725–4737. [Google Scholar] [CrossRef]
- Amor, S.; McNamara, N.B.; Gerrits, E.; Marzin, M.C.; Kooistra, S.M.; Miron, V.E.; Nutma, E. White matter microglia heterogeneity in the CNS. Acta Neuropathol. 2022, 143, 125–141. [Google Scholar] [CrossRef]
- Lee, J.W.; Chun, W.; Lee, H.J.; Kim, S.M.; Min, J.H.; Kim, D.Y.; Kim, M.O.; Ryu, H.W.; Lee, S.U. The Role of Microglia in the Development of Neurodegenerative Diseases. Biomedicines 2021, 9, 1449. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Chitu, V.; Stanley, E.R.; Wszolek, Z.K.; Karrenbauer, V.D.; Harris, R.A. Inhibition of colony stimulating factor-1 receptor (CSF-1R) as a potential therapeutic strategy for neurodegenerative diseases: Opportunities and challenges. Cell Mol. Life Sci. 2022, 79, 219. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wise, L.; Fukuchi, K.I. TLR4 Cross-Talk With NLRP3 Inflammasome and Complement Signaling Pathways in Alzheimer’s Disease. Front. Immunol. 2020, 11, 724. [Google Scholar] [CrossRef] [PubMed]
- Hanslik, K.L.; Ulland, T.K. The Role of Microglia and the Nlrp3 Inflammasome in Alzheimer’s Disease. Front. Neurol. 2020, 11, 570711. [Google Scholar] [CrossRef]
- Shippy, D.C.; Oliai, S.F.; Ulland, T.K. Zinc utilization by microglia in Alzheimer’s disease. J. Biol. Chem. 2024, 300, 107306. [Google Scholar] [CrossRef]
- Yang, X.; Wang, J.; Jia, X.; Yang, Y.; Fang, Y.; Ying, X.; Li, H.; Zhang, M.; Wei, J.; Pan, Y. Microglial polarization in Alzheimer’s disease: Mechanisms, implications, and therapeutic opportunities. J. Alzheimers Dis. 2025, 104, 3–13. [Google Scholar] [CrossRef]
- Abd-Elrahman, K.S.; Sarasija, S.; Ferguson, S.S.G. The Role of Neuroglial Metabotropic Glutamate Receptors in Alzheimer’s Disease. Curr. Neuropharmacol. 2023, 21, 273–283. [Google Scholar] [CrossRef]
- Severini, C.; Barbato, C.; Di Certo, M.G.; Gabanella, F.; Petrella, C.; Di Stadio, A.; de Vincentiis, M.; Polimeni, A.; Ralli, M.; Greco, A. Alzheimer’s Disease: New Concepts on the Role of Autoimmunity and NLRP3 Inflammasome in the Pathogenesis of the Disease. Curr. Neuropharmacol. 2021, 19, 498–512. [Google Scholar] [CrossRef]
- Shelestak, J.; Irfan, M.; DeSilva, T.M. Remyelinating strategies: What can be learned from normal brain development. Curr. Opin. Pharmacol. 2022, 67, 102290. [Google Scholar] [CrossRef]
- Corbali, O.; Chitnis, T. Pathophysiology of myelin oligodendrocyte glycoprotein antibody disease. Front. Neurol. 2023, 14, 1137998. [Google Scholar] [CrossRef] [PubMed]
- Janssens, K.; Maheshwari, A.; Van den Haute, C.; Baekelandt, V.; Stinissen, P.; Hendriks, J.J.; Slaets, H.; Hellings, N. Oncostatin M protects against demyelination by inducing a protective microglial phenotype. Glia 2015, 63, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
- Sidoryk-Węgrzynowicz, M.; Strużyńska, L. Astroglial and Microglial Purinergic P2X7 Receptor as a Major Contributor to Neuroinflammation during the Course of Multiple Sclerosis. Int. J. Mol. Sci. 2021, 22, 8404. [Google Scholar] [CrossRef]
- Wies Mancini, V.S.B.; Di Pietro, A.A.; de Olmos, S.; Silva Pinto, P.; Vence, M.; Marder, M.; Igaz, L.M.; Marcora, M.S.; Pasquini, J.M.; Correale, J.D.; et al. Colony-stimulating factor-1 receptor inhibition attenuates microgliosis and myelin loss but exacerbates neurodegeneration in the chronic cuprizone model. J. Neurochem. 2022, 160, 643–661. [Google Scholar] [CrossRef]
- Sato, F.; Martinez, N.E.; Stewart, E.C.; Omura, S.; Alexander, J.S.; Tsunoda, I. “Microglial nodules” and “newly forming lesions” may be a Janus face of early MS lesions; implications from virus-induced demyelination, the Inside-Out model. BMC Neurol. 2015, 15, 219. [Google Scholar] [CrossRef]
- Titus, H.E.; Xu, H.; Robinson, A.P.; Patel, P.A.; Chen, Y.; Fantini, D.; Eaton, V.; Karl, M.; Garrison, E.D.; Rose, I.V.L.; et al. Repurposing the cardiac glycoside digoxin to stimulate myelin regeneration in chemically-induced and immune-mediated mouse models of multiple sclerosis. Glia 2022, 70, 1950–1970. [Google Scholar] [CrossRef]
