Green Firebreaks: Potential to Proactively Complement Wildfire Management
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Flammability
3.2. Fire Behaviour Mechanisms
3.3. Ecological Considerations and Co-Benefits
4. Discussion
4.1. Wildfire Mitigation
4.2. Wildfire Preparation
4.3. Wildfire Response
4.4. Wildfire Recovery
4.5. Limitations and Knowledge Gaps
4.6. Future Research Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abram, N.J.; Henley, B.J.; Gupta, A.S.; Lippmann, T.J.R.; Clarke, H.; Dowdy, A.J.; Sharples, J.J.; Nolan, R.H.; Zhang, T.; Wooster, M.J.; et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2021, 2, 8. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef]
- Jan Van Oldenborgh, G.; Krikken, F.; Lewis, S.; Leach, N.J.; Lehner, F.; Saunders, K.R.; Van Weele, M.; Haustein, K.; Li, S.; Wallom, D.; et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 2021, 21, 941–960. [Google Scholar] [CrossRef]
- Whelan, R.J. The Ecology of Fire; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilué, N.; Archibald, S.; Batllori, E.; Bennett, A.F.; Buckland, S.T.; Canelles, Q.; Clarke, M.F.; et al. Fire and biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [Google Scholar] [CrossRef]
- Gonzalez-Mathiesen, C.; Ruane, S.; March, A. Integrating wildfire risk management and spatial planning—A historical review of two Australian planning systems. Int. J. Disaster Risk Reduct. 2021, 53, 101984. [Google Scholar] [CrossRef]
- Suarez, D.; Gómez, C.; Medaglia, A.; Akhavan-Tabatabaei, R.; Grajales, S. Integrated Decision Support for Disaster Risk Management: Aiding Preparedness and Response Decisions in Wildfire Management. Inf.—Inf. Syst. Res. 2024, 35, 609–628. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V. The Dilemma of Wildfire Definition: What It Reveals and What It Implies. Front. For. Glob. Change 2020, 3, 553116. [Google Scholar] [CrossRef]
- Pyne, S.J. World Fire: The Culture of Fire on Earth; University of Washington Press: Seattle, WA, USA, 1997. [Google Scholar]
- Gammage, B. The Biggest Estate on Earth: How Aborigines made Australia; Allen & Unwin: Crows Nest, Australia, 2012. [Google Scholar]
- ApC. Natural Disaster Funding Arrangements: Productivity Commission Inquiry Report; Productivity Commission, Ed.; Australian Government Canberra: Canberra, Australia, 2015; Volume 1–2.
- Nolan, R.H.; Bowman, D.M.J.S.; Clarke, H.; Haynes, K.; Ooi, M.K.J.; Price, O.F.; Williamson, G.J.; Whittaker, J.; Bedward, M.; Boer, M.M.; et al. What Do the Australian Black Summer Fires Signify for the Global Fire Crisis? Fire 2021, 4, 97. [Google Scholar] [CrossRef]
- Collins, K.M.; Price, O.F.; Penman, T.D. Suppression resource decisions are the dominant influence on containment of Australian forest and grass fires. J. Environ. Manag. 2018, 228, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Ingalsbee, T. Whither the paradigm shift? Large wildland fires and the wildfire paradox offer opportunities for a new paradigm of ecological fire management. Int. J. Wildland Fire 2017, 26, 557–561. [Google Scholar] [CrossRef]
- Lacey, L.M.; Suraci, J.P.; Littlefield, C.E.; Busse, B.S.; Dickson, B.G. Informing proactive wildfire management that benefits vulnerable communities and ecological values. People Nat. 2024, 7, 52–66. [Google Scholar] [CrossRef]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.; Salerno, J.; Fischer, A. Cognition of complexity and trade-offs in a wildfire-prone social-ecological system. Environ. Res. Lett. 2019, 14, 125017. [Google Scholar] [CrossRef]
- Gibbons, P.; Gill, A.M.; Shore, N.; Moritz, M.A.; Dovers, S.; Cary, G.J. Options for reducing house-losses during wildfires without clearing trees and shrubs. Landsc. Urban Plan. 2018, 174, 10–17. [Google Scholar] [CrossRef]
- Venn, T.J.; Quiggin, J. Early evacuation is the best bushfire risk mitigation strategy for south-eastern Australia. Aust. J. Agric. Resour. Econ. 2017, 61, 481–497. [Google Scholar] [CrossRef]
- Saco, P.M.; McDonough, K.R.; Rodriguez, J.F.; Rivera-Zayas, J.; Sandi, S.G. The role of soils in the regulation of hazards and extreme events. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200178. [Google Scholar] [CrossRef]
- DETSI. Science Notes: Erosion Control on Fences and Firebreaks; Department of the Environment, Tourism, Science and Innovation, Ed.; Queensland Government: Brisbane, Australia, 2018.
