Morpho-Physiological Traits and Flammability of Bark in a Post-Fire Black Pine Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Plant Material
2.3. Bark Morpho-Physiological Traits
2.4. Bark Flammability
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Morpho-physiological traits | |
BT | bark thickness |
BR | bark roughness |
τc | critical time to cambium kill |
MC | moisture content |
Flammability components | |
TTI | time to ignition |
HRR | heat release rate |
EHC | effective heat of combustion |
MLR | mass loss rate |
THR | total heat release |
References
- Bond, W.J.; Woodward, F.I.; Midgley, G.F. The global distribution of ecosystems in a world without fire. New Phytol. 2005, 165, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bond, W.J.; Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Nagel, T.A.; Cerioni, M. Structure and dynamics of old-growth Pinus nigra stands in Southeast Europe. Eur. J. For. Res. 2023, 142, 537–545. [Google Scholar] [CrossRef]
- Pausas, J.G.; Fernández-Muñoz, S. Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim. Change 2012, 110, 215–226. [Google Scholar] [CrossRef]
- Keeley, J.E. Ecology and evolution of pine life histories. Ann. For. Sci. 2012, 69, 445–453. [Google Scholar] [CrossRef]
- Christopoulou, A.; Fyllas, N.M.; Andriopoulos, P.; Koutsias, N.; Dimitrakopoulos, P.G.; Arianoutsou, M. Post-fire regeneration patterns of Pinus nigra in a recently burned area in Mount Taygetos, Southern Greece: The role of unburned forest patches. For. Ecol. Manag. 2014, 327, 148–156. [Google Scholar] [CrossRef]
- Ordóñez, J.L.; Retana, J.; Espelta, J.M. Effects of tree size, crown damage, and tree location on post-fire survival and cone production of Pinus nigra trees. For. Ecol. Manag. 2005, 206, 109–117. [Google Scholar] [CrossRef]
- Agee, J.K.; Bahro, B.; Finney, M.A.; Omi, P.N.; Sapsis, D.B.; Skinner, C.N.; van Wagtendonk, J.W.; Phillip Weatherspoon, C. The use of shaded fuelbreaks in landscape fire management. For. Ecol. Manag. 2000, 127, 55–66. [Google Scholar] [CrossRef]
- Stephens, S.L.; Finney, M.A. Prescribed fire mortality of Sierra Nevada mixed conifer tree species: Effects of crown damage and forest floor combustion. For. Ecol. Manag. 2002, 162, 261–271. [Google Scholar] [CrossRef]
- Martin, R.E. Thermal properties of bark. For. Prod. J. 1963, 13, 419–426. [Google Scholar]
- Román Cuesta, R.M. Human and Environmental Factors Influencing Fire Trends in Different Forest Ecosystems. Ph.D. Thesis, Autonomous University of Barcelona, Barcelona, Spain, 2002. [Google Scholar]
- Brando, P.M.; Nepstad, D.C.; Balch, J.K.; Bolker, B.; Christman, M.C.; Coe, M.; Putz, F.E. Fire-induced tree mortality in a neotropical forest: The roles of bark traits, tree size, wood density and fire behavior. Glob. Change Biol. 2012, 18, 630–641. [Google Scholar] [CrossRef]
- Williams, C.E. History and Status of Table Mountain Pine–Pitch Pine Forests of the Southern Appalachian Mountains (USA). Nat. Areas J. 1998, 18, 81–90. [Google Scholar]
- Mohr, J.; Thom, D.; Hasenauer, H.; Seidl, R. Are uneven-aged forests in Central Europe less affected by natural disturbances than even-aged forests? For. Ecol. Manag. 2024, 559, 121816. [Google Scholar] [CrossRef]
- Ritter, S.M.; Hoffman, C.M.; Battaglia, M.A.; Linn, R.; Mell, W.E. Vertical and Horizontal Crown Fuel Continuity Influences Group-Scale Ignition and Fuel Consumption. Fire 2023, 6, 321. [Google Scholar] [CrossRef]