- Candelario-Jalil, E.; Dijkhuizen, R.M.; Magnus, T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke 2022, 53, 1473–1486. [Google Scholar] [CrossRef]
- Loane, D.J.; Kumar, A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp. Neurol. 2016, 275 Pt 3, 316–327. [Google Scholar] [CrossRef]
- Alsbrook, D.L.; Di Napoli, M.; Bhatia, K.; Biller, J.; Andalib, S.; Hinduja, A.; Rodrigues, R.; Rodriguez, M.; Sabbagh, S.Y.; Selim, M.; et al. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr. Neurol. Neurosci. Rep. 2023, 23, 407–431. [Google Scholar] [CrossRef]
- Yu, L.L.; Sun, L.; Yu, T.T.; Guo, A.C.; Wu, J.P.; Chen, J.M.; Wang, Q. CPCGI Alleviates Neural Damage by Modulating Microglial Pyroptosis After Traumatic Brain Injury. CNS Neurosci. Ther. 2025, 31, e70322. [Google Scholar] [CrossRef] [PubMed]
- Benakis, C.; Simats, A.; Tritschler, S.; Heindl, S.; Besson-Girard, S.; Llovera, G.; Pinkham, K.; Kolz, A.; Ricci, A.; Theis, F.J.; et al. T cells modulate the microglial response to brain ischemia. Elife 2022, 11, e82031. [Google Scholar] [CrossRef]
- Larochelle, J.; Tishko, R.J.; Yang, C.; Ge, Y.; Phan, L.T.; Gunraj, R.E.; Stansbury, S.M.; Liu, L.; Mohamadzadeh, M.; Khoshbouei, H.; et al. Receptor-interacting protein kinase 2 (RIPK2) profoundly contributes to post-stroke neuroinflammation and behavioral deficits with microglia as unique perpetrators. J. Neuroinflammation 2023, 20, 221. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, L.E.; Ranganathan, P.R.; Kumar, R.G.; Wagner, A.K.; Rubin, J.E. A mathematical model of neuroinflammation in severe clinical traumatic brain injury. J. Neuroinflammation 2018, 15, 345. [Google Scholar] [CrossRef]
- Terreros-Roncal, J.; Moreno-Jiménez, E.P.; Flor-García, M.; Rodríguez-Moreno, C.B.; Trinchero, M.F.; Cafini, F.; Rábano, A.; Llorens-Martín, M. Impact of neurodegenerative diseases on human adult hippocampal neurogenesis. Science 2021, 374, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Torres, C. Astrocyte senescence: Evidence and significance. Aging Cell 2019, 18, e12937. [Google Scholar] [CrossRef]
- Li, Z.; Wang, T.; Du, S.; Miao, Z.; Zhao, Y.; Tang, Y.; Meng, X.; Yu, S.; Zhang, D.; Jiang, H.; et al. Tgm2-Catalyzed Covalent Cross-Linking of IκBα Drives NF-κB Nuclear Translocation to Promote SASP in Senescent Microglia. Aging Cell 2025, 24, e14463. [Google Scholar] [CrossRef]
- Spittau, B. Aging Microglia-Phenotypes, Functions and Implications for Age-Related Neurodegenerative Diseases. Front. Aging Neurosci. 2017, 9, 194. [Google Scholar] [CrossRef]
- Rim, C.; You, M.J.; Nahm, M.; Kwon, M.S. Emerging role of senescent microglia in brain aging-related neurodegenerative diseases. Transl. Neurodegener. 2024, 13, 10. [Google Scholar] [CrossRef]
- Liu, M.; Liu, L.; Song, Y.; Li, W.; Xu, L. Targeting macrophages: A novel treatment strategy in solid tumors. J. Transl. Med. 2022, 20, 586. [Google Scholar] [CrossRef] [PubMed]
- Kazakova, A.; Sudarskikh, T.; Kovalev, O.; Kzhyshkowska, J.; Larionova, I. Interaction of tumor-associated macrophages with stromal and immune components in solid tumors: Research progress (Review). Int. J. Oncol. 2023, 62, 5480. [Google Scholar] [CrossRef] [PubMed]
- Bianconi, A.; Aruta, G.; Rizzo, F.; Salvati, L.F.; Zeppa, P.; Garbossa, D.; Cofano, F. Systematic review on tumor microenvironment in glial neoplasm: From understanding pathogenesis to future therapeutic perspectives. Int. J. Mol. Sci. 2022, 23, 4166. [Google Scholar] [CrossRef] [PubMed]
- Tong, N.; He, Z.; Ma, Y.; Wang, Z.; Huang, Z.; Cao, H.; Xu, L.; Zou, Y.; Wang, W.; Yi, C.; et al. Tumor Associated Macrophages, as the Dominant Immune Cells, Are an Indispensable Target for Immunologically Cold Tumor-Glioma Therapy? Front. Cell Dev. Biol. 2021, 9, 706286. [Google Scholar] [CrossRef]
- Qin, R.; Ren, W.; Ya, G.; Wang, B.; He, J.; Ren, S.; Jiang, L.; Zhao, S. Role of chemokines in the crosstalk between tumor and tumor-associated macrophages. Clin. Exp. Med. 2023, 23, 1359–1373. [Google Scholar] [CrossRef]
