Sex-Dimorphic Glucocorticoid Receptor Regulation of Hypothalamic Primary Astrocyte Glycogen Metabolism: Interaction with Norepinephrine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Primary Astrocyte Cell Cultures
2.2. Experimental Design
2.3. Western Blot Analysis
2.4. Astrocyte LC-ESI-MS Glycogen Analysis
2.5. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DEX | dexamethasone |
GPbb | glycogen phosphorylase–brain type |
GPmm | glycogen phosphorylase–muscle type |
GS | glycogen synthase |
IIH | insulin-induced hypoglycemia |
LC-ESI-MS | uHPLC-electrospray ionization-mass spectrometry |
NE | norepinephrine |
References
- So, A.Y.L.; Bernal, T.U.; Pillsbury, M.L.; Yamamoto, K.R.; Feldman, B.J. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc. Natl. Acad. Sci. USA 2009, 106, 17582–17587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, T.; McQueen, A.; Chen, T.C.; Wang, J.C. Regulation of Glucose Homeostasis by Glucocorticoids. Glucocorticoid Signal. 2015, 872, 99–126. [Google Scholar]
- Stalmans, W.; Laloux, M. Glucocorticoids and hepatic glycogen metabolism. Monogr. Endocrinol. 1979, 12, 517–533. [Google Scholar] [CrossRef] [PubMed]
- Green, G.A.; Chenoweth, M.; Dunn, A. Adrenal glucocorticoid permissive regulation of muscle glycogenolysis: Action on protein phosphatase(s) and its inhibitor(s). Proc. Natl. Acad. Sci. USA 1980, 77, 5711–5715. [Google Scholar] [CrossRef] [Green Version]
- Margolis, R.N.; Curnow, R.T. The role of insulin and glucocorticoids in the regulation of hepatic glycogen metabolism: Effect of fasting, refeeding, and adrenalectomy. Endocrinology 1983, 113, 2113–2119. [Google Scholar] [CrossRef]
- Viskupic, E.; Németh, S. Are endogenous glucocorticoids involved in short-term regulation of hepatic glycogen metabolism? Endocrinol. Exp. 1985, 19, 283–289. [Google Scholar]
- Brown, A.M. Brain glycogen re-awakened. J. Neurochem. 2004, 89, 537–552. [Google Scholar] [CrossRef]
- Obel, L.F.; Müller, M.S.; Walls, A.B.; Sickmann, M.; Bak, L.K.; Waagepetersen, S.; Schousboe, A. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front. Neuroenergetics 2012, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Bak, L.K.; Walls, A.B.; Schousboe, A.; Waagepetersen, H.S. Astrocytic glycogen metabolism in the healthy and diseased brain. J. Biol. Chem. 2018, 293, 7108–7116. [Google Scholar] [CrossRef] [Green Version]
- Walls, A.B.; Heimbürger, C.M.; Bouman, S.D.; Schousboe, A.; Waagepetersen, H.S. Robust glycogen shunt activity in astrocytes: Effects of glutamatergic and adrenergic agents. Neuroscience 2009, 158, 284–292. [Google Scholar] [CrossRef]
- Stobart, J.L.; Anderson, C.M. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Cell. Neurosci. 2013, 7, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schousboe, A.; Sickmann, H.M.; Walls, A.B.; Bak, L.K.; Waagepetersen, H.S. Functional importance of the astrocytic glycogen-shunt and glycolysis for maintenance of an intact intra/extracellular glutamate gradient. Neurotox. Res. 2010, 18, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Fink, K.; Velebit, J.; Vardjan, N.; Zorec, R.; Kreft, M. Noradrenaline-induced l-lactate production requires d-glucose entry and transit through the glycogen shunt in single-cultured rat astrocytes. J. Neurosci. Res. 2021, 99, 1084–1098. [Google Scholar] [CrossRef] [PubMed]