- González-Olabarria, J.R.; Palahí, M.; Pukkala, T.; Trasobares, A. Optimising the management of Pinus nigra Arn. stands under endogenous risk of fire in Catalonia. For. Syst. 2008, 17, 10–17. [Google Scholar] [CrossRef]
- González-Olabarria, J.R.; Garcia-Gonzalo, J.; Mola-Yudego, B.; Pukkala, T. Adaptive management rules for Pinus nigra Arnold ssp. salzmannii stands under risk of fire. Ann. For. Sci. 2017, 74, 52. [Google Scholar] [CrossRef]
- Keeley, J.E.; Zedler, P.H. Evolution of life histories in Pinus. In Ecology and Biogeography of Pinus; Richardson, D.M., Ed.; Cambridge University Press: Cambridge, UK, 2000; pp. 219–250. [Google Scholar]
- Catry, F.X.; Rego, F.; Moreira, F.; Fernandes, P.M.; Pausas, J.G. Post-fire tree mortality in mixed forests of central Portugal. For. Ecol. Manag. 2010, 260, 1184–1192. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Fernandes, M.M.; Loureiro, C. Survival to prescribed fire of plantation-grown Corsican black pine in northern Portugal. Ann. For. Sci. 2012, 69, 813–820. [Google Scholar] [CrossRef]
- Kalabokidis, K.D.; Omi, P.N. Reduction of Fire Hazard Through Thinning/Residue Disposal in the Urban Interface. Int. J. Wildland Fire 1998, 8, 29–35. [Google Scholar] [CrossRef]
- Agee, J.K.; Skinner, C.N. Basic principles of forest fuel reduction treatments. For. Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Stephens, S.L.; Moghaddas, J.J. Experimental fuel treatment impacts on forest structure, potential fire behavior, and predicted tree mortality in a California mixed conifer forest. For. Ecol. Manag. 2005, 215, 21–36. [Google Scholar] [CrossRef]
- Piqué, M.; Domènech, R. Effectiveness of mechanical thinning and prescribed burning on fire behavior in Pinus nigra forests in NE Spain. Sci. Total Environ. 2018, 618, 1539–1546. [Google Scholar] [CrossRef]
- Tardós, P.; Lucas-Borja, M.E.; Beltrán, M.; Onkelinx, T.; Piqué, M. Composite low thinning and slash burning treatment enhances initial Spanish black pine seedling recruitment. For. Ecol. Manag. 2019, 433, 1–12. [Google Scholar] [CrossRef]
- Vilà-Vilardell, L.; De Cáceres, M.; Piqué, M.; Casals, P. Prescribed fire after thinning increased resistance of sub-Mediterranean pine forests to drought events and wildfires. For. Ecol. Manag. 2023, 527, 120602. [Google Scholar] [CrossRef]
- Vázquez-Veloso, A.; Dejene, T.; Oria-de-Rueda, J.A.; Guijarro, M.; Hernando, C.; Espinosa, J.; Madrigal, J.; Martín-Pinto, P. Prescribed burning in spring or autumn did not affect the soil fungal community in Mediterranean Pinus nigra natural forests. For. Ecol. Manag. 2022, 512, 120161. [Google Scholar] [CrossRef]
- Espinosa, J.; Carrillo, C.; Madrigal, J.; Guijarro, M.; Hernando, C.; Martín-Pinto, P. Experimental summer fires do not affect fungal diversity but do shape fungal community composition in Mediterranean Pinus nigra forests. Fire Ecol. 2025, 21, 16. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Stoof, C.R.; Vega, J.A.; Molina, D. Prescribed burning in southern Europe: Developing fire management in a dynamic landscape. Front. Ecol. Environ. 2013, 11, e4–e14. [Google Scholar] [CrossRef]
- Corona, P.; Ascoli, D.; Barbati, A.; Bovio, G.; Colangelo, G.; Elia, M.; Garfì, V.; Iovino, F.; Lafortezza, R.; Leone, V.; et al. Integrated forest management to prevent wildfires under Mediterranean environments. Ann. Silvic. Res. 2015, 39, 1–22. [Google Scholar] [CrossRef]