- Bianconi, A.; Palmieri, G.; Aruta, G.; Monticelli, M.; Zeppa, P.; Tartara, F.; Melcarne, A.; Garbossa, D.; Cofano, F. Updates in glioblastoma immunotherapy: An overview of the current clinical and translational scenario. Biomedicines 2023, 11, 1520. [Google Scholar] [CrossRef]
- Liu, H.; Lv, Z.; Zhang, G.; Yan, Z.; Bai, S.; Dong, D.; Wang, K. Molecular understanding and clinical aspects of tumor-associated macrophages in the immunotherapy of renal cell carcinoma. J. Exp. Clin. Cancer Res. 2024, 43, 242. [Google Scholar] [CrossRef]
- Soares, N.L.; Paiva, I.; Bravo, J.; Queiroga, C.S.F.; Melo, B.F.; Conde, S.V.; Romão, C.C.; Summavielle, T.; Vieira, H.L.A. Carbon Monoxide Modulation of Microglia-Neuron Communication: Anti-Neuroinflammatory and Neurotrophic Role. Mol. Neurobiol. 2022, 59, 872–889. [Google Scholar] [CrossRef]
- Tahmasebi, F.; Barati, S. The Role of Microglial Depletion Approaches in Pathological Condition of CNS. Cell Mol. Neurobiol. 2023, 43, 2459–2471. [Google Scholar] [CrossRef]
- Sandvig, I.; Augestad, I.L.; Håberg, A.K.; Sandvig, A. Neuroplasticity in stroke recovery. The role of microglia in engaging and modifying synapses and networks. Eur. J. Neurosci. 2018, 47, 1414–1428. [Google Scholar] [CrossRef]
- Minogue, A.M. Role of infiltrating monocytes/macrophages in acute and chronic neuroinflammation: Effects on cognition, learning and affective behaviour. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 79 Pt A, 15–18. [Google Scholar] [CrossRef]
- Liu, F.; Cheng, X.; Zhao, C.; Zhang, X.; Liu, C.; Zhong, S.; Liu, Z.; Lin, X.; Qiu, W.; Zhang, X. Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke. Neurosci. Bull. 2024, 40, 65–78. [Google Scholar] [CrossRef]
- Kokkosis, A.G.; Madeira, M.M.; Hage, Z.; Valais, K.; Koliatsis, D.; Resutov, E.; Tsirka, S.E. Chronic psychosocial stress triggers microglial-/macrophage-induced inflammatory responses leading to neuronal dysfunction and depressive-related behavior. Glia 2024, 72, 111–132. [Google Scholar] [CrossRef]
- Farkhondeh, T.; Pourbagher-Shahri, A.M.; Ashrafizadeh, M.; Folgado, S.L.; Rajabpour-Sanati, A.; Khazdair, M.R.; Samarghandian, S. Green tea catechins inhibit microglial activation which prevents the development of neurological disorders. Neural Regen. Res. 2020, 15, 1792–1798. [Google Scholar] [CrossRef]
- Farzan, M.; Saberi-Rounkian, M.; Asadi-Rizi, A.; Heidari, Z.; Farzan, M.; Fathi, M.; Aghaei, A.; Azadegan-Dehkordi, F.; Bagheri, N. The emerging role of the microglia triggering receptor expressed on myeloid cells (TREM) 2 in multiple sclerosis. Exp. Neurol. 2025, 384, 115071. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wei, Y.Z.; Wang, G.Q.; Li, D.D.; Shi, J.S.; Zhang, F. Targeting MAPK Pathways by Naringenin Modulates Microglia M1/M2 Polarization in Lipopolysaccharide-Stimulated Cultures. Front. Cell Neurosci. 2018, 12, 531. [Google Scholar] [CrossRef]
- Wankhede, N.L.; Kale, M.B.; Kyada, A.; MM, R.; Chaudhary, K.; Naidu, K.S.; Rahangdale, S.; Shende, P.V.; Taksande, B.G.; Khalid, M.; et al. Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders. Neuroscience 2025, 565, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Schindler, S.M.; Frank, M.G.; Annis, J.L.; Maier, S.F.; Klegeris, A. Pattern recognition receptors mediate pro-inflammatory effects of extracellular mitochondrial transcription factor A (TFAM). Mol. Cell Neurosci. 2018, 89, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Hoerster, R.; Fauser, S.; Cursiefen, C.; Kirchhof, B.; Heindl, L.M. The influence of systemic renin-angiotensin-inhibition on ocular cytokines related to proliferative vitreoretinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 255, 1721–1725. [Google Scholar] [CrossRef]
- Furler, R.L.; Nixon, D.F.; Brantner, C.A.; Popratiloff, A.; Uittenbogaart, C.H. TGF-β Sustains Tumor Progression through Biochemical and Mechanical Signal Transduction. Cancers 2018, 10, 199. [Google Scholar] [CrossRef]
