Applying a Fire Exposure Metric in the Artificial Territories of Portugal: Mafra Municipality Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fire Exposure Metrics and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RH | Radiant heat |
SRS | Short-range spotting |
LRS | Longer-range spotting |
LULC | Land use land cover |
AT | Artificial territories |
WUI | Wildland–urban interface |
EWE | Extreme wildfire events |
PMDFCI | Municipal plan of forest fire defense |
DGT | Directorate general of the territory |
EU | European union |
References
- Weston, C.J.; Di Stefano, J.; Hislop, S.; Volkova, L. Effect of recent fuel reduction treatments on wildfire severity in southeast Australian Eucalyptus sieberi forests. For. Ecol. Manag. 2021, 505, 119924. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.; Delogu, G.; Fernandes, P.; Ferreira, C.; McCaffrey, S.; McGee, T.; et al. Defining Extreme Wildfire Events: Difficulties, Challenges, and Impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef]
- Vacca, P.; Caballero, D.; Pastor, E.; Planas, E. WUI fire risk mitigation in Europe: A performance-based design approach at home-owner level. J. Saf. Sci. Resil. 2020, 1, 97–105. [Google Scholar] [CrossRef]
- Godoy, M.M.; Martinuzzi, S.; Masera, P.; Defossé, G.E. Forty Years of Wildland Urban Interface Growth and Its Relation With Wildfires in Central-Western Chubut, Argentina. Front. For. Glob. Change 2022, 5, 850543. [Google Scholar] [CrossRef]
- Barbosa, B.; Oliveira, S.; Caetano, M.; Rocha, J. Mapping the wildland-urban interface at municipal level for wildfire exposure analysis in mainland Portugal. J. Environ. Manag. 2024, 368, 122098. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Hammer, R.B.; Stewart, I.; Fried, J.S.; Holcomb, S.S.; McKeefry, J.F. The wildland–urban interface in the United States. Ecol. Appl. 2005, 15, 799–805. [Google Scholar] [CrossRef]
- Kaim, D.; Helmers, D.P.; Jakiel, M.; Pavlăcka, D.; Radeloff, V.C. The wildland-urban interface in Poland reflects legacies of historical national borders. Landsc. Ecol. 2023, 38, 2399–2415. [Google Scholar] [CrossRef]
- Ribeiro, L.M.; Rodrigues, A.; Lucas, D.; Viegas, D.X. The Impact on Structures of the Pedrógão Grande Fire Complex in June 2017 (Portugal). Fire 2020, 3, 57. [Google Scholar] [CrossRef]
- Oliveira, S.; Gonçalves, A.; Zêzere, J.L. Reassessing wildfire susceptibility and hazard for mainland Portugal. Sci. Total Environ. 2020, 762, 143121. [Google Scholar] [CrossRef]
- Beverly, J.L.; Schroeder, D. Alberta’s 2023 wildfires: Context, factors and futures. Can. J. For. Res. 2024, 55, 99. [Google Scholar] [CrossRef]
- UNDRR. Closing Climate and Disaster Data Gaps: New Challenges, New Thinking. Available online: https://www.undrr.org/publication/closing-climate-and-disaster-data-gaps-new-challenges-new-thinking (accessed on 6 May 2024).
- Fernandez-Anez, N.; Krasovskiy, A.; Müller, M.; Vacik, H.; Baetens, J.; Hukić, E.; Solomun, M.K.; Atanassova, I.; Glushkova, M.; Bogunović, I.; et al. Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air Soil Water Res. 2021, 14, 11786221211028185. [Google Scholar] [CrossRef]
- Acácio, V.; Sequeira, A.C.; Dias, S.; Duarte, I.; Nunes, L.; Colaço, M.C.; Skulska, I.; Rego, F. Spatial and Temporal Conditions for Extreme Wildfire Events at the European Scale. FIRE-RES Project. 2023. Available online: https://zenodo.org/records/10396140 (accessed on 2 May 2024).
