Hydroclimatic and Land Use Drivers of Wildfire Risk in the Colombian Caribbean
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Database
2.3. Analysis of Fire Variables
2.3.1. Calculation of Fire Density and Burned Area
2.3.2. Spatial Autocorrelation and Identification of Fire-Prone Zones
2.4. Fire Occurrence According to Hydroclimatic Variables
2.5. Fire Occurrence According to Predominant Covers
3. Results
3.1. Fire Variable Assessment
3.2. Hydroclimatic Influence on Fire Occurrence
3.3. Fire Occurrence According to the Predominant Covers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowman, D.M.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; d’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, S.; Grilli, M.; Karlin, M.; Fachinetti, R.; Ravelo, A. Determinación de Regímenes de Incendios y Sequías Usando Información Satelital y Meteorológica Para Córdoba, Argentina. Agriscientia 2022, 39, 1–10. [Google Scholar] [CrossRef]
- Bonfanti, F.A.; Sánchez, M.E. Los Incendios Forestales En El Este Del Chaco Durante El Período 2015–2020 y Su Implicancia Ambiental. Una Visión Desde La Geografía. In Proceedings of the XL Encuentro de Geohistoria Regional; Consejo Nacional de Investigaciones Científicas y Técnicas: Buenos Aires, Argentina, 2021. [Google Scholar]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T. Learning to Coexist with Wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Ren, C.; Liang, Y.; Liang, J.; Lin, X.; Yin, A.; Wei, Z. Assessment of Wildfire Susceptibility and Wildfire Threats to Ecological Environment and Urban Development Based on GIS and Multi-Source Data: A Case Study of Guilin, China. Remote Sens. 2023, 15, 2659. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A Human-Driven Decline in Global Burned Area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef]
- Swain, D.L.; Prein, A.F.; Abatzoglou, J.T.; Albano, C.M.; Brunner, M.; Diffenbaugh, N.S.; Singh, D.; Skinner, C.B.; Touma, D. Hydroclimate Volatility on a Warming Earth. Nat. Rev. Earth Environ. 2025, 6, 35–50. [Google Scholar] [CrossRef]
- Global Wildfire Information System Annual Area Burnt by Wildfires 2025. Available online: https://gwis.jrc.ec.europa.eu/apps/gwis.statistics/seasonaltrend (accessed on 21 May 2025).
- Yang, X.; Jin, X.; Zhou, Y. Wildfire Risk Assessment and Zoning by Integrating Maxent and GIS in Hunan Province, China. Forests 2021, 12, 1299. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, R.; Zhan, J.; Li, S.; Shama, A.; Zhan, R.; Wang, T.; Lv, J.; Bao, X.; Wu, R. Wildfire Risk Assessment in Liangshan Prefecture, China Based on an Integration Machine Learning Algorithm. Remote Sens. 2022, 14, 4592. [Google Scholar] [CrossRef]
- United Nations Environment Programme-UNEP. Waves of Extreme Wildfires. In Frontiers 2022: Noise, Blazes and Mis-Matches—Emerging Issues of Environmental Concern; UNEP: Nairobi, Kenya, 2022; pp. 24–37. ISBN 978-92-807-3917-6. [Google Scholar]
- Pérez-Verdín, G.; Márquez-Linares, M.A.; Cortés-Ortíz, A.; Salmerón-Macías, M. Análisis Espacio-Temporal de La Ocurrencia de Incendios Forestales En Durango, México. Madera y Bosques 2013, 19, 37–58. [Google Scholar] [CrossRef]
- Ávila-Florez, D.Y.; Pompa-García, M.; Vargas-Pérez, E. Análisis Espacial de La Ocurrencia de Incendios Forestales En El Estado de Durango. Rev. Chapingo. Ser. Cienc. For. y del Ambiente 2010, 16, 253–260. [Google Scholar] [CrossRef]
- Nagle, E.J. Análisis de La Sucesión Vegetal En Áreas Quemadas Por Incendios Forestales Mediante Teledetección. Bachelor’s Thesis, Universidad de Manizales, Manizales, Colombia, 2022. Available online: https://ridum.umanizales.edu.co/xmlui/handle/20.500.12746/6629 (accessed on 8 April 2025).