- Komai, T.; Okamura, T.; Yamamoto, K.; Fujio, K. [The effects of TGF-βs on immune responses]. Nihon Rinsho Meneki Gakkai Kaishi 2016, 39, 51–58. [Google Scholar] [CrossRef]
- Chen, S.; Zou, H. Lipoxygenase Metabolism: Critical Pathways in Microglia-mediated Neuroinflammation and Neurodevelopmental Disorders. Neurochem. Res. 2022, 47, 3213–3220. [Google Scholar] [CrossRef]
- Yildirim-Balatan, C.; Fenyi, A.; Besnault, P.; Gomez, L.; Sepulveda-Diaz, J.E.; Michel, P.P.; Melki, R.; Hunot, S. Parkinson’s disease-derived α-synuclein assemblies combined with chronic-type inflammatory cues promote a neurotoxic microglial phenotype. J. Neuroinflammation 2024, 21, 54. [Google Scholar] [CrossRef]
- Tichy, A.M.; Gerrard, E.J.; Sexton, P.M.; Janovjak, H. Light-activated chimeric GPCRs: Limitations and opportunities. Curr. Opin. Struct. Biol. 2019, 57, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Miao, B.A.; Meng, L.; Tian, B. Biology-guided engineering of bioelectrical interfaces. Nanoscale Horiz. 2022, 7, 94–111. [Google Scholar] [CrossRef] [PubMed]
- Puntambekar, S.S.; Saber, M.; Lamb, B.T.; Kokiko-Cochran, O.N. Cellular players that shape evolving pathology and neurodegeneration following traumatic brain injury. Brain Behav. Immun. 2018, 71, 9–17. [Google Scholar] [CrossRef]
- Neupane, K.R.; McCorkle, J.R.; Kopper, T.J.; Lakes, J.E.; Aryal, S.P.; Abdullah, M.; Snell, A.A.; Gensel, J.C.; Kolesar, J.; Richards, C.I. Macrophage-Engineered Vesicles for Therapeutic Delivery and Bidirectional Reprogramming of Immune Cell Polarization. ACS Omega 2021, 6, 3847–3857. [Google Scholar] [CrossRef]
- Wan, T.; Pan, Q.; Ping, Y. Microneedle-assisted genome editing: A transdermal strategy of targeting NLRP3 by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders. Sci. Adv. 2021, 7, eabe2888. [Google Scholar] [CrossRef]
- Li, Z.; Huang, H.; Huang, L.; Du, L.; Sun, Y.; Duan, Y. Prevention of Oxidized Low Density Lipoprotein-Induced Endothelial Cell Injury by DA-PLGA-PEG-cRGD Nanoparticles Combined with Ultrasound. Int. J. Mol. Sci. 2017, 18, 815. [Google Scholar] [CrossRef]
- Tolstova, T.; Dotsenko, E.; Luzgina, N.; Rusanov, A. Preconditioning of Mesenchymal Stem Cells Enhances the Neuroprotective Effects of Their Conditioned Medium in an Alzheimer’s Disease In Vitro Model. Biomedicines 2024, 12, 2243. [Google Scholar] [CrossRef]
- Shahabipour, F.; Banach, M.; Sahebkar, A. Exosomes as nanocarriers for siRNA delivery: Paradigms and challenges. Arch. Med. Sci. 2016, 12, 1324–1326. [Google Scholar] [CrossRef]
- Lu, M.; Zhao, X.; Xing, H.; Liu, H.; Lang, L.; Yang, T.; Xun, Z.; Wang, D.; Ding, P. Cell-free synthesis of connexin 43-integrated exosome-mimetic nanoparticles for siRNA delivery. Acta Biomater. 2019, 96, 517–536. [Google Scholar] [CrossRef]
- Battaglini, M.; Marino, A.; Montorsi, M.; Carmignani, A.; Ceccarelli, M.C.; Ciofani, G. Nanomaterials as microglia modulators in the treatment of central nervous system disorders. Adv. Healthc. Mater. 2024, 13, 2304180. [Google Scholar] [CrossRef]
- Sevenich, L. Brain-resident microglia and blood-borne macrophages orchestrate central nervous system inflammation in neurodegenerative disorders and brain cancer. Front. Immunol. 2018, 9, 697. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Francis, N.L.; Calvelli, H.R.; Moghe, P.V. Microglia-targeting nanotherapeutics for neurodegenerative diseases. APL Bioeng. 2020, 4, 030902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Lin, Y.-A.; Kannan, S.; Kannan, R.M. Targeting specific cells in the brain with nanomedicines for CNS therapies. J. Control. Release 2016, 240, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Guan, M.; Zhang, N.-N.; Wang, Y.; Liang, T.; Wu, H.; Wang, C.; Sun, T.; Liu, S. Harnessing nanomedicine for modulating microglial states in the central nervous system disorders: Challenges and opportunities. Biomed. Pharmacother. 2024, 177, 117011. [Google Scholar] [CrossRef]