- Smith, W.; Neale, T.; Weir, J.K. Persuasion without policies: The work of reviving Indigenous peoples’ fire management in southern Australia. Geoforum 2021, 120, 82–92. [Google Scholar] [CrossRef]
- Morgan, G.W.; Tolhurst, K.G.; Poynter, M.W.; Cooper, N.; McGuffog, T.; Ryan, R.; Wouters, M.A.; Stephens, N.; Black, P.; Sheehan, D.; et al. Prescribed burning in south-eastern Australia: History and future directions. Aust. For. 2020, 83, 4–28. [Google Scholar] [CrossRef]
- Altangerel, K.; Kull, C.A. The prescribed burning debate in Australia: Conflicts and compatibilities. J. Environ. Plan. Manag. 2013, 56, 103–120. [Google Scholar] [CrossRef]
- Florec, V.; Burton, M.; Pannell, D.; Kelso, J.; Milne, G. Where to prescribe burn: The costs and benefits of prescribed burning close to houses. Int. J. Wildland Fire 2020, 29, 440–458. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S. Explainer: Back burning and fuel reduction. The Conversation, 8 August 2014; Volume 38. [Google Scholar]
- Thapa, S.B.; Jenkins, J.S.; Westerling, A.L. Perceptions of wildfire management practices in a California wildland-urban interface. Environ. Adv. 2023, 12, 100382. [Google Scholar] [CrossRef]
- Blanchi, R.; Warren, G.; Opie, K.; Leonard, J.; March, A.; Holland, M.; Ollington, B. Best Practice Design for Building in Bushfire Prone areas in Victoria; CSIRO, Ed.; CSIRO: Canberra, Australia, 2021; Volume 2. [Google Scholar]
- Regos, A.; Campos, J.; Lecina-Diaz, J.; Pais, S.; Sil, Â.; Cánibe, M.; Freitas, T.R.; Aquilué, N.; Gonçalves, J.; Carvalho-Santos, C.; et al. FirESmart—Nature-Based Solutions for Preventive Fire Management and Sustained Supply of Ecosystem Services. Final Report; CIBIO Research Center in Biodiversity and Genetic Resources: Vairão, Portugal, 2023. [Google Scholar] [CrossRef]
- Ingalsbee, T. After the Greenfire Revolution: Reimagining Collective Identities of the Future Wildland Fire Workforce in a Paradigm Shift for Ecological Fire Management. Fire 2024, 7, 211. [Google Scholar] [CrossRef]
- Thompson, M.P.; MacGregor, D.G.; Dunn, C.J.; Calkin, D.E.; Phipps, J. Rethinking the Wildland Fire Management System. J. For. 2018, 116, 382–390. [Google Scholar] [CrossRef]
- Kirschner, J.A.; Clark, J.; Boustras, G. Governing wildfires: Toward a systematic analytical framework. Ecol. Soc. 2023, 28, 6. [Google Scholar] [CrossRef]
- Metlen, K.; Fairbanks, T.; Bennett, M.; Volpe, J.; Kuhn, B.; Thompson, M.; Thrailkill, J.; Schindel, M.; Helmbrecht, D.S.; Borgias, D. Integrating forest restoration, adaptation and proactive fire management: Rogue River Basin case study. Can. J. For. Res. 2021, 51, 1292–1306. [Google Scholar] [CrossRef]
- Oliveras Menor, I.; Prat-Guitart, N.; Spadoni, G.L.; Hsu, A.; Fernandes, P.M.; Puig-Gironès, R.; Ascoli, D.; Bilbao, B.A.; Bacciu, V.; Brotons, L.; et al. Integrated fire management as an adaptation and mitigation strategy to altered fire regimes. Commun. Earth Environ. 2025, 6, 202. [Google Scholar] [CrossRef] [PubMed]
- Penman, T.D.; Collins, L.; Price, O.F.; Bradstock, R.A.; Metcalf, S.; Chong, D.M.O. Examining the relative effects of fire weather, suppression and fuel treatment on fire behaviour—A simulation study. J. Environ. Manag. 2013, 131, 325–333. [Google Scholar] [CrossRef]