- Earl, N.; Simmonds, I. Spatial and Temporal Variability and Trends in 2001–2016 Global Fire Activity. J. Geophys. Res. Atmos 2018, 123, 2524–2536. [Google Scholar] [CrossRef]
- Sayedi, S.S.; Abbott, B.W.; Vannière, B.; Leys, B.; Colombaroli, D.; Romera, G.G.; Słowiński, M.; Aleman, J.C.; Blarquez, O.; Feurdean, A. Assessing Changes in Global Fire Regimes. Fire Ecol. 2024, 20, 1–22. [Google Scholar] [CrossRef]
- Meng, Y.; Hao, Z.; Feng, S.; Zhang, X.; Hao, F. Increase in Compound Dry-Warm and Wet-Warm Events under Global Warming in CMIP6 Models. Glob. Planet. Change 2022, 210, 103773. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Wildfires and Global Change. Front. Ecol. Environ. 2021, 19, 387–395. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.-A.; Van Dorn, J.; Hayhoe, K. Global Pyrogeography: The Current and Future Distribution of Wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global Emergence of Anthropogenic Climate Change in Fire Weather Indices. Geophys. Res. Lett. 2019, 46, 326–336. [Google Scholar] [CrossRef]
- Richardson, D.; Black, A.S.; Irving, D.; Matear, R.J.; Monselesan, D.P.; Risbey, J.S.; Squire, D.T.; Tozer, C.R. Global Increase in Wildfire Potential from Compound Fire Weather and Drought. NPJ Clim. Atmos. Sci. 2022, 5, 23. [Google Scholar] [CrossRef]
- Senande-Rivera, M.; Insua-Costa, D.; Miguez-Macho, G. Spatial and Temporal Expansion of Global Wildland Fire Activity in Response to Climate Change. Nat. Commun. 2022, 13, 1208. [Google Scholar] [CrossRef]
- Jones, M.W.; Smith, A.; Betts, R.; Canadell, J.G.; Prentice, I.C.; Le Quéré, C. Climate Change Increases the Risk of Wildfires. Available online: https://ueaeprints.uea.ac.uk/id/eprint/77983 (accessed on 30 March 2025).
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.; Burton, C.; Betts, R.A.; van der Werf, G.R. Global and Regional Trends and Drivers of Fire under Climate Change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- Pricope, N.G.; Binford, M.W. A Spatio-Temporal Analysis of Fire Recurrence and Extent for Semi-Arid Savanna Ecosystems in Southern Africa Using Moderate-Resolution Satellite Imagery. J. Environ. Manag. 2012, 100, 72–85. [Google Scholar] [CrossRef]
- Argañaraz, J.P. Dinámica Espacial del Fuego en las Sierras de Córdoba. Ph.D. Thesis, Universidad Nacional de Córdoba, Córdoba, Argentina, 2016. Available online: https://www.researchgate.net/publication/301635295_Dinamica_espacial_del_fuego_en_las_Sierras_de_Cordoba (accessed on 30 March 2025).
- Meira, A.C.; Nunes, A.; Sousa, A.; Lourenço, L. Mapping the Causes of Forest Fires in Portugal by Clustering Analysis. Geosciences 2020, 10, 53. [Google Scholar] [CrossRef]
- de Oliveira-Junior, J.F.; Filho, W.L.F.C.; Alves, L.E.R.; Lyra, G.B.; de Gois, G.; da Silva, C.A.; Dos Santos, P.J.; Sobral, B.S. Fire Foci Dynamics and Their Relationship with Socioenvironmental Factors and Meteorological Systems in the State of Alagoas, Northeast Brazil. Environ. Monit. Assess. 2020, 192, 654. [Google Scholar] [CrossRef] [PubMed]
- Laris, P.; Jo, A.; Wechsler, S.P. Effects of Landscape Pattern and Vegetation Type on the Fire Regime of a Mesic Savanna in Mali. J. Environ. Manag. 2018, 227, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Bolaño-Díaz, S.; Camargo-Caicedo, Y.; Soro, T.D.; N’Dri, A.B.; Bolaño-Ortiz, T.R. Spatio-Temporal Characterization of Fire Using MODIS Data (2000–2020) in Colombia. Fire 2022, 5, 134. [Google Scholar] [CrossRef]
- Guevara, B.L. Análisis Espacio-Temporal de Incendios Del Norte y Centro de Suramérica: 2009–2019. Agric. Habitat 2021, 4, 13–23. [Google Scholar] [CrossRef]
- Comisión Nacional Asesora para la Investigación en Gestión del Riesgo de Desastres (CNAIGRD). In Investigaciones en Gestión del Riesgo de Desastres Para Colombia: Contribuciones Locales, Regionales y Nacionales 2023; Universidad Nacional de Colombia: Bogotá, Colombia, 2023; ISBN 978-958-55-0927-6.