- Fernandes, P.M. Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann. For. Sci. 2009, 66, 415. [Google Scholar] [CrossRef]
- Lyons-Tinsley, C.; Peterson, D.L. Surface fuel treatments in young, regenerating stands affect wildfire severity in a mixed conifer forest, eastside Cascade Range, Washington, USA. For. Ecol. Manag. 2012, 270, 117–125. [Google Scholar] [CrossRef]
- Bellows, R.S.; Thomson, A.C.; Helmstedt, K.J.; York, R.A.; Potts, M.D. Damage and mortality patterns in young mixed conifer plantations following prescribed fires in the Sierra Nevada, California. For. Ecol. Manag. 2016, 376, 193–204. [Google Scholar] [CrossRef]
- Stephens, S.L.; Moghaddas, J.J.; Edminster, C.; Fiedler, C.E.; Haase, S.; Harrington, M.; Keeley, J.E.; Knapp, E.E.; McIver, J.D.; Metlen, K.; et al. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests. Ecol. Appl. 2009, 19, 305–320. [Google Scholar] [CrossRef]
- Marshall, E.; Keem, J.L.; Penman, T.D.; Di Stefano, J. Simulating fuel management for protecting regional biodiversity under climate change. J. Environ. Manag. 2025, 373, 123731. [Google Scholar] [CrossRef]
- Moreira, F.; Arianoutsou, M.; Corona, P.; De Las Heras, J. Post-Fire Management and Restoration of Southern European Forests; Managing Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2012; Volume 24. [Google Scholar] [CrossRef]
- Hoffmann, W.A.; Adasme, R.; Haridasan, M.; T. de Carvalho, M.; Geiger, E.L.; Pereira, M.A.B.; Gotsch, S.G.; Franco, A.C. Tree topkill, not mortality, governs the dynamics of savanna–forest boundaries under frequent fire in central Brazil. Ecology 2009, 90, 1326–1337. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, W.A.; Geiger, E.L.; Gotsch, S.G.; Rossatto, D.R.; Silva, L.C.R.; Lau, O.L.; Haridasan, M.; Franco, A.C. Ecological thresholds at the savanna-forest boundary: How plant traits, resources and fire govern the distribution of tropical biomes. Ecol. Lett. 2012, 15, 759–768. [Google Scholar] [CrossRef]
- Pausas, J.G. Bark thickness and fire regime. Funct. Ecol. 2015, 29, 315–327. [Google Scholar] [CrossRef]
- Clarke, P.J.; Lawes, M.J.; Midgley, J.J.; Lamont, B.B.; Ojeda, F.; Burrows, G.E.; Enright, N.J.; Knox, K.J.E. Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytol. 2013, 197, 19–35. [Google Scholar] [CrossRef]
- Lawes, M.J.; Richards, A.; Dathe, J.; Midgley, J.J. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol. 2011, 212, 2057–2069. [Google Scholar] [CrossRef]
- Piper, F.I.; Paula, S. The Role of Nonstructural Carbohydrates Storage in Forest Resilience under Climate Change. Curr. For. Rep. 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Pellegrini, A.F.A.; Anderegg, W.R.L.; Paine, C.E.T.; Hoffmann, W.A.; Kartzinel, T.; Rabin, S.S.; Sheil, D.; Franco, A.C.; Pacala, S.W. Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecol. Lett. 2017, 20, 307–316. [Google Scholar] [CrossRef]
- Espinosa, J.; Rodríguez de Rivera, O.; Madrigal, J.; Guijarro, M.; Hernando, C. Predicting potential cambium damage and fire resistance in Pinus nigra Arn. ssp. salzmannii. For. Ecol. Manag. 2020, 474, 118372. [Google Scholar] [CrossRef]
- Madrigal, J.; Rodríguez de Rivera, Ó.; Carrillo, C.; Guijarro, M.; Hernando, C.; Vega, J.A.; Martin-Pinto, P.; Molina, J.R.; Fernández, C.; Espinosa, J. Empirical Modelling of Stem Cambium Heating Caused by Prescribed Burning in Mediterranean Pine Forest. Fire 2023, 6, 430. [Google Scholar] [CrossRef]