- Herbert, C.; Butsic, V. Assessing the Effectiveness of Green Landscape Buffers to Reduce Fire Severity and Limit Fire Spread in California: Case Study of Golf Courses. Fire 2022, 5, 44. [Google Scholar] [CrossRef]
- Hand, M.S.; Thompson, M.P.; Calkin, D.E. Examining heterogeneity and wildfire management expenditures using spatially and temporally descriptive data. J. For. Econ. 2016, 22, 80–102. [Google Scholar] [CrossRef]
- Burrows, N.; Stephens, C.; Wills, A.; Densmore, V. Fire mosaics in south-west Australian forest landscapes. Int. J. Wildland Fire 2021, 30, 933–945. [Google Scholar] [CrossRef]
- Murray, B.R.; Hawthorne, T.; Curran, T.J.; Krix, D.W.; Wallace, M.I.; Young, K.; Murray, M.L.; Morley, E.; Huber-Smith, N.; Webb, J.K. Shoot flammability patterns among plant species of the wildland–urban interface in the fire-prone Greater Blue Mountains World Heritage Area. Int. J. Wildland Fire 2023, 32, 1119–1134. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Chas-Amil, M.L.; García-Martínez, E.D.; Touza, J. Wildfire risk associated with different vegetation types within and outside wildland-urban interfaces. For. Ecol. Manag. 2016, 372, 1–9. [Google Scholar] [CrossRef]
- Cui, X.; Alam, M.A.; Perry, G.L.W.; Paterson, A.M.; Wyse, S.V.; Curran, T.J. Green firebreaks as a management tool for wildfires: Lessons from China. J. Environ. Manag. 2019, 233, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Mell, W.E.; Manzello, S.L.; Maranghides, A.; Butry, D.; Rehm, R.G. The wildland-urban interface fire problem—Current approaches and research needs. Int. J. Wildland Fire 2010, 19, 238–251. [Google Scholar] [CrossRef]
- Lohm, D.; Davis, M. Between bushfire risk and love of environment: Preparedness, precariousness and survival in the narratives of urban fringe dwellers in Australia. Health Risk Soc. 2015, 17, 404–419. [Google Scholar] [CrossRef]
- Cova, T.J. Public Safety in the Urban–Wildland Interface: Should Fire-Prone Communities Have a Maximum Occupancy? Nat. Hazards Rev. 2005, 6, 99–108. [Google Scholar] [CrossRef]
- Curran, T.J.; Perry, G.L.W.; Wyse, S.V.; Alam, M.A. Managing fire and biodiversity in the wildland-urban interface: A role for green firebreaks. Fire 2018, 1, 3. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Daniels, L.D.; Johnston, F.H.; Williamson, G.J.; Jolly, W.M.; Magzamen, S.; Rappold, A.G.; Brauer, M.; Henderson, S.B. Can Air Quality Management Drive Sustainable Fuels Management at the Temperate Wildland–Urban Interface? Fire 2018, 1, 27. [Google Scholar] [CrossRef]
- Marshall, E.; Holyland, B.; Parkins, K.; Raulings, E.; Good, M.K.; Swan, M.; Bennett, L.T.; Penman, T.D. Can green firebreaks help balance biodiversity, carbon storage and wildfire risk? J. Environ. Manag. 2024, 369, 122183. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.C.; Biondi, D.; França, A.; Tetto, R.d.A.; Tres, A.; Costa, R.; Travenisk, C.; Kovalsyki, B. Evaluation of the flammability of trees and shrubs used in the implementation of green barriers in southern Brazil. In Proceedings of the Fourth International Symposium on Fire Economics, Planning, and Policy: Climate Change and Wildfires, Mexico City, Mexico, 5–11 November 2012; Volume 245, pp. 256–264. [Google Scholar]