- Mesa, O.; Urrea, V.; Ochoa, A. Trends of Hydroclimatic Intensity in Colombia. Climate 2021, 9, 120. [Google Scholar] [CrossRef]
- Montoya, A.F.H.; Sánchez, Ó.J.M. Climate Change and Space-Time Variability of Precipitation in Colombia. Rev. EIA/Engl. Version 2015, 12, 129–147. Available online: https://revistas.eia.edu.co/index.php/Reveiaenglish/article/view/913 (accessed on 24 April 2025).
- Hoyos, N.; Correa-Metrio, A.; Sisa, A.; Ramos-Fabiel, M.A.; Espinosa, J.M.; Restrepo, J.C.; Escobar, J. The Environmental Envelope of Fires in the Colombian Caribbean. Appl. Geogr. 2017, 84, 42–54. [Google Scholar] [CrossRef]
- Pomares-Meza, G.M.; Camargo-Caicedo, Y.; Vélez-Pereira, A.M. Long-Term Spatiotemporal Analysis of Precipitation Trends with Implications of ENSO-Driven Variability in the Department of Magdalena, Colombia. Water 2024, 16, 3372. [Google Scholar] [CrossRef]
- Cabrera, A.; Ferro, C.; Casallas, A.; López-Barrera, E.A. Wildfire Scenarios for Assessing Risk of Cover Loss in a Megadiverse Zone within the Colombian Caribbean. Sustainability 2024, 16, 3410. [Google Scholar] [CrossRef]
- Gutiérrez, L.C.; Gutiérrez, Y.; Noriega, O.d.J.; Rangel, R.B.; Fonseca Gamba, C.; Ortega, E.; García, H. Caracterización, Diagnóstico y Análisis de Vulnerabilidades y Amenazas en el Departamento del Magdalena: Incendios forestales. 2017. Available online: https://www.corpamag.gov.co/archivos/riesgosAmbientales/2017_Doc07_Incendios.pdf (accessed on 14 March 2025).
- Instituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM. Atlas Climatológico de Colombia; Imprenta Nacional de Colombia: Bogotá, Colombia, 2017; ISBN 978-958-8067-95-7. [Google Scholar]
- Instituto Geográfico Agustín Codazzi-IGAC. Estudio General de Suelos y Zonificación de tierras: Departamento del Magdalena, escala 1:100.000; IGAC, Ed.; Imprenta Nacional de Colombia: Bogotá, Colombia, 2009; ISBN 978-958-8323-30-5. [Google Scholar]
- Urrea, V. Variabilidad Espacial y Temporal Del Ciclo Anual de Lluvia en Colombia. Master’s Thesis, Universidad Nacional de Colombia, Medellín, Colombia, 2017. Available online: https://repositorio.unal.edu.co/handle/unal/59836 (accessed on 9 April 2025).