- Pimont, F.; Prodon, R.; Rigolot, E. Comparison of postfire mortality in endemic Corsican black pine (Pinus nigra ssp. laricio) and its direct competitor (Pinus pinaster). Ann. For. Sci. 2011, 68, 425–432. [Google Scholar] [CrossRef]
- Ferrat, L.; Morandini, F.; Lapa, G. Influence of Prescribed Burning on a Pinus nigra subsp. Laricio Forest: Heat Transfer and Tree Vitality. Forests 2021, 12, 915. [Google Scholar] [CrossRef]
- Espinosa, J.; Martin-Benito, D.; Rodríguez de Rivera, Ó.; Hernando, C.; Guijarro, M.; Madrigal, J. Tree Growth Response to Low-Intensity Prescribed Burning in Pinus nigra Stands: Effects of Burn Season and Fire Severity. Appl. Sci. 2021, 11, 7462. [Google Scholar] [CrossRef]
- Tapias, R.; Climent, J.; Pardos, J.A.; Gil, L. Life histories of Mediterranean pines. Plant Ecol. 2004, 171, 53–68. [Google Scholar] [CrossRef]
- Šumsko Gazdinstvo Užice. Osnove Gazdovanja Šumama za G.J. “Murtenica” 2020–2029; Šumsko Gazdinstvo Užice: Užice, Serbia, 2019. [Google Scholar]
- Hood, S.M. Mitigating old tree mortality in long-unburned, fire-dependent forests: A synthesis. In General Technical Report RMRS-GTR-238; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010; p. 71. [Google Scholar] [CrossRef]
- Graves, S.J.; Rifai, S.W.; Putz, F.E. Outer bark thickness decreases more with height on stems of fire-resistant than fire-sensitive Floridian oaks (Quercus spp.; Fagaceae). Am. J. Bot. 2014, 101, 2183–2188. [Google Scholar] [CrossRef]
- Peterson, D.L.; Ryan, K.C. Modeling postfire conifer mortality for long-range planning. Environ. Manag. 1986, 10, 797–808. [Google Scholar] [CrossRef]
- Protić, M.; Mišić, N.; Raos, M.; Mančić, M.; Popović, M. Overview of common methods for fire testing. Facta Univ. Ser. Work. Living Environ. Prot. 2024, 21, 19–35. [Google Scholar] [CrossRef]
- Babrauskas, V. Development of the cone calorimeter—A bench-scale heat release rate apparatus based on oxygen consumption. Fire Mater. 1984, 8, 81–95. [Google Scholar] [CrossRef]
- Fire Testing Technology Ltd. Mass Loss Cone Manual (B11325-850), Revision A; Fire Testing Technology Ltd.: East Grinstead, UK, 2017. [Google Scholar]
- Schemel, C.F.; Simeoni, A.; Biteau, H.; Rivera, J.D.; Torero, J.L. A calorimetric study of wildland fuels. Exp. Therm. Fluid Sci. 2008, 32, 1381–1389. [Google Scholar] [CrossRef]
- R Foundation for Statistical Computing. R Core Team R: A Language and Environment for Statistical Computing. 2022. Available online: https://www.R-project.org (accessed on 19 May 2025).
- Pinard, M.A.; Huffman, J. Fire resistance and bark properties of trees in a seasonally dry forest in eastern Bolivia. J. Trop. Ecol. 1997, 13, 727–740. [Google Scholar] [CrossRef]
- van Mantgem, P.; Schwartz, M. Bark heat resistance of small trees in Californian mixed conifer forests: Testing some model assumptions. For. Ecol. Manag. 2003, 178, 341–352. [Google Scholar] [CrossRef]
- Dickinson, M.B.; Johnson, E.A. Chapter 14—Fire Effects on Trees. In Forest Fires; Johnson, E.A., Miyanishi, K., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 477–525. [Google Scholar] [CrossRef]
- Bauer, G.; Speck, T.; Blömer, J.; Bertling, J.; Speck, O. Insulation capability of the bark of trees with different fire adaptation. J. Mater. Sci. 2010, 45, 5950–5959. [Google Scholar] [CrossRef]
- Frejaville, T.; Curt, T.; Carcaillet, C. Bark flammability as a fire-response trait for subalpine trees. Front. Plant Sci. 2013, 4, 466. [Google Scholar] [CrossRef]