- Gebril, H.M.; Aryasomayajula, A.; de Lima, M.R.N.; Uhrich, K.E.; Moghe, P.V. Nanotechnology for microglial targeting and inhibition of neuroinflammation underlying Alzheimer’s pathology. Transl. Neurodegener. 2024, 13, 2. [Google Scholar] [CrossRef]
- Beygi, M.; Oroojalian, F.; Azizi-Arani, S.; Hosseini, S.S.; Mokhtarzadeh, A.; Kesharwani, P.; Sahebkar, A. Multifunctional nanotheranostics for overcoming the blood–brain barrier. Adv. Funct. Mater. 2024, 34, 2310881. [Google Scholar] [CrossRef]
- Kim, M.; Choi, S.Y.; Lee, P.; Hur, J. Neochlorogenic Acid Inhibits Lipopolysaccharide-Induced Activation and Pro-inflammatory Responses in BV2 Microglial Cells. Neurochem. Res. 2015, 40, 1792–1798. [Google Scholar] [CrossRef]
- Azhdarzadeh, M.; Atyabi, F.; Saei, A.A.; Varnamkhasti, B.S.; Omidi, Y.; Fateh, M.; Ghavami, M.; Shanehsazzadeh, S.; Dinarvand, R. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf. B Biointerfaces 2016, 143, 224–232. [Google Scholar] [CrossRef]
- Xu, H.L.; Mao, K.L.; Huang, Y.P.; Yang, J.J.; Xu, J.; Chen, P.P.; Fan, Z.L.; Zou, S.; Gao, Z.Z.; Yin, J.Y.; et al. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects. Nanoscale 2016, 8, 14222–14236. [Google Scholar] [CrossRef]
- Sitaula, A.; Huang, Y.; Zarin, A. Application of a Dual Optogenetic Silencing-Activation Protocol to Map Motor Neurons Driving Rolling Escape Behavior in Drosophila Larvae. Bio Protoc. 2024, 14, e5131. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; He, L.; Han, G.; Zhou, Y. Optogenetic Immunomodulation: Shedding Light on Antitumor Immunity. Trends Biotechnol. 2017, 35, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Singh, D. Revolutionizing cellular energy: The convergence of mitochondrial dynamics and delivery technologies. Mitochondrion 2024, 76, 101873. [Google Scholar] [CrossRef]
- Frumer, G.R.; Shin, S.H.; Jung, S.; Kim, J.S. Not just Glia-Dissecting brain macrophages in the mouse. Glia 2024, 72, 5–18. [Google Scholar] [CrossRef]
- Bobotis, B.C.; Halvorson, T.; Carrier, M.; Tremblay, M. Established and emerging techniques for the study of microglia: Visualization, depletion, and fate mapping. Front. Cell Neurosci. 2024, 18, 1317125. [Google Scholar] [CrossRef]
- López-Cano, J.J.; Sigen, A.; Andrés-Guerrero, V.; Tai, H.; Bravo-Osuna, I.; Molina-Martínez, I.T.; Wang, W.; Herrero-Vanrell, R. Thermo-Responsive PLGA-PEG-PLGA Hydrogels as Novel Injectable Platforms for Neuroprotective Combined Therapies in the Treatment of Retinal Degenerative Diseases. Pharmaceutics 2021, 13, 234. [Google Scholar] [CrossRef]
- Wang, H.L.; Cheng, Y.C.; Yeh, T.H.; Liu, H.F.; Weng, Y.H.; Chen, R.S.; Chen, Y.C.; Lu, J.C.; Hwang, T.L.; Wei, K.C.; et al. HCH6-1, an antagonist of formyl peptide receptor-1, exerts anti-neuroinflammatory and neuroprotective effects in cellular and animal models of Parkinson’s disease. Biochem. Pharmacol. 2023, 212, 115524. [Google Scholar] [CrossRef]
- Ghosh, M.; Pearse, D.D. The Yin and Yang of Microglia-Derived Extracellular Vesicles in CNS Injury and Diseases. Cells 2024, 13, 1834. [Google Scholar] [CrossRef]
- Liu, X.G.; Zhang, L.; Lu, S.; Liu, D.Q.; Zhang, L.X.; Yu, X.L.; Liu, R.T. Multifunctional Superparamagnetic Iron Oxide Nanoparticles Conjugated with Aβ Oligomer-Specific scFv Antibody and Class A Scavenger Receptor Activator Show Early Diagnostic Potentials for Alzheimer’s Disease. Int. J. Nanomed. 2020, 15, 4919–4932. [Google Scholar] [CrossRef]
- Xiao, Y.; Du, J. Superparamagnetic nanoparticles for biomedical applications. J. Mater. Chem. B 2020, 8, 354–367. [Google Scholar] [CrossRef]
- Mayle, K.M.; Dern, K.R.; Wong, V.K.; Sung, S.; Ding, K.; Rodriguez, A.R.; Taylor, Z.; Zhou, Z.H.; Grundfest, W.S.; Deming, T.J.; et al. Polypeptide-Based Gold Nanoshells for Photothermal Therapy. SLAS Technol. 2017, 22, 18–25. [Google Scholar] [CrossRef]