- Revueltas, J.E.; Zabaleta, A.; Mercado, T.; Aguirre, S. Cambios En El Clima Local y Su Efecto En La Regulación Hídrica En Microcuencas Del Departamento Del Magdalena, Norte de Colombia. Inf. Tecnológ. 2020, 31, 193–206. [Google Scholar] [CrossRef]
- Cerón, W.L.; Andreoli, R.V.; Kayano, M.T.; Canchala, T.; Ocampo-Marulanda, C.; Avila-Diaz, A.; Antunes, J. Trend Pattern of Heavy and Intense Rainfall Events in Colombia from 1981–2018: A Trend-EOF Approach. Atmosphere 2022, 13, 156. [Google Scholar] [CrossRef]
- Rangel-Ch, O.J. Ecosistemas del Caribe Colombiano. In Colombia Diversidad Biótica XII: La Región Caribe de Colombia; Rangel, O.J., Ed.; CÓDICE Ltda: Bogotá, Colombia, 2012; pp. 963–1009. ISBN 978-958-761-215-8. [Google Scholar]
- Corporación Autonóma Regional del Magdalena-CORPAMAG. Determinantes Ambientales del Departamento del Magdalena, Para la Orientación de los Modelos de Ocupación Territorial. 2018. Available online: https://www.corpamag.gov.co/archivos/mapas/DeterminantesAmbientalesDptoMagdalena.pdf (accessed on 9 April 2025).
- Beltrán Polo, Y.T. Estudio y Localización de Lagos de Alta Montaña de la Sierra Nevada de Santa Marta en el Departamento del Magdalena. Bachelor’s Thesis, Universidad Cooperativa de Colombia, Santa Marta, Colombia, 2020. Available online: https://repository.ucc.edu.co/entities/publication/5d4a80e0-3473-4a98-a32a-dc479eada3ef (accessed on 20 May 2025).
- Instituto Geográfico Agustín Codazzi-IGAC. Atlas de Suelos: Departamento Del Magdalena; IGAC, Ed.; Imprenta Nacional de Colombia: Bogotá, Colombia, 2024; ISBN 978-958-5494-78-7. [Google Scholar]
- Chuvieco, E.; Cifuentes, Y.; Hantson, S.; López, A.A.; Ramo, R.; Torres, J. Comparación Entre Focos de Calor MODIS y Perímetros de Área Quemada En Incendios Mediterráneos. Teledetección 2012, 37, 9–22. [Google Scholar]
- Guillén, M.G.; Figuereido, M.S. Análisis de Incendios En Honduras a Partir de Imágenes Del Sensor MODIS C6 (2013–2018). Portal de la Cienc. 2022, 1, 32–40. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Hall, J.; Justice, C. MODIS Active Fire and Burned Area Products—Active Fires. Available online: https://modis-fire.umd.edu/af.html (accessed on 19 October 2023).
- Ibrahim, M.A. Risk of Spontaneous and Anthropogenic Fires in Waste Management Chain and Hazards of Secondary Fires. Resour. Conserv. Recyc. 2020, 159, 104852. [Google Scholar] [CrossRef]
- Portela, M.M.; Espinosa, L.A.; Zelenakova, M. Long-Term Rainfall Trends and Their Variability in Mainland Portugal in the Last 106 Years. Climate 2020, 8, 146. [Google Scholar] [CrossRef]
- Lobodzinskyi, O.; Vasylenko, Y.; Koshkina, O.; Nabyvanets, Y. Assessing the Impact of Climate Change on Discharge in the Horyn River Basin by Analyzing Precipitation and Temperature Data. Meteorol. Hydrol. Water Manag. 2023, 11, 93–106. [Google Scholar] [CrossRef]
- Alexandersson, H. A Homogeneity Test Applied to Precipitation Data. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Meseguer-Ruiz, O.; Ponce-Philimon, P.I.; Guijarro, J.A.; Sarricolea, P. Spatial Distribution and Trends of Different Precipitation Variability Indices Based on Daily Data in Northern Chile between 1966 and 2015. Int. J. Climatol. 2019, 39, 4595–4610. [Google Scholar] [CrossRef]
- Meseguer-Ruiz, O.; Ponce-Philimon, P.I.; Quispe-Jofré, A.S.; Guijarro, J.A.; Sarricolea, P. Spatial Behaviour of Daily Observed Extreme Temperatures in Northern Chile (1966–2015): Data Quality, Warming Trends, and Its Orographic and Latitudinal Effects. Stoch. Environ. Res. Risk Assess. 2018, 32, 3503–3523. [Google Scholar] [CrossRef]
- Caloiero, T.; Filice, E.; Coscarelli, R.; Pellicone, G. A Homogeneous Dataset for Rainfall Trend Analysis in the Calabria Region (Southern Italy). Water 2020, 12, 2541. [Google Scholar] [CrossRef]