- Bheemanapally, K.; Alhamyani, A.R.; Ibrahim, M.M.H.; Briski, K.P. Ventromedial hypothalamic nucleus glycogen phosphorylase regulation of metabolic-sensory neuron AMPK and neurotransmitter protein expression: Role of L-lactate. Amer. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 320, R791–R799. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, O.W.; Fontes, J.D.; Carlson, G.M. The regulation of glycogenolysis in the brain. J. Biol. Chem. 2018, 293, 7099–7107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, M.S.; Pedersen, S.; Walls, A.B.; Waagepetersen, H.S.; Bak, L.K. Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes. Glia 2014, 63, 154–162. [Google Scholar] [CrossRef]
- Alhamyani, A.; Mahmood, A.S.M.H.; Alshamrani, A.; Ibrahim, M.M.H.; Briski, K.P. Central type II glucocorticoid receptor regulation of ventromedial hypothalamic nucleus glycogen metabolic enzyme and glucoregulatory neurotransmitter marker protein expression in the male rat. J. Endocrinol. Diabetes 2021, 8, 148. [Google Scholar] [CrossRef]
- Vielkind, U.; Walencewicz, A.; Levine, M.; Churchill Bohn, M. Type II glucocorticoid receptors are expressed in oligodendrocytes and astrocytes. J. Neurosci. Res. 1990, 27, 360–373. [Google Scholar] [CrossRef]
- Briski, K.P.; Ibrahim, M.M.H.; Mahmood, A.S.M.H.; Alshamrani, A.A. Norepinephrine regulation of ventromedial hypothalamic nucleus astrocyte glycogen metabolism. Int. J. Mol. Sci. 2021, 22, 759. [Google Scholar] [CrossRef]
- Tamrakar, P.; Shrestha, P.K.; Briski, K.P. Dorsomedial hindbrain catecholamine regulation of hypothalamic astrocyte glycogen metabolic enzyme protein expression: Impact of estradiol. Neuroscience 2015, 292, 34–45. [Google Scholar] [CrossRef]
- Ibrahim, M.M.H.; Alhamami, H.N.; Briski, K.P. Norepinephrine regulation of ventromedial hypothalamic nucleus metabolic transmitter biomarker and astrocyte enzyme and receptor expression: Impact of 5’-AMP-activated protein kinase. Brain Res. 2019, 1711, 48–57. [Google Scholar] [CrossRef]
- Ibrahim, M.M.H.; Bheemanapally, K.; Sylvester, P.W.; Briski, K.P. Norepinephrine regulation of adrenergic receptor expression, 5’ AMP-activated protein kinase activity, and glycogen metabolism and mass in male versus female hypothalamic primary astrocyte cultures. ASN Neuro 2020, 12, 1759091420974134. [Google Scholar] [CrossRef] [PubMed]
- Allaman, I.; Pellerin, L.; Magistretti, P.J. Glucocorticoids modulate neurotransmitter-induced glycogen metabolism in cultured cortical astrocytes. J. Neurochem. 2004, 88, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.M.H.; Bheemanapally, K.; Sylvester, P.W.; Briski, K.P. Sex-specific estrogen regulation of hypothalamic astrocyte estrogen receptor expression and glycogen metabolism in rats. Mol. Cell. Endocrinol. 2020, 504, 110703. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.M.H.; Bheemanapally, K.; Sylvester, P.W.; Briski, K.P. Sex differences in glucoprivic regulation of glycogen metabolism in hypothalamic primary astrocyte cultures: Role of estrogen receptor signaling. Mol. Cell. Endocrinol. 2020, 518, 111000. [Google Scholar] [CrossRef]
- Bheemanapally, K.; Ibrahim, M.M.H.; Briski, K.P. Combinatory high-resolution microdissection/ultra-performance liquid chromatographic-mass spectrometry approach for small tissue volume analysis of rat brain glycogen. J. Pharmaceut. Biomed. Anal. 2020, 178, 112884. [Google Scholar] [CrossRef]