- Murray, B.R.; Martin, L.J.; Brown, C.; Krix, D.W.; Phillips, M.L. Selecting Low-Flammability Plants as Green Firebreaks within Sustainable Urban Garden Design. Fire 2018, 1, 15. [Google Scholar] [CrossRef]
- Krix, D.W.; Phillips, M.L.; Murray, B.R. Relationships among leaf flammability attributes and identifying low-leaf-flammability species at the wildland-urban interface. Int. J. Wildland Fire 2019, 28, 295–307. [Google Scholar] [CrossRef]
- Murray, B.R.; Brown, C.; Murray, M.L.; Krix, D.W.; Martin, L.J.; Hawthorne, T.; Wallace, M.I.; Potvin, S.A.; Webb, J.K.J.F. An Integrated Approach to Identify Low-Flammability Plant Species for Green Firebreaks. Fire 2020, 3, 9. [Google Scholar] [CrossRef]
- Souza, M.L.A. Low Flammability Plants of the Cerrado for Green Fire Break. Biodivers. Bras. 2020, 10, 31. [Google Scholar] [CrossRef]
- Lucas, F.; Kovalsyki, B.; Jacobs, R.; Tetto, A.; Batista, A. Flammability of urban ornamental species for use in green firebreaks. Biodiversidade Bras.—BioBrasil 2020, 10, 65. [Google Scholar] [CrossRef]
- Santamarta-Cerezal, J.C.; Guzmán, J.; Neris, J.; Arraiza, M.P.; Ioraș, F. Forest Hydrology, Soil Conservation and Green Barriers in Canary Islands. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 9–13. [Google Scholar] [CrossRef]
- Della Rocca, G.; Danti, R.; Raddi, P.; Moya, B.; Moya, J. Implementation of the «cypress system» as a green firewall. Project CypFire. Forêt Méditerranéenne 2014, 35, 275–280. [Google Scholar]
- Wang, H.H.; Finney, M.A.; Song, Z.L.; Wang, Z.S.; Li, X.C. Ecological techniques for wildfire mitigation: Two distinct fuelbreak approaches and their fusion. For. Ecol. Manag. 2021, 495, 119376. [Google Scholar] [CrossRef]
- Della Rocca, G.; Hernando, C.; Madrigal, J.; Danti, R.; Moya, J.; Guijarro, M.; Pecchioli, A.; Moya, B. Possible land management uses of common cypress to reduce wildfire initiation risk: A laboratory study. J. Environ. Manag. 2015, 159, 68–77. [Google Scholar] [CrossRef]
- Pacheco, A.S.; Goodman, H.D.; Hankenson, L.; Fisk, J.J.; Ortiz, A.; Marinace, H.M.; Bischoff, E.A.; Holman, V.F.; Love, S.M.; Apgaua, D.M.G.; et al. Fighting Fire with Food: Assessing the Flammability of Crop Plant Species for Building Fire Resilient Agroforestry Systems; Research Square: Durham, NC, USA, 2022. [Google Scholar]
- Resco de Dios, V. Pyrophysiology and Wildfire Management; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Vollmer, J.L. New Technology for Fuel Breaks and Green Strips in Urban Interface and Wildland Areas. In Proceedings of the Eighth International Wildland Firefighter Safety Summit—Human Factors—10 Years Later, Missoula, MT, USA, 26–28 April 2005. [Google Scholar]
- Chifa, D. The Design of Green Firebreaks in Portuguese Forest: A Case Study of Alferce, Monchique. Master’s Thesis, Eesti Maaülikool, Tartu, Estonia, 2021. [Google Scholar]
- Wang, H.; Zhang, K.; Qin, Z.; Gao, W.; Wang, Z. Refining Ecological Techniques for Forest Fire Prevention and Evaluating Their Diverse Benefits. Fire 2024, 7, 129. [Google Scholar] [CrossRef]