- Javanshiri, Z.; Pakdaman, M.; Falamarzi, Y. Homogenization and Trend Detection of Temperature in Iran for the Period 1960–2018. Meteorol Atmos. Phys. 2021, 133, 1233–1250. [Google Scholar] [CrossRef]
- Soro, T.D.; Koné, M.; N’Dri, A.B.; N’Datchoh, E.T. Identified Main Fire Hotspots and Seasons in Côte d’Ivoire (West Africa) Using MODIS Fire Data. S. Afr. J. Sci. 2021, 117, 1–13. [Google Scholar] [CrossRef]
- Palacio, M.E.Q.; Villa, H.M.S. Manejo Del Fuego Como Alternativa Frente a Los Incendios Forestales. El Caso Del Parque Entrenubes. Ambiente y Desarro. 2019, 23, 2. [Google Scholar]
- Alvarado, S.T.; Hantson, S. Dinámica espacio-temporal de incendios forestales en la región de Los Llanos en Colombia y Venezuela. In Proceedings of the Congreso Internacional de Ciencias Básicas e Ingeniería, Villavicencio, Colombia, 1 February 2023; p. 5. [Google Scholar]
- Xie, W.-F.; Li, J.-K.; Peng, K.; Zhang, K.; Ullah, Z. The Application of Local Moran’s I and Getis–Ord Gi* to Identify Spatial Patterns and Critical Source Areas of Agricultural Nonpoint Source Pollution. J. Environ. Eng. 2024, 150, 04024011. [Google Scholar] [CrossRef]
- Kumari, S.; Mamgain, S.; Roy, A.; Prince, H.C. Characterising Spatial Clusters of Forest Fire Activity in the Western Himalayan Region of India: Implications for Conservation and Management. Int. J. Wildland Fire 2025, 34, 2. [Google Scholar] [CrossRef]
- Lanorte, A.; Nolè, G.; Cillis, G. Application of Getis-Ord Correlation Index (Gi) for Burned Area Detection Improvement in Mediterranean Ecosystems (Southern Italy and Sardinia) Using Sentinel-2 Data. Remote Sens. 2024, 16, 2943. [Google Scholar] [CrossRef]
- Mupfiga, U.N.; Mutanga, O.; Dube, T.; Kowe, P. Spatial Clustering of Vegetation Fire Intensity Using MODIS Satellite Data. Atmosphere 2022, 13, 1972. [Google Scholar] [CrossRef]
- Siabato, W.; Guzmán-Manrique, J.; Siabato, W.; Guzmán-Manrique, J. La autocorrelación espacial y el desarrollo de la geografía cuantitativa. Cuad. de Geogr. Rev. Colomb. de Geogr. 2019, 28, 1–22. [Google Scholar] [CrossRef]
- Wang, Z.; and Lam, N.S.N. Extending Getis–Ord Statistics to Account for Local Space–Time Autocorrelation in Spatial Panel Data. Prof. Geogr. 2020, 72, 411–420. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Teegavarapu, R.S.V. Chapter 1—Methods for Analysis of Trends and Changes in Hydroclimatological Time-Series. In Trends and Changes in Hydroclimatic Variables; Teegavarapu, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–89. ISBN 978-0-12-810985-4. [Google Scholar]
- Zhang, F.; Zhang, B.; Luo, J.; Liu, H.; Deng, Q.; Wang, L.; Zuo, Z. Forest Fire Driving Factors and Fire Risk Zoning Based on an Optimal Parameter Logistic Regression Model: A Case Study of the Liangshan Yi Autonomous Prefecture, China. Fire 2023, 6, 336. [Google Scholar] [CrossRef]
- Vélez-Pereira, A.M.; De Linares, C.; Canela, M.-A.; Belmonte, J. Logistic Regression Models for Predicting Daily Airborne Alternaria and Cladosporium Concentration Levels in Catalonia (NE Spain). Int. J. Biometeorol. 2019, 63, 1541–1553. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.H. Classical and Modern Regression with Applications; PWS-KENT: Belmont, CA, USA, 1990; ISBN 978-0-534-92178-1. [Google Scholar]
- Giorgi, F.; Im, E.-S.; Coppola, E.; Diffenbaugh, N.S.; Gao, X.J.; Mariotti, L.; Shi, Y. Higher Hydroclimatic Intensity with Global Warming. J. Clim. 2011, 24, 20. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-0-470-58247-3. [Google Scholar]
- Instituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM. Protocolo Para la Realización de Mapas de Zonificación de Riesgos a Incendios de la Cobertura Vegetal en Colombia—Escala 1:100.000; IDEAM: Bogotá, Colombia, 2011; ISBN 978-958-8067-41-4.