- Ducrey, M.; Duhoux, F.; Huc, R.; Rigolot, E. The ecophysiological and growth responses of Aleppo pine (Pinus halepensis) to controlled heating applied to the base of the trunk. Can. J. For. Res. 1996, 26, 1366–1374. [Google Scholar] [CrossRef]
- Ryan, K.C. Effects of fire injury on water relations of ponderosa pine. In Proceedings of the Fire 2000: The First National Congress on Fire Ecology, Prevention and Management, San Diego, CA, USA, 27 November–1 December 2000; Tall Timbers Research Station: Tallahassee, FL, USA, 2000; pp. 58–66. [Google Scholar]
- Ryan, K.C. Effects of Fire-Caused Defoliation and Basal Girdling on Water Relations and Growth of Ponderosa Pine. Ph.D. Thesis, University of Montana, Missoula, MT, USA, 1993. [Google Scholar]
- Shearman, T.M.; Varner, J.M. Variation in Bark Allocation and Rugosity Across Seven Co-occurring Southeastern US Tree Species. Front. For. Glob. Change 2021, 4, 731020. [Google Scholar] [CrossRef]
- Jackson, J.F.; Adams, D.C.; Jackson, U.B. Allometry of Constitutive Defense: A Model and a Comparative Test with Tree Bark and Fire Regime. Am. Nat. 1999, 153, 614–632. [Google Scholar] [CrossRef]
- Bär, A.; Michaletz, S.T.; Mayr, S. Fire effects on tree physiology. New Phytol. 2019, 223, 1728–1741. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Niu, A.; Wang, C.; Jin, Y. Fire increases the risk of hydraulic failure of woody species: Evidence from an experiment and a meta-analysis. Agric. For. Meteorol. 2025, 366, 110495. [Google Scholar] [CrossRef]
- Bova, A.S.; Dickinson, M.B. Linking surface-fire behavior, stem heating, and tissue necrosis. Can. J. For. Res. 2005, 35, 814–822. [Google Scholar] [CrossRef]
- Reed, C.C.; Hood, S.M.; Ramirez, A.R.; Sala, A. Fire directly affects tree carbon balance and indirectly affects hydraulic function: Consequences for post-fire mortality in two conifers. New Phytol. 2025, 247, 595–611. [Google Scholar] [CrossRef] [PubMed]
- Popović, Z.; Bojović, S.; Marković, M.; Cerdà, A. Tree species flammability based on plant traits: A synthesis. Sci. Total Environ. 2021, 800, 149625. [Google Scholar] [CrossRef] [PubMed]
- Weise, D.R.; White, R.H.; Beall, F.C.; Etlinger, M. Use of the cone calorimeter to detect seasonal differences in selected combustion characteristics of ornamental vegetation. Int. J. Wildland Fire 2005, 14, 321–338. [Google Scholar] [CrossRef]
- Poorter, L.; McNeil, A.; Hurtado, V.-H.; Prins, H.H.T.; Putz, F.E. Bark traits and life-history strategies of tropical dry- and moist forest trees. Funct. Ecol. 2014, 28, 232–242. [Google Scholar] [CrossRef]
- Huggett, R.J.; Abt, K.L.; Shepperd, W. Efficacy of mechanical fuel treatments for reducing wildfire hazard. For. Policy Econ. 2008, 10, 408–414. [Google Scholar] [CrossRef]
- Seifert, T.; Meincken, M.; Odhiambo, B.O. The effect of surface fire on tree ring growth of Pinus radiata trees. Ann. For. Sci. 2017, 74, 34. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Vega, J.A.; Jiménez, E.; Rigolot, E. Fire resistance of European pines. For. Ecol. Manag. 2008, 256, 246–255. [Google Scholar] [CrossRef]
- Caudullo, G.; De Rigo, D.; Mauri, A.; Houston Durrant, T.; San-Miguel-Ayanz, J. European Atlas of Forest Tree Species; Publications Office of the European Union: Luxembourg, 2016; Available online: https://data.europa.eu/doi/10.2760/776635 (accessed on 20 June 2025).