- Ahmad, T.; Sarwar, R.; Iqbal, A.; Bashir, U.; Farooq, U.; Halim, S.A.; Khan, A.; Al-Harrasi, A. Recent advances in combinatorial cancer therapy via multifunctionalized gold nanoparticles. Nanomedicine 2020, 15, 1221–1237. [Google Scholar] [CrossRef] [PubMed]
- Parusel, S.; Yi, M.H.; Hunt, C.L.; Wu, L.J. Chemogenetic and Optogenetic Manipulations of Microglia in Chronic Pain. Neurosci. Bull. 2023, 39, 368–378. [Google Scholar] [CrossRef]
- Vivo, M.; Rosti, V.; Cervone, S.; Lanzuolo, C. Chromatin plasticity in mechanotransduction. Curr. Opin. Cell Biol. 2024, 88, 102376. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.C.P.; Ding, J.L. The mechanobiology of NK cells- ‘Forcing NK to Sense’ target cells. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188860. [Google Scholar] [CrossRef] [PubMed]
- Brandizzi, F. Transport from the endoplasmic reticulum to the Golgi in plants: Where are we now? Semin. Cell Dev. Biol. 2018, 80, 94–105. [Google Scholar] [CrossRef]
- Hu, M.; Feng, X.; Liu, Q.; Liu, S.; Huang, F.; Xu, H. The ion channels of endomembranes. Physiol. Rev. 2024, 104, 1335–1385. [Google Scholar] [CrossRef]
- Iwata, K.; Terazima, M.; Masuhara, H. Novel physical chemistry approaches in biophysical researches with advanced application of lasers: Detection and manipulation. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 335–357. [Google Scholar] [CrossRef]
- Kaur, C.; Rathnasamy, G.; Ling, E.A. Biology of Microglia in the Developing Brain. J. Neuropathol. Exp. Neurol. 2017, 76, 736–753. [Google Scholar] [CrossRef]
- Yap, A.S.; Duszyc, K.; Viasnoff, V. Mechanosensing and Mechanotransduction at Cell-Cell Junctions. Cold Spring Harb. Perspect. Biol. 2018, 10, a028761. [Google Scholar] [CrossRef] [PubMed]
- Graziani, V.; Crosas-Molist, E.; George, S.L.; Sanz-Moreno, V. Organelle adaptations in response to mechanical forces during tumour dissemination. Curr. Opin. Cell Biol. 2024, 88, 102345. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Zhang, L.; Yan, S.; He, Y.; Zhu, H.; Li, Y.; Wang, D.; Yang, K. Low-intensity pulsed ultrasound/nanomechanical force generators enhance osteogenesis of BMSCs through microfilaments and TRPM7. J. Nanobiotechnology 2022, 20, 378. [Google Scholar] [CrossRef] [PubMed]
- Lekka, M.; Gnanachandran, K.; Kubiak, A.; Zieliński, T.; Zemła, J. Traction force microscopy—Measuring the forces exerted by cells. Micron 2021, 150, 103138. [Google Scholar] [CrossRef]
- Jethava, K.P.; Prakash, P.; Manchanda, P.; Arora, H.; Chopra, G. One Scaffold, Different Organelle Sensors: pH-Activable Fluorescent Probes for Targeting Live Microglial Cell Organelles. Chembiochem 2022, 23, e202100378. [Google Scholar] [CrossRef]
- Shikha, D.; Chang, Y.T.; Goswami, C. TRPM8 affects relative “cooling and heating” of subcellular organelles in microglia in a context-dependent manner. Int. J. Biochem. Cell Biol. 2024, 173, 106615. [Google Scholar] [CrossRef]
- Koizumi, T.; Fujimoto, A.; Kawaguchi, H.; Kurosaki, T.; Kitamura, A. Stress Granule Dysfunction via Chromophore-Associated Light Inactivation. ACS Omega 2024, 9, 21298–21306. [Google Scholar] [CrossRef]
- Amarouch, M.Y.; El Hilaly, J.; Mazouzi, D. AFM and FluidFM Technologies: Recent Applications in Molecular and Cellular Biology. Scanning 2018, 2018, 7801274. [Google Scholar] [CrossRef]
- Jung, P.; Zhou, X.; Iden, S.; Qu, B.; Bischoff, M. Characterization of the Elasticity of CD4(+) T Cells: An Approach Based on Peak Force Quantitative Nanomechanical Mapping. Bio Protoc. 2022, 12, e4383. [Google Scholar] [CrossRef]
- Svitkina, T. The Actin Cytoskeleton and Actin-Based Motility. Cold Spring Harb. Perspect. Biol. 2018, 10, a018267. [Google Scholar] [CrossRef]