- Crist, M.R. Rethinking the Focus on Forest Fires in Federal Wildland Fire Management: Landscape Patterns and Trends of Non-Forest and Forest Burned Area. J. Environ. Manag. 2023, 327, 116718. [Google Scholar] [CrossRef]
- Montibeller, B.; Kmoch, A.; Virro, H.; Mander, Ü.; Uuemaa, E. Increasing Fragmentation of Forest Cover in Brazil’s Legal Amazon from 2001 to 2017. Sci. Rep. 2020, 10, 5803. [Google Scholar] [CrossRef]
- Hagmann, R.K.; Hessburg, P.F.; Salter, R.B.; Merschel, A.G.; Reilly, M.J. Contemporary Wildfires Further Degrade Resistance and Resilience of Fire-Excluded Forests. For. Ecol. Manag. 2022, 506, 119975. [Google Scholar] [CrossRef]
- McGarigal, K.S.; Cushman, S.; Neel, M.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps 2015. Available online: https://www.researchgate.net/publication/259011515_FRAGSTATS_Spatial_pattern_analysis_program_for_categorical_maps (accessed on 30 March 2025).
- Hesselbarth, M.H.K.; Sciaini, M.; Nowosad, J.; Hanss, S. Landscapemetrics: Landscape Metrics for Categorical Map Patterns 2025, 2.2.1. Available online: https://CRAN.R-project.org/package=landscapemetrics (accessed on 30 March 2025).
- NOAA Cold & Warm Episodes by Season. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 24 April 2025).
- Ramos Rodríguez, M.; Poma Cabrera, E.; Reyes Chancay, J. Estadísticas de Incendios Forestales En El Cantón Loja, Provincia Loja, Ecuador, En El Periodo 2011–2020. Bosques Latid. Cero 2024, 14, 64–76. [Google Scholar] [CrossRef]
- Zubieta, R.; Ccanchi, Y.; Liza, R. Performance of Heat Spots Obtained from Satellite Datasets to Represent Burned Areas in Andean Ecosystems of Cusco, Peru. Remote Sens. Appl. Soc. Environ. 2023, 32, 101020. [Google Scholar] [CrossRef]
- Obando-Cabrera, L.; Díaz-Timoté, J.J.; Bastarrika, A.; Celis, N.; Hantson, S. The Paramo Fire Atlas: Quantifying Burned Area and Trends across the Tropical Andes. Environ. Res. Lett. 2025, 20, 054019. [Google Scholar] [CrossRef]
- Sharma, S.; Carlson, J.D.; Krueger, E.S.; Engle, D.M.; Twidwell, D.; Fuhlendorf, S.D.; Patrignani, A.; Feng, L.; Ochsner, T.E. Soil Moisture as an Indicator of Growing-Season Herbaceous Fuel Moisture and Curing Rate in Grasslands. Int. J. Wildland Fire 2020, 30, 57–69. [Google Scholar] [CrossRef]
- Bousquet, E.; Mialon, A.; Rodriguez-Fernandez, N.; Mermoz, S.; Kerr, Y. Monitoring Post-Fire Recovery of Various Vegetation Biomes Using Multi-Wavelength Satellite Remote Sensing. Biogeosciences 2022, 19, 3317–3336. [Google Scholar] [CrossRef]
- Ermitão, T.; Gouveia, C.M.; Bastos, A.; Russo, A.C. Interactions between Hot and Dry Fuel Conditions and Vegetation Dynamics in the 2017 Fire Season in Portugal. Environ. Res. Lett. 2022, 17, 095009. [Google Scholar] [CrossRef]
- Alizadeh, M.R.; Adamowski, J.; Entekhabi, D. Land and Atmosphere Precursors to Fuel Loading, Wildfire Ignition and Post-Fire Recovery. Geophys. Res. Lett. 2024, 51, e2023GL105324. [Google Scholar] [CrossRef]
- Qu, Y.; Miralles, D.G.; Veraverbeke, S.; Vereecken, H.; Montzka, C. Wildfire Precursors Show Complementary Predictability in Different Timescales. Nat. Commun. 2023, 14, 6829. [Google Scholar] [CrossRef]