- Molina-Terrén, D.M.; Xanthopoulos, G.; Diakakis, M.; Ribeiro, L.; Caballero, D.; Delogu, G.M.; Viegas, D.X.; Silva, C.A.; Cardil, A. Analysis of forest fire fatalities in Southern Europe: Spain, Portugal, Greece and Sardinia (Italy). Int. J. Wildland Fire 2019, 28, 85. [Google Scholar] [CrossRef]
- Troumbis, A.Y.; Kalabokidis, K.; Palaiologou, P. Diverging rationalities between forest fire management services and the general public after the 21st-century mega-fires in Greece. J. For. Res. 2021, 33, 553–564. [Google Scholar] [CrossRef]
- Vallianou, K.; Alexopoulos, T.; Plaka, V.; Seleventi, M.K.; Skanavis, V.; Skanavis, C. Building Resilient Communities: The Traumatic Effect of Wildfire on Mati, Greece. 2020. Available online: https://publications.waset.org/10011249/building-resilient-communities-the-traumatic-effect-of-wildfire-on-mati-greece (accessed on 6 May 2024).
- Turco, M.; Jerez, S.; Augusto, S.; Tarín-Carrasco, P.; Ratola, N.; Jiménez-Guerrero, P.; Trigo, R.M. Climate drivers of the 2017 devastating fires in Portugal. Sci. Rep. 2019, 9, 13386. [Google Scholar] [CrossRef]
- Alcasena, F.; Ager, A.; Page, Y.L.; Bessa, P.; Loureiro, C.; Oliveira, T. Assessing Wildfire Exposure to Communities and Protected Areas in Portugal. Fire 2021, 4, 82. [Google Scholar] [CrossRef]
- De Oliveira, E.; Lobo-Do-Vale, R.; Colaço, M.C. Incident analysis of traditional burns in Portugal. Int. J. Disaster Risk Reduct. 2023, 95, 103852. [Google Scholar] [CrossRef]
- Aldeia Segura. Safe Village, Safe People Programs. Available online: https://aldeiasseguras.pt/ (accessed on 9 October 2024).
- DGT. Village Condominium Program. Available online: https://www.dgterritorio.gov.pt/paisagem/ptp/condominio-aldeia (accessed on 7 May 2024).
- ANEPC. Portuguese National Authority for Emergency and Civil Protection. Available online: https://prociv.gov.pt/en/home/ (accessed on 7 May 2024).
- Bento-Gonçalves, A.; Vieira, A. Wildfires in the wildland-urban interface: Key concepts and evaluation methodologies. Sci. Total Environ. 2019, 707, 135592. [Google Scholar] [CrossRef]
- Benali, A.; Aparício, B.A.; Gonçalves, A.; Oliveira, S. Defining priorities for wildfire mitigation actions at the local scale: Insights from a novel risk analysis method applied in Portugal. Front. For. Glob. Change 2023, 6, 1270210. [Google Scholar] [CrossRef]
- Schumann, R.L.; Mockrin, M.; Syphard, A.D.; Whittaker, J.; Price, O.; Gaither, C.J.; Emrich, C.T.; Butsic, V. Wildfire recovery as a "hot moment" for creating fire-adapted communities. Int. J. Disaster Risk Reduct. 2019, 42, 101354. [Google Scholar] [CrossRef]
- Oliveira, S.; Rocha, J.; Sá, A. Wildfire risk modeling. Curr. Opin. Environ. Sci. Health 2021, 23, 100274. [Google Scholar] [CrossRef]
- Calheiros, T.; Nunes, J.P.; Pereira, M.G. Recent evolution of spatial and temporal patterns of burnt areas and fire weather risk in the Iberian Peninsula. Agric. For. Meteorol. 2020, 287, 107923. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Salas, J.; Martín, M.P.; Vilar, L.; Martínez, J.; Martín, S.; Ibarra, P.; et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Model. 2009, 221, 46–58. [Google Scholar] [CrossRef]