- Viji Babu, P.K.; Mirastschijski, U.; Belge, G.; Radmacher, M. Homophilic and heterophilic cadherin bond rupture forces in homo- or hetero-cellular systems measured by AFM-based single-cell force spectroscopy. Eur. Biophys. J. 2021, 50, 543–559. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, Z.; Xu, L.; Huang, P.; Gao, J.; Li, J.; Wang, X.; Zhou, Y.; Wang, J.; Zhao, W.; et al. Using an ER-specific optogenetic mechanostimulator to understand the mechanosensitivity of the endoplasmic reticulum. Dev. Cell 2024, 59, 1396–1409.e1395. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Y.; Liao, K.; Peng, T. Modular development of organelle-targeting fluorescent probes for imaging formaldehyde in live cells. Anal. Methods 2024, 16, 3646–3653. [Google Scholar] [CrossRef]
- Benedetti, L.; Barentine, A.E.S.; Messa, M.; Wheeler, H.; Bewersdorf, J.; De Camilli, P. Light-activated protein interaction with high spatial subcellular confinement. Proc. Natl. Acad. Sci. USA 2018, 115, E2238–E2245. [Google Scholar] [CrossRef]
- Pathak, G.P.; Spiltoir, J.I.; Höglund, C.; Polstein, L.R.; Heine-Koskinen, S.; Gersbach, C.A.; Rossi, J.; Tucker, C.L. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2. Nucleic Acids Res. 2017, 45, e167. [Google Scholar] [CrossRef] [PubMed]
- Di Iorio, D.; Wegner, S.V. Dynamic Light-Induced Protein Patterns at Model Membranes. J. Vis. Exp. 2024, 204, e66531. [Google Scholar] [CrossRef] [PubMed]
- Vlasova, A.D.; Bukhalovich, S.M.; Bagaeva, D.F.; Polyakova, A.P.; Ilyinsky, N.S.; Nesterov, S.V.; Tsybrov, F.M.; Bogorodskiy, A.O.; Zinovev, E.V.; Mikhailov, A.E.; et al. Intracellular microbial rhodopsin-based optogenetics to control metabolism and cell signaling. Chem. Soc. Rev. 2024, 53, 3327–3349. [Google Scholar] [CrossRef] [PubMed]
- Stewart, L.; Turner, N.A. Channelling the Force to Reprogram the Matrix: Mechanosensitive Ion Channels in Cardiac Fibroblasts. Cells 2021, 10, 990. [Google Scholar] [CrossRef]
- George, L.F.; Follmer, M.L.; Fontenoy, E.; Moran, H.R.; Brown, J.R.; Ozekin, Y.H.; Bates, E.A. Endoplasmic Reticulum Calcium Mediates Drosophila Wing Development. Bioelectricity 2023, 5, 290–306. [Google Scholar] [CrossRef]
- Miles, L.; Powell, J.; Kozak, C.; Song, Y. Mechanosensitive Ion Channels, Axonal Growth, and Regeneration. Neuroscientist 2023, 29, 421–444. [Google Scholar] [CrossRef]
- Neuberger, A.; Oda, M.; Nikolaev, Y.A.; Nadezhdin, K.D.; Gracheva, E.O.; Bagriantsev, S.N.; Sobolevsky, A.I. Human TRPV1 structure and inhibition by the analgesic SB-366791. Nat. Commun. 2023, 14, 2451. [Google Scholar] [CrossRef]
- Morton, A.; Murawski, C.; Deng, Y.; Keum, C.; Miles, G.B.; Tello, J.A.; Gather, M.C. Photostimulation for In Vitro Optogenetics with High-Power Blue Organic Light-Emitting Diodes. Adv. Biosyst. 2019, 3, e1800290. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, T.; Wang, J.; Xu, J.; Shen, T.; Zhang, T.; Zhang, B.; Gao, S.; Zhao, C.; Yang, M.; et al. Self-Propelled Janus Nanocatalytic Robots Guided by Magnetic Resonance Imaging for Enhanced Tumor Penetration and Therapy. J. Am. Chem. Soc. 2023, 145, 11019–11032. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Cai, L.; Li, N.; Zhao, Y. Ultrasound-trigged micro/nanorobots for biomedical applications. Smart Med. 2023, 2, e20230003. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Tang, W.; Mu, G.; Wang, H.; Chang, X.; Dong, H.; Qi, L.; Zhang, G.; Li, T. Micro-/Nanorobots Propelled by Oscillating Magnetic Fields. Micromachines 2018, 9, 540. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Cheng, Y.; Wang, J.; Liu, G.; Luo, T.; Li, X.; Yang, S.; Yang, R. Biohybrid magnetic microrobots: An intriguing and promising platform in biomedicine. Acta Biomater. 2023, 169, 88–106. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Z.; Zhu, B.; Zhang, Y.; Lin, J.; Wu, Y.; Wu, D. Design, fabrication and application of magnetically actuated micro/nanorobots: A review. Nanotechnology 2022, 33, 152001. [Google Scholar] [CrossRef]
- Oral, C.M.; Ussia, M.; Yavuz, D.K.; Pumera, M. Shape Engineering of TiO(2) Microrobots for “On-the-Fly” Optical Brake. Small 2022, 18, e2106271. [Google Scholar] [CrossRef]
- Losi, A.; Gardner, K.H.; Möglich, A. Blue-Light Receptors for Optogenetics. Chem. Rev. 2018, 118, 10659–10709. [Google Scholar] [CrossRef]