- Pagadala, T.; Alam, M.A.; Maxwell, T.M.; Curran, T.J. Measuring flammability of crops, pastures, fruit trees, and weeds: A novel tool to fight wildfires in agricultural landscapes. Sci. Total Environ. 2024, 906, 167489. [Google Scholar] [CrossRef]
- Yao, M.; Zhang, D.; Zhu, R.; Zhang, Z.; Elsadek, M. Predicting the Integrated Fire Resistance of Wildland–Urban Interface Plant Communities by Spatial Structure Analysis Learning for Shanghai, China. Forests 2024, 15, 1266. [Google Scholar] [CrossRef]
- Grootemaat, S.; Wright, I.J.; van Bodegom, P.M.; Cornelissen, J.H.C.; Cornwell, W.K. Burn or rot: Leaf traits explain why flammability and decomposability are decoupled across species. Funct. Ecol. 2015, 29, 1486–1497. [Google Scholar] [CrossRef]
- Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. At Risk: Natural Hazards, People’s Vulnerability and Disasters; Routledge: Oxfordshire, UK, 2004. [Google Scholar]
- Kreider, M.R.; Higuera, P.E.; Parks, S.A.; Rice, W.L.; White, N.; Larson, A.J. Fire suppression makes wildfires more severe and accentuates impacts of climate change and fuel accumulation. Nat. Commun. 2024, 15, 2412. [Google Scholar] [CrossRef] [PubMed]
- Wotton, B.M.; Flannigan, M.D.; Marshall, G.A. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environ. Res. Lett. 2017, 12, 095003. [Google Scholar] [CrossRef]
- Plucinski, M. Review of Aerial Suppression Effectiveness Research Literature: Why Fly? How Do We Know That Aerial Firefighting Operations Are Effective and Efficient; Natural Hazards Research Australia: Melbourne, Australia, 2025. [Google Scholar]
- Guo, Y.; Wang, J.; Ge, Y.; Zhou, C. Global expansion of wildland-urban interface intensifies human exposure to wildfire risk in the 21st century. Sci. Adv. 2024, 10, eado9587. [Google Scholar] [CrossRef]
- Mutch, R.W.; Rogers, M.J.; Stephens, S.L.; Gill, A.M. Protecting Lives and Property in the Wildland-Urban Interface: Communities in Montana and Southern California Adopt Australian Paradigm. Fire Technol. 2010, 47, 357–377. [Google Scholar] [CrossRef]
- Naser, M.Z.; Kodur, V. Vulnerability of structures and infrastructure to wildfires: A perspective into assessment and mitigation strategies. Nat. Hazards 2025, 121, 9995–10015. [Google Scholar] [CrossRef]
- Lucas, C.; Williamson, G.; Bowman, D. Bushfire Preparedness and Risk Reduction in Hobart Pilot Study 2019 Final Report; University of Tasmania & Hobart City Council: Hobart, Australia, 2019; Available online: http://ecite.utas.edu.au/141045/ (accessed on 28 August 2025).
- CSIRO. Bushfire Resilient Building Guidance for Queensland Homes; Commonwealth Scientific and Industrial Research Organisation: Brisbane, Australia, 2020. Available online: www.qra.qld.gov.au (accessed on 28 August 2025).
- Warnell, K.; Mason, S.; Siegle, A.; Merritt, M.; Olander, L. Green Firebreaks: A DOI Nature-Based Solutions Roadmap Fact Sheet; Nicholas Institute for Energy, Environment & Sustainability, Duke University: Durham, NC, USA, 2023; Available online: https://nicholasinstitute.duke.edu/sites/default/files/project/nature-based-solutions-roadmap/strategy/doi-nbs-roadmap-strategy_green-firebreaks_fact-sheet.pdf (accessed on 28 August 2025).