- Pacak, K.; Palkovits, M. Stressor specificity of central neuroendocrine responses: Implications for stress-related disorders. Endocr. Rev. 2001, 22, 502–548. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.H.; Napit, P.R.; Mahmood, A.S.M.H.; Bheemanapally, K.; Alhamami, H.N.; Uddin, M.M.; Mandal, K.S.; Ibrahim, M.M.H.; Briski, K.P. Hindbrain estrogen receptor regulation of ventromedial hypothalamic glycogen metabolism and glucoregulatory transmitter expression in the hypoglycemic male rat. Neuroscience 2019, 409, 253–260. [Google Scholar] [CrossRef]
- Napit, P.R.; Ali, M.H.; Shakya, M.; Mandal, S.K.; Bheemanapally, K.; Mahmood, A.S.M.H.; Ibrahim, M.M.H.; Briski, K.P. Hindbrain estrogen receptor regulation of counter-regulatory hormone secretion and ventromedial hypothalamic nucleus glycogen content and glucoregulatory transmitter signaling in hypoglycemic female rats. Neuroscience 2019, 411, 211–221. [Google Scholar] [CrossRef]
- Swanson, R.A.; Choi, D.W. Glial Glycogen Stores Affect Neuronal Survival during Glucose Deprivation in Vitro. J. Cereb. Blood Flow Metab. 1993, 13, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, M.C.; Koumenis, I.L.; Yuan, T.Y.; Giffard, R.G. Increasing Vulnerability of Astrocytes to Oxidative Injury with Age despite Constant Antioxidant Defenses. Neuroscience 1998, 82, 915–925. [Google Scholar] [CrossRef]
- Ouyang, Y.B.; Xu, L.J.; Sun, Y.J.; Giffard, R.G. Overexpression of inducible heat shock protein 70 and its mutants in astrocytes is associated with maintenance of mitochondrial physiology during glucose deprivation stress. Cell Stress Chaperones 2006, 11, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fonseca, K.; Massieu, L.; García de la Cadena, S.; Guzmán, C.; Camacho-Arroyo, I. Neuroprotective role of estradiol against neuronal death induced by glucose deprivation in cultured rat hippocampal neurons. Neuroendocrinology 2012, 96, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.S.M.H.; Napit, P.R.; Ali, M.H.; Briski, K.P. Estrogen receptor involvement in noradrenergic regulation of ventromedial hypothalamic nucleus glucoregulatory neurotransmitter and stimulus-specific glycogen phosphorylase enzyme isoform expression. ASN Neuro 2020, 12, 1759091420910933. [Google Scholar] [CrossRef] [Green Version]
- Briski, K.P.; Ali, M.H.; Napit, P.R.; Mahmood, A.S.M.H.; Alhamyani, A.R.; Alshamrani, A.A. Sex differences in ventromedial hypothalamic nucleus glucoregulatory transmitter biomarker protein during recurring insulin-induced hypoglycemia. Brain Struct. Funct. 2021, 226, 1053–1065. [Google Scholar] [CrossRef]
- Gilda, J.E.; Gomes, A.V. Western blotting using in-gel protein labeling as a normalization control: Stain-free technology. Methods Mol. Biol. 2015, 1295, 381–391. [Google Scholar] [CrossRef]
- Moritz, C.P. Tubulin or Not Tubulin: Heading Toward Total Protein Staining as Loading Control in Western Blots. Proteomics 2017, 17, 1600189. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.M.H.; Uddin, M.M.; Bheemanapally, K.; Briski, K.P. Sex-dimorphic aromatase regulation of ventromedial hypothalamic nucleus glycogen content in euglycemic and insulin-induced hypoglycemic rats. Neurosci. Lett. 2020, 737, 135284. [Google Scholar] [CrossRef]