- Resco de Dios, V.; Cunill Camprubí, À.; Pérez-Zanón, N.; Peña, J.C.; Martínez del Castillo, E.; Rodrigues, M.; Yao, Y.; Yebra, M.; Vega-García, C.; Boer, M.M. Convergence in Critical Fuel Moisture and Fire Weather Thresholds Associated with Fire Activity in the Pyroregions of Mediterranean Europe. Sci. Total Environ. 2022, 806, 151462. [Google Scholar] [CrossRef]
- Gincheva, A.; Pausas, J.G.; Torres-Vázquez, M.Á.; Bedia, J.; Vicente-Serrano, S.M.; Abatzoglou, J.T.; Sánchez-Espigares, J.A.; Chuvieco, E.; Jerez, S.; Provenzale, A.; et al. The Interannual Variability of Global Burned Area Is Mostly Explained by Climatic Drivers. Earth’s Future 2024, 12, e2023EF004334. [Google Scholar] [CrossRef]
- Di Giuseppe, F.; Vitolo, C.; Krzeminski, B.; Barnard, C.; Maciel, P.; San-Miguel, J. Fire Weather Index: The Skill Provided by the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System. Nat. Hazards Earth Syst. Sci. 2020, 20, 2365–2378. [Google Scholar] [CrossRef]
- Departamento Administrativo Nacional de Estadistica-DANE. Encuesta Nacional Agropecuaria (ENA). Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena (accessed on 21 May 2025).
- Sánchez-Cuervo, A.M.; Aide, T.M.; Clark, M.L.; Etter, A. Land Cover Change in Colombia: Surprising Forest Recovery Trends between 2001 and 2010. PLoS ONE 2012, 7, e43943. [Google Scholar] [CrossRef]
- Instituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM. Sistema de Monitoreo de Las Coberturas de La Tierra—SIMCOT. Available online: https://experience.arcgis.com/experience/6f82270e8c2b4872979478f43e1494d5/page/Mapa-de-Cambios (accessed on 24 April 2025).
- San Martín, R. Fires, Land Use, and Forest Loss in the South American Chaco: Understanding the Links between Fires, Climate, Ecosystems, and Human Activity through Remote Sensing. Ph.D. Thesis, Université Paris-Saclay, Orsay, France, 2024. Available online: https://theses.hal.science/tel-04885407 (accessed on 11 April 2025).
- Duran-Izquierdo, M.; Olivero-Verbel, J. Vulnerability Assessment of Sierra Nevada de Santa Marta, Colombia: World’s Most Irreplaceable Nature Reserve. Glo. Ecol. Conser. 2021, 28, e01592. [Google Scholar] [CrossRef]
- Maillard, O.; Vides-Almonacid, R.; Flores-Valencia, M.; Coronado, R.; Vogt, P.; Vicente-Serrano, S.M.; Azurduy, H.; Anívarro, R.; Cuellar, R.L. Relationship of Forest Cover Fragmentation and Drought with the Occurrence of Forest Fires in the Department of Santa Cruz, Bolivia. Forests 2020, 11, 910. [Google Scholar] [CrossRef]
- Mojica, J.I.; González-Afanador, E.; Donato-Rondón, J.; Guillot-Monroy, G.H. Chapter 3—Magdalena. In Rivers of South America; Graça, M.A.S., Callisto, M., de Mello, F.T., Rodríguez-Olarte, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2025; pp. 57–91. ISBN 978-0-12-823429-7. [Google Scholar]
- Guáqueta-Solórzano, V.-E.; Postigo, J.C. Indigenous Perceptions and Adaptive Responses to the Impacts of Climate Variability in the Sierra Nevada de Santa Marta, Colombia. Front. Clim. 2022, 4, 910294. [Google Scholar] [CrossRef]
- Ministerio de Ambiente y Desarrollo Sostenible. Plan Integral de Gestión Del Cambio Climático Territorial Del Departamento de Magdalena; Ministerio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia, 2015; p. 144.