- Maxwell, T.; Curran, T.; Carpenter, L.; Alam, A.; Pagadala, T.; Mason, N.; Wyse, S.; Perry, G.; Cui, X. Nature-based Solutions for Fire Suppression: Green firebreaks, low-flammability foods and planting fire micro-refugia. In Proceedings of the 9th International Fire Ecology and Management Congress, Virtual, 30 November–3 December 2021. [Google Scholar]
- Krix, D.W.; Murray, B.R. Landscape variation in plant leaf flammability is driven by leaf traits responding to environmental gradients. Ecosphere 2018, 9, e02093. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Alessio, G.A.; Peñuelas, J.; De Lillis, M.; Llusià, J. Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis. Plant Biol. 2008, 10, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Copes-Gerbitz, K.; Dickson-Hoyle, S.; Ravensbergen, S.L.; Hagerman, S.M.; Daniels, L.D.; Coutu, J. Community Engagement With Proactive Wildfire Management in British Columbia, Canada: Perceptions, Preferences, and Barriers to Action. Front. For. Glob. Change 2022, 5, 829125. [Google Scholar] [CrossRef]
- Lambrou, N.; Kolden, C.; Loukaitou-Sideris, A.; Anjum, E.; Acey, C. Social drivers of vulnerability to wildfire disasters: A review of the literature. Landsc. Urban Plan. 2023, 237, 104797. [Google Scholar] [CrossRef]
- McCaffrey, S.; McGee, T.K.; Coughlan, M.; Tedim, F. 8—Understanding wildfire mitigation and preparedness in the context of extreme wildfires and disasters: Social science contributions to understanding human response to wildfire. In Extreme Wildfire Events and Disasters; Tedim, F., Leone, V., McGee, T.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 155–174. [Google Scholar]
- Mourao, P.R.; Martinho, V.D. Forest fire legislation: Reactive or proactive? Ecol. Indic. 2019, 104, 137–144. [Google Scholar] [CrossRef]
- McCaffrey, S.; Rhodes, A.; Stidham, M. Wildfire evacuation and its alternatives: Perspectives from four United States’ communities. Int. J. Wildland Fire 2015, 24, 170–178. [Google Scholar] [CrossRef]
- McConnell, K.; Koslov, L. Critically assessing the idea of wildfire managed retreat. Environ. Res. Lett. 2024, 19, 041005. [Google Scholar] [CrossRef]
- Burby, R.J.; Deyle, R.E.; Godschalk, D.R.; Olshansky, R.B. Creating hazard resilient communities through land-use planning. Nat. Hazards Rev. 2000, 1, 99–106. [Google Scholar] [CrossRef]
- Driscoll, D.A.; Macdonald, K.J.; Gibson, R.K.; Doherty, T.S.; Nimmo, D.G.; Nolan, R.H.; Ritchie, E.G.; Williamson, G.J.; Heard, G.W.; Tasker, E.M.; et al. Biodiversity impacts of the 2019–2020 Australian megafires. Nature 2024, 635, 898–905. [Google Scholar] [CrossRef]
- Depietri, Y.; Orenstein, D.E. Fire-Regulating Services and Disservices With an Application to the Haifa-Carmel Region in Israel. Front. Environ. Sci. 2019, 7, 107. [Google Scholar] [CrossRef]
- McLennan, B.J.; Handmer, J. Reframing responsibility-sharing for bushfire risk management in Australia after Black Saturday. Environ. Hazards 2012, 11, 1–15. [Google Scholar] [CrossRef]
- Kemter, M.; Fischer, M.; Luna, L.V.; Schönfeldt, E.; Vogel, J.; Banerjee, A.; Korup, O.; Thonicke, K. Cascading Hazards in the Aftermath of Australia’s 2019/2020 Black Summer Wildfires. Earth’s Future 2021, 9, e2020EF001884. [Google Scholar] [CrossRef]
- Yenneti, K.; Ding, L.; Prasad, D.; Ulpiani, G.; Paolini, R.; Haddad, S.; Santamouris, M. Urban Overheating and Cooling Potential in Australia: An Evidence-Based Review. Climate 2020, 8, 126. [Google Scholar] [CrossRef]
- Ying, J.; Xiaojing, Z.; Yiqi, Z.; and Bilan, S. Green infrastructure: Systematic literature review. Econ. Res.-Ekon. Istraživanja 2022, 35, 343–366. [Google Scholar] [CrossRef]
- Gawne, B.; and Thompson, R. Adaptive water management in response to climate change: The case of the southern Murray-Darling Basin. Australas. J. Water Resour. 2023, 27, 271–288. [Google Scholar] [CrossRef]
- Lee, K.; Jepson, W. Drivers and barriers to urban water reuse: A systematic review. Water Secur. 2020, 11, 100073. [Google Scholar] [CrossRef]
- Chung, P.-W.; Livesley, S.J.; Rayner, J.P.; Farrell, C. Greywater irrigation can support climbing plant growth on building green façades. Urban For. Urban Green. 2021, 62, 127119. [Google Scholar] [CrossRef]