- Martín-Sanz, R.C.; San-Martín, R.; Poorter, H.; Vázquez, A.; Climent, J. How Does Water Availability Affect the Allocation to Bark in a Mediterranean Conifer? Front. Plant Sci. 2019, 10, 607. [Google Scholar] [CrossRef]
- Van Mantgem, P.; Schwartz, M. An experimental demonstration of stem damage as a predictor of fire-caused mortality for ponderosa pine. Can. J. For. Res. 2004, 34, 1343–1347. [Google Scholar] [CrossRef]
- Valor, T.; Hood, S.M.; Piqué, M.; Larrañaga, A.; Casals, P. Resin ducts and bark thickness influence pine resistance to bark beetles after prescribed fire. For. Ecol. Manag. 2021, 494, 119322. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Grootemaat, S.; Verheijen, L.M.; Cornwell, W.K.; van Bodegom, P.M.; van der Wal, R.; Aerts, R. Are litter decomposition and fire linked through plant species traits? New Phytol. 2017, 216, 653–669. [Google Scholar] [CrossRef]
- Varner, J.M.; Shearman, T.M.; Kane, J.M.; Banwell, E.M.; Jules, E.S.; Stambaugh, M.C. Understanding flammability and bark thickness in the genus Pinus using a phylogenetic approach. Sci. Rep. 2022, 12, 7384. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Molleman, J.; Grootemaat, S.; Dong, M.; Cornelissen, J.H.C. Thicker or Shorter Bark Fragments of Eucalypt Tree Species Make More Densely Packed Fuel Beds, Which Slow Down Fire Spread. Forests 2024, 15, 2092. [Google Scholar] [CrossRef]
- Seda Keleş, E.; Kavgacı, A. Post-fire succession of black pine (Pinus nigra) forest vegetation under different fire regimes. Acta Bot. Croat. 2025, 84, 323442. [Google Scholar] [CrossRef]
- Stojanović, D.B.; Orlović, S.; Zlatković, M.; Kostić, S.; Vasić, V.; Miletić, B.; Kesić, L.; Matović, B.; Božanić, D.; Pavlović, L.; et al. Climate change within Serbian forests: Current state and future perspectives. Topola 2021, 208, 39–56. [Google Scholar] [CrossRef]
- Moreno, J.M.; Viedma, O.; Zavala, G.; Luna, B. Landscape variables influencing forest fires in central Spain. Int. J. Wildland Fire 2011, 20, 678–689. [Google Scholar] [CrossRef]
- Rosavec, R.; Barčić, D.; Španjol, Ž.; Oršanić, M.; Dubravac, T.; Antonović, A. Flammability and Combustibility of Two Mediterranean Species in Relation to Forest Fires in Croatia. Forests 2022, 13, 1266. [Google Scholar] [CrossRef]
BT | BR | TC | MC | TTI | Peak HRR | Peak EHC | Peak MLR | Mean HRR | Mean EHC | Mean MLR | THR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BT | 1 | |||||||||||
BR | −0.32 | 1 | ||||||||||
TC | 1 *** | −0.32 | 1 | |||||||||
MC | −0.04 | −0.09 | −0.04 | 1 | ||||||||
TTI | 0.52 ** | −0.21 | 0.52 ** | 0.2 | 1 | |||||||
Peak HRR | 0.08 | −0.12 | 0.08 | 0.34 | −0.19 | 1 | ||||||
Peak EHC | 0.35 | −0.18 | 0.35 | −0.41 * | 0.12 | −0.14 | 1 | |||||
Peak MLR | 0.65 *** | −0.34 | 0.65 *** | −0.01 | 0.64 *** | −0.13 | 0.45 * | 1 | ||||
Mean HRR | −0.09 | −0.14 | −0.09 | 0.26 | −0.16 | 0.61 ** | −0.2 | −0.08 | 1 | |||
Mean EHC | 0.48 * | −0.4 | 0.48 * | −0.26 | 0.22 | 0.12 | 0.34 | 0.53 ** | 0.47 * | 1 | ||
Mean MLR | 0.13 | −0.24 | 0.13 | 0.59 ** | 0.09 | 0.29 | −0.28 | 0.18 | 0.39 | 0.05 | 1 | |
THR | 0.06 | −0.14 | 0.06 | −0.41 * | −0.34 | 0.23 | 0.11 | 0 | 0.52 ** | 0.74 *** | −0.15 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popović, Z.; Mišić, N.; Protić, M.; Vidaković, V. Morpho-Physiological Traits and Flammability of Bark in a Post-Fire Black Pine Population. Fire 2025, 8, 342. https://doi.org/10.3390/fire8090342
Popović Z, Mišić N, Protić M, Vidaković V. Morpho-Physiological Traits and Flammability of Bark in a Post-Fire Black Pine Population. Fire. 2025; 8(9):342. https://doi.org/10.3390/fire8090342
Chicago/Turabian StylePopović, Zorica, Nikola Mišić, Milan Protić, and Vera Vidaković. 2025. "Morpho-Physiological Traits and Flammability of Bark in a Post-Fire Black Pine Population" Fire 8, no. 9: 342. https://doi.org/10.3390/fire8090342
APA StylePopović, Z., Mišić, N., Protić, M., & Vidaković, V. (2025). Morpho-Physiological Traits and Flammability of Bark in a Post-Fire Black Pine Population. Fire, 8(9), 342. https://doi.org/10.3390/fire8090342