- Beverly, J.L.; Bothwell, P.; Conner, J.C.R.; Herd, E.P.K. Assessing the exposure of the built environment to potential ignition sources generated from vegetative fuel. Int. J. Wildland Fire 2010, 19, 299. [Google Scholar] [CrossRef]
- Carreiras, J.M.B.; Pereira, J.M.C. An inductive fire risk map for Portugal. For. Ecol. Manag. 2006, 234, S56. [Google Scholar] [CrossRef]
- Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F. Modeling and mapping wildfire ignition risk in Portugal. Int. J. Wildland Fire 2009, 18, 921–931. [Google Scholar] [CrossRef]
- Nunes, A.N.; Pinto, C.D.; Figueiredo, A.; Lourenço, L. Planning wildfire evacuation in the wildland–urban interfaces of central Portugal. Fire 2024, 7, 199. [Google Scholar] [CrossRef]
- GTF Mafra. Plano Municipal de Defesa da Floresta Contra Incêndios. 2020–2029. Caderno II Plano de Ação: Câmara Municipal Mafra. Available online: https://cm-avis.pt/wp-content/uploads/2021/01/pmdfci-avis-2020-2029-caderno-ii__.pdf (accessed on 2 August 2024).
- Haight, R.G.; Cleland, D.T.; Hammer, R.B.; Radeloff, V.C.; Rupp, T.S. Assessing Fire Risk in the Wildland-Urban Interface. J. For. 2004, 102, 41–48. [Google Scholar] [CrossRef]
- INE. Census of Mafra 2019. Available online: https://www.ine.pt (accessed on 7 August 2024).
- SGIF. Sistema de Gestão de Informação de Incêndios Florestais. ICNF. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_main (accessed on 8 February 2024).
- Caetano, M. Especificações Técnicas da Carta de Uso e Ocupação do Solo (COS) de Portugal Continental. Dgterritorio P-51. 2018. Available online: https://www.dgterritorio.gov.pt/sites/default/files/documentos-publicos/2019-12-26-11-47-32-0__ET-COS-2018_v1.pdf (accessed on 2 May 2024).
- Quaresma, R. Potencial de Focos Secundários Associado a Vários Tipos de Vegetação Florestal. Ph.D. Thesis, The University of Trás-os-Montes and Alto Douro, Vila Real, Portugal, 2018. [Google Scholar]
- Porterie, B.; Zekri, N.; Clerc, J.P.; Loraud, J.C. Modeling forest fire spread and spotting process with small world networks. Combust. Flame 2007, 149, 63–78. [Google Scholar] [CrossRef]
- Pereira, J.C.F.; Pereira, J.M.C.; Leite, A.L.A.; Albuquerque, D.M.S. Calculation of spotting particles maximum distance in idealised forest fire scenarios. J. Combust. 2015, 17, 513576. [Google Scholar] [CrossRef]
- Beverly, J.L.; McLoughlin, N.; Chapman, E. A simple metric of landscape fire exposure. Landsc. Ecol. 2021, 36, 785–801. [Google Scholar] [CrossRef]
- Esri Inc. ArcGIS Pro (Version 3.4.0). Esri Inc. 2020. Available online: https://www.esri.com/en-us/arcgis/products/arc-gis-pro/overview (accessed on 2 January 2020).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2024. Available online: https://www.r-project.org/ (accessed on 2 May 2024).
- Forbes, A.M.; Beverly, J.L. fireexposuR: Compute and Visualize Wildfire Exposure. R Package version 1.0.1. 2024. Available online: https://github.com/heyairf/fireexposuR (accessed on 2 May 2024).
- DGT. Territory Directorate 2024. Available online: https://www.dgterritorio.gov.pt/dados-abertos (accessed on 1 May 2024).