- Filali, H.; Barsan, N.; Souguir, D.; Nedeff, V.; Tomozei, C.; Hachicha, M. Greywater as an Alternative Solution for a Sustainable Management of Water Resources—A Review. Sustainability 2022, 14, 665. [Google Scholar] [CrossRef]
Year 2004–2024 | Title (Citation) | Location | Approach (Field/Model/Literature) | Species Flammability | Fire Behaviour & Ecology |
---|---|---|---|---|---|
2005 | New technology for fuel breaks and green strips in urban interface and wildland areas [60]. | USA | S | X | X |
2012 | Forest hydrology, soil conservation and green barriers in Canary Islands [54]. | Canary Islands, Spain | L | X | X |
2013 | Evaluation of the flammability of trees and shrubs used in the implementation of green barriers in Southern Brazil [48] | Brazil | F | X | |
2014 | Implementation of the “cypress system” as a green firewall. Project CypFire [55]. | Spain | F, L | X | X |
2015 | Possible land management uses of common cypress to reduce wildfire initiation risk: a laboratory study [57]. | Spain | F | X | |
2018 | Managing fire and biodiversity in the Wildland Urban Interface: A role for Green Firebreaks [45]. | Global | L | X | |
2018 | Selecting low-flammability plants as Green Firebreaks within sustainable urban garden design [49]. | Australia | F | X | |
2018 | Can air quality management drive sustainable fuels management at the temperate Wildland Urban Interface [46]? | Australia & Canada | L | X | |
2019 | Green Firebreaks as a management tool for wildfires: Lessons from China [41]. | China | L | X | X |
2019 | Relationship among leaf flammability attributes and identifying low-leaf flammability species in the Wildland Urban Interface [50]. | Australia | F | X | |
2020 | An integrated approach to identify low-flammability plant species for Green Firebreaks [51]. | Australia | F | X | X |
2020 | Fire & biodiversity in the Anthropocene [5]. | Global—China | L | X | |
2020 | Pyrophysiology and wildfire management [59]. | Europe | L | X | |
2020 | Low flammability plants of the Cerrado for Green Fire Break [52]. | Brazil | F | X | |
2021 | Flammability of urban ornamental species for use in Green Firebreaks [53]. | Brazil | F | X | |
2021 | Ecological techniques for wildfire mitigation: Two distinct fuelbreak approaches and their fusion. | China | L | X | |
2021 | The design of green firebreaks in Portuguese forest: a case study of Alferce, Monchique [61]. | Portugal | L | X | |
2022 | Fighting fire with food: Assessing the flammability of crop plant species for building fire resilient agro-forestry systems [58]. | Australia | F | X | X |
2024 | Refining ecological techniques for forest fire prevention and evaluating their diverse benefits [62]. | USA and China | L | X | |
2024 | Measuring flammability of crops, pastures, fruit trees, and weeds: A novel tool to fight wildfires in agricultural landscapes [63]. | New Zealand | F | X | X |
2024 | Predicting the integrated fire resistance of Wildland Urban Interface plant communities by spatial structure analysis for Shanghai, China [64]. | China | F | X | X |
2024 | Can green firebreaks help balance biodiversity, carbon storage and wildfire risk [47]? | Australia | S | X | |
Summary | Twenty-two papers | 8 countries, 4 continents | F = 11 L = 10 M = 2 | 14 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, J.D.; Putz, F.E.; Van Holsbeeck, S. Green Firebreaks: Potential to Proactively Complement Wildfire Management. Fire 2025, 8, 352. https://doi.org/10.3390/fire8090352
Smith JD, Putz FE, Van Holsbeeck S. Green Firebreaks: Potential to Proactively Complement Wildfire Management. Fire. 2025; 8(9):352. https://doi.org/10.3390/fire8090352
Chicago/Turabian StyleSmith, Jady D., Francis E. Putz, and Sam Van Holsbeeck. 2025. "Green Firebreaks: Potential to Proactively Complement Wildfire Management" Fire 8, no. 9: 352. https://doi.org/10.3390/fire8090352
APA StyleSmith, J. D., Putz, F. E., & Van Holsbeeck, S. (2025). Green Firebreaks: Potential to Proactively Complement Wildfire Management. Fire, 8(9), 352. https://doi.org/10.3390/fire8090352