- Fu, B.; Luo, D.; Li, C.; Feng, Y.; Liang, W. Advances in micro-/nanorobots for cancer diagnosis and treatment: Propulsion mechanisms, early detection, and cancer therapy. Front. Chem. 2025, 13, 1537917. [Google Scholar] [CrossRef]
- He, T.; Yang, Y.; Chen, X.B. Propulsion mechanisms of micro/nanorobots: A review. Nanoscale 2024, 16, 12696–12734. [Google Scholar] [CrossRef]
- Liu, Z.; Dijkstra, M. Collective dynamics of intelligent active Brownian particles with visual perception and velocity alignment in 3D: Spheres, rods, and worms. Soft Matter 2025, 21, 1529–1544. [Google Scholar] [CrossRef]
- De La Crompe, B.; Coulon, P.; Diester, I. Functional interrogation of neural circuits with virally transmitted optogenetic tools. J. Neurosci. Methods 2020, 345, 108905. [Google Scholar] [CrossRef]
- Li, J.; Hill, E.H.; Lin, L.; Zheng, Y. Optical Nanoprinting of Colloidal Particles and Functional Structures. ACS Nano 2019, 13, 3783–3795. [Google Scholar] [CrossRef]
- Oral, C.M.; Ussia, M.; Urso, M.; Salat, J.; Novobilsky, A.; Stefanik, M.; Ruzek, D.; Pumera, M. Radiopaque Nanorobots as Magnetically Navigable Contrast Agents for Localized In Vivo Imaging of the Gastrointestinal Tract. Adv. Healthc. Mater. 2023, 12, e2202682. [Google Scholar] [CrossRef]
- Tang, D.; Peng, X.; Wu, S.; Tang, S. Autonomous Nanorobots as Miniaturized Surgeons for Intracellular Applications. Nanomaterials 2024, 14, 595. [Google Scholar] [CrossRef] [PubMed]
Cell Type | Developmental Origin | Key Molecular/Transcriptional Features | Functional Role/Localization |
---|---|---|---|
Microglia [28] | Derived from primitive yolk sac progenitors during early embryogenesis | High expression of transcription factors such as PU.1 and IRF8; maturation is critically dependent on TGF-β and CSF1 signaling | Reside within the CNS parenchyma; engage in immune surveillance, synaptic pruning, and support of neuronal homeostasis |
Perivascular Macrophages [6] | Dual origin: a subset from yolk sac progenitors and another from bone marrow-derived monocytes | Exhibit transcriptional profiles distinct from parenchymal microglia, reflecting adaptations to their vascular niche | Located in perivascular spaces, they play essential roles in maintaining vascular homeostasis and mediating immune cell trafficking |
Meningeal Macrophages [6] | Dual origin: contributions from both yolk sac-derived progenitors and bone marrow-derived cells | Display unique molecular markers that differentiate them from microglia and other BAMs; specific gene expression patterns | They rely on the meninges, contribute to immune surveillance at the CNS borders, and help preserve barrier integrity |
Choroid Plexus Macrophages [15] | Dual origin: originating from yolk sac progenitors and replenished by bone marrow-derived monocytes | Possess niche-specific transcriptional profiles that reflect their adaptation to the choroid plexus microenvironment | Localized within the choroid plexus, regulate cerebrospinal fluid composition by modulating immune cell entry |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamkouri, H.; Motlagh Mohavi, S. Microglia and Macrophages in Central Nervous System Homeostasis and Disease Progression: Guardians and Executioners. Neuroglia 2025, 6, 31. https://doi.org/10.3390/neuroglia6030031
Chamkouri H, Motlagh Mohavi S. Microglia and Macrophages in Central Nervous System Homeostasis and Disease Progression: Guardians and Executioners. Neuroglia. 2025; 6(3):31. https://doi.org/10.3390/neuroglia6030031
Chicago/Turabian StyleChamkouri, Hossein, and Sahar Motlagh Mohavi. 2025. "Microglia and Macrophages in Central Nervous System Homeostasis and Disease Progression: Guardians and Executioners" Neuroglia 6, no. 3: 31. https://doi.org/10.3390/neuroglia6030031
APA StyleChamkouri, H., & Motlagh Mohavi, S. (2025). Microglia and Macrophages in Central Nervous System Homeostasis and Disease Progression: Guardians and Executioners. Neuroglia, 6(3), 31. https://doi.org/10.3390/neuroglia6030031