- Collins, K.M.; Penman, T.D.; Price, O.F. Some Wildfire Ignition Causes Pose More Risk of Destroying Houses than Others. PLoS ONE 2016, 11, e0162083. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.C.S.; Vasconcelos, M.J.; Pereira, J.M.C.; Dasgupta, N.; Alldredge, R.J.; Rego, F.C. Land Cover Type and Fire in Portugal: Do Fires Burn Land Cover Selectively? Landsc. Ecol. 2005, 20, 661–673. [Google Scholar] [CrossRef]
- Benali, A.; Ervilha, A.R.; Sá, A.C.L.; Fernandes, P.M.; Pinto, R.M.S.; Trigo, R.M.; Pereira, J.M.C. Deciphering the impact of uncertainty on the accuracy of large wildfire spread simulations. Sci. Total Environ. 2016, 569, 73–85. [Google Scholar] [CrossRef]
- Tonini, M.; Parente, J.; Pereira, M.G. Global assessment of rural–urban interface in Portugal related to land cover changes. Nat. Hazards Earth Syst. Sci. 2018, 18, 1647–1664. [Google Scholar] [CrossRef]
- Benali, A.; Sá, A.C.L.; Pinho, J.; Fernandes, P.M.; Pereira, J.M.C. Understanding the Impact of Different Landscape-Level Fuel Management Strategies on Wildfire Hazard in Central Portugal. Forests 2021, 12, 522. [Google Scholar] [CrossRef]
- Bossard, M.; Feranec, J.; Otahel, J. CORINE Land Cover Technical Guide: Addendum 2000; European Environment Agency: Copenhagen, Denmark, 2000.
- Fernandes, P.; Luz, A.; Loureiro, C.; Godinho-Ferreira, P. Fuel modelling and fire hazard assessment based on data from the Portuguese National Forest Inventory. For. Ecol. Manag. 2006, 234, S229. [Google Scholar] [CrossRef]
- Fernandes, P.M. Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann. For. Sci. 2009, 66, 415. [Google Scholar] [CrossRef]
- Xanthopoulos, G.; Calfapietra, C.; Fernandes, P. Fire Hazard and Flammability of European Forest Types. In Post-Fire Management and Restoration of Southern European Forests; Moreira, F., Arianoutsou, M., Corona, P., De las Heras, J., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 79–92. [Google Scholar]
- Bergonse, R.; Oliveira, S.; Gonçalves, A.; Nunes, S.; DaCamara, C.; Zêzere, J.L. Predicting burnt areas during the summer season in Portugal by combining wildfire susceptibility and spring meteorological conditions. Geomat. Nat. Hazards Risk 2021, 12, 1039–1057. [Google Scholar] [CrossRef]
- Aragoneses, E.; García, M.; Salis, M.; Ribeiro, L.M.; Chuvieco, E. Classification and mapping of European fuels using a hierarchical, multipurpose fuel classification system. Earth Syst. Sci. Data 2023, 15, 1287–1315. [Google Scholar] [CrossRef]
- Oliveira, S.; Gonçalves, A.; Benali, A.; Sá, A.; Zêzere, J.L.; Pereira, J.M. Assessing Risk and Prioritizing Safety Interventions in Human Settlements Affected by Large Wildfires. Forests 2020, 11, 859. [Google Scholar] [CrossRef]
- Beverly, J.L.; Forbes, A.M. Assessing directional vulnerability to wildfire. Nat. Hazards 2023, 117, 831–849. [Google Scholar] [CrossRef]
- Schmidt, J.I.; Ziel, R.H.; Calef, M.P.; Varvak, A. Spatial distribution of wildfire threat in the far north: Exposure assessment in boreal communities. Nat. Hazards 2024, 120, 4901–4924. [Google Scholar] [CrossRef]
- Karimi, N.; Mahler, P.; Beverly, J.L. Optimizing fuel treatments for community wildfire mitigation planning. J. Environ. Manag. 2024, 370, 122325. [Google Scholar] [CrossRef]
- Khan, S.I.; Colaço, C.; Sequeira, A.C.; Rego, F.C.; Beverly, J.L. Validating a landscape metric to map fire exposure to hazardous fuels in Portugal. Nat. Hazards 2024. Submitted and in review. [Google Scholar]
- DL n.º 82/2021, de 13 de Outubro. Available online: https://www.pgdlisboa.pt/leis/lei_mostra_articulado.php?nid=3453&tabela=leis&so_miolo= (accessed on 1 March 2025).