- Cai, Y.; Guo, H.; Fan, Z.; Zhang, X.; Wu, D.; Tang, W.; Gu, T.; Wang, S.; Yin, A.; Tao, L.; et al. Glycogenolysis Is Crucial for Astrocytic Glycogen Accumulation and Brain Damage after Reperfusion in Ischemic Stroke. iScience 2020, 23, 101136. [Google Scholar] [CrossRef]
- Zhu, Y.; Fan, Z.; Zhao, Q.; Li, J.; Cai, G.; Wang, R.; Liang, Y.; Lu, N.; Kang, J.; Luo, D.; et al. Brain-Type Glycogen Phosphorylase Is Crucial for Astrocytic Glycogen Accumulation in Chronic Social Defeat Stress-Induced Depression in Mice. Front. Mol. Neurosci. 2022, 14, 819440. [Google Scholar] [CrossRef]
- Mueckler, M.; Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Asp. Med. 2013, 34, 121–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marty, N.; Dallaporta, M.; Foretz, M.; Emery, M.; Tarussio, D.; Bady, I.; Binnert, C.; Beermann, F.; Thorens, B. Regulation of glucagon secretion by glucose transporter type 2 (GLUT2) and astrocyte-dependent glucose sensors. J. Clin. Investig. 2005, 115, 3543–3553. [Google Scholar] [CrossRef] [PubMed]
- Matschinsky, F.M.; Wilson, D.F. The central role of glucokinase in glucose homeostasis; a perspective 50 years after demonstrating the presence of the enzyme in islets of Langerhans. Front. Physiol. 2019, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Sze, Y.; Gill, A.C.; Brunton, P.J. Sex-dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress. J. Neuroendocrinol. 2018, 30, e12644. [Google Scholar] [CrossRef]
- Gibbs, M.E. Role of Glycogenolysis in memory and learning: Regulation by noradrenaline, Serotonin and ATP. Front. Integr. Neurosci. 2016, 9, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beard, E.; Lengacher, S.; Dias, S.; Magistretti, P.J.; Finsterwald, C. Astrocytes as key regulators of brain energy metabolism: New therapeutic perspectives. Front. Physiol. 2022, 12, 825816. [Google Scholar] [CrossRef] [PubMed]
- Alhamyani, A.R.; Napit, P.R.; Bheemanapally, K.; Ibrahim, M.M.H.; Sylvester, P.W.; Briski, K.P. Glycogen phosphorylase isoform regulation of elucose and energy sensor expression in male versus female hypothalamic astrocyte primary cultures. Mol. Cell. Endocrinol. 2022, 553, 111698. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napit, P.R.; Alhamyani, A.; Bheemanapally, K.; Sylvester, P.W.; Briski, K.P. Sex-Dimorphic Glucocorticoid Receptor Regulation of Hypothalamic Primary Astrocyte Glycogen Metabolism: Interaction with Norepinephrine. Neuroglia 2022, 3, 144-157. https://doi.org/10.3390/neuroglia3040010
Napit PR, Alhamyani A, Bheemanapally K, Sylvester PW, Briski KP. Sex-Dimorphic Glucocorticoid Receptor Regulation of Hypothalamic Primary Astrocyte Glycogen Metabolism: Interaction with Norepinephrine. Neuroglia. 2022; 3(4):144-157. https://doi.org/10.3390/neuroglia3040010
Chicago/Turabian StyleNapit, Prabhat R., Abdulrahman Alhamyani, Khaggeswar Bheemanapally, Paul W. Sylvester, and Karen P. Briski. 2022. "Sex-Dimorphic Glucocorticoid Receptor Regulation of Hypothalamic Primary Astrocyte Glycogen Metabolism: Interaction with Norepinephrine" Neuroglia 3, no. 4: 144-157. https://doi.org/10.3390/neuroglia3040010
APA StyleNapit, P. R., Alhamyani, A., Bheemanapally, K., Sylvester, P. W., & Briski, K. P. (2022). Sex-Dimorphic Glucocorticoid Receptor Regulation of Hypothalamic Primary Astrocyte Glycogen Metabolism: Interaction with Norepinephrine. Neuroglia, 3(4), 144-157. https://doi.org/10.3390/neuroglia3040010