- Garrido, A.P.; Bernal, F.T.; Fontanilla, J.D.; Caicedo, Y.C.; Vélez-Pereira, A.M. Assessment of Livestock Greenhouse Gases in Colombia between 1995 and 2015. Heliyon 2022, 8, e12262. [Google Scholar] [CrossRef] [PubMed]
- University of Maryland; World Resources Institute Magdalena, Colombia Deforestation Rates & Statistics. Available online: https://www.globalforestwatch.org/dashboards/country/COL/19?category=forest-change (accessed on 24 April 2025).
- Braun, A.C.; Faßnacht, F.; Valencia, D.; Sepulveda, M. Consequences of Land-Use Change and the Wildfire Disaster of 2017 for the Central Chilean Biodiversity Hotspot. Reg. Environ. Change 2021, 21, 37. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Y.; Shi, Y. Estimation of Biomass Burning Emissions in South and Southeast Asia Based on FY-4A Satellite Observations. Atmosphere 2025, 16, 582. [Google Scholar] [CrossRef]
Type | Metric | Abbr. | Definition |
---|---|---|---|
Aggregation | Aggregation index (%) | AI | Connectedness of a class based on the ratio of actual like adjacencies to the maximum possible, with higher values indicating lower spatial distribution. |
Cohesion index (%) | COHESION | Connectedness of a class, proportional to the area and shape metrics, indicating whether the patches belonging to the same class are aggregated or isolated. | |
Mean contiguity index | CONTIG_MN | Connectedness of a class, based on quantifying the patches’ links. Ranges from 0 to 1, with higher values indicating more continuous and connected patches. | |
Shape | Mean shape index | SHAPE_MN | Average class shape complexity is based on the perimeter ratio of the area’s square root. |
Mean fractal dimension | FRAC_MN | Average class shape complexity based on how the perimeter scales with area, summarizing each class as the mean fractal dimension of its patches. Ranges from 1 to 2, with higher values indicating a highly irregular, plane-filling shape. | |
Area | Mean area (Ha) | AREA_MN | Average class area of all areas belonging to the same class. |
Mean core area (Ha) | CORE_MN | Average core area of a class, where the core consists of all patches without neighboring patches of a different class. | |
Percentage of landscape (%) | PLAND | Percentage of landscapes conforming to the same class. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camargo Caicedo, Y.; Bolaño-Diaz, S.; Pomares-Meza, G.M.; Pérez-Pérez, M.; Soro, T.D.; Bolaño-Ortiz, T.R.; Vélez-Pereira, A.M. Hydroclimatic and Land Use Drivers of Wildfire Risk in the Colombian Caribbean. Fire 2025, 8, 221. https://doi.org/10.3390/fire8060221
Camargo Caicedo Y, Bolaño-Diaz S, Pomares-Meza GM, Pérez-Pérez M, Soro TD, Bolaño-Ortiz TR, Vélez-Pereira AM. Hydroclimatic and Land Use Drivers of Wildfire Risk in the Colombian Caribbean. Fire. 2025; 8(6):221. https://doi.org/10.3390/fire8060221
Chicago/Turabian StyleCamargo Caicedo, Yiniva, Sindy Bolaño-Diaz, Geraldine M. Pomares-Meza, Manuel Pérez-Pérez, Tionhonkélé Drissa Soro, Tomás R. Bolaño-Ortiz, and Andrés M. Vélez-Pereira. 2025. "Hydroclimatic and Land Use Drivers of Wildfire Risk in the Colombian Caribbean" Fire 8, no. 6: 221. https://doi.org/10.3390/fire8060221
APA StyleCamargo Caicedo, Y., Bolaño-Diaz, S., Pomares-Meza, G. M., Pérez-Pérez, M., Soro, T. D., Bolaño-Ortiz, T. R., & Vélez-Pereira, A. M. (2025). Hydroclimatic and Land Use Drivers of Wildfire Risk in the Colombian Caribbean. Fire, 8(6), 221. https://doi.org/10.3390/fire8060221