- Forbes, A.; Beverly, J.L. Influence of fuel data assumptions on wildfire exposure assessment of the built environment. Int. J. Wildland Fire 2024, 33, WF24025. [Google Scholar] [CrossRef]
- European Commission. New EU Forest Strategy for 2030; European Commission: Brussels, Belgium, 2021; Available online: https://environment.ec.europa.eu/strategy/forest-strategy_en (accessed on 1 March 2025).
- United Nations Office for Disaster Risk Reduction (UNDRR). Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations: Geneva, Switzerland, 2015; Available online: https://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf (accessed on 1 March 2025).
- Kim, A.M.; Beverly, J.L.; Zahid, A.A. Directional analysis of community wildfire evacuation capabilities. Saf. Sci. 2023, 171, 106378. [Google Scholar] [CrossRef]
LULC Subtypes | Radiant Heat (RH) 0.1–30 m | Short-Range Spotting (SRS) 0.1–100 m | Longer-Range Spotting (LRS) 100.1–500 m |
---|---|---|---|
Artificial territories | 0 | 0 | 0 |
Dryland areas with temporary crops | 1 | 1 | 0 |
Permanently artificially irrigated crops | 0 | 0 | 0 |
Herbaceous vegetation | 0 | 0 | 0 |
Quercus sp. | 1 | 1 | 1 |
Others—agricultural land | 0 | 0 | 0 |
Maritime pine | 1 | 1 | 1 |
Eucalyptus | 1 | 1 | 1 |
Other forest species | 1 | 1 | 1 |
Other hardwoods | 1 | 1 | 0 |
Orchard/vineyard | 0 | 0 | 0 |
Mixed forest species | 1 | 1 | 1 |
Stone pine | 1 | 1 | 1 |
Shrubs | 1 | 1 | 0 |
Coastal dunes and beaches | 0 | 0 | 0 |
Riparian vegetation | 1 | 0 | 0 |
Sparse vegetation | 0 | 0 | 0 |
Clear cuttings | 1 | 1 | 0 |
Barren lands | 0 | 0 | 0 |
Water bodies | 0 | 0 | 0 |
Exposure Level | Radiant Heat (RH) 0.1–30 m | Short-Range Spotting (SRS) 0.1–100 m | Longer-Range Spotting (LRS) 100.1–500 m | |||
---|---|---|---|---|---|---|
Proportion LULC | Proportion AT | Proportion LULC | Proportion AT | Proportion LULC | Proportion AT | |
0–0.2 (very low) | 0.42 | 0.79 | 0.31 | 0.59 | 0.58 | 0.71 |
0.2–0.4 (low) | 0.07 | 0.12 | 0.15 | 0.20 | 0.23 | 0.21 |
0.4–0.6 (moderate) | 0.06 | 0.07 | 0.15 | 0.13 | 0.13 | 0.06 |
0.6–0.8 (high) | 0.07 | 0.02 | 0.14 | 0.06 | 0.05 | 0.01 |
0.8–1 (very high) | 0.37 | 0.00 | 0.25 | 0.02 | 0.00 | 0.00 |
Exposure Class | |||||||
---|---|---|---|---|---|---|---|
Parishes | Very Low >0–≤0.2 | Low >0.2–≤0.4 | Moderate >0.4–≤0.6 | High >0.6–≤0.8 | Very High >0.8–≤1 | ||
A-Encarnação | RH | LC | 0.48 | 0.07 | 0.06 | 0.07 | 0.31 |
AT | 0.72 | 0.16 | 0.09 | 0.03 | 0.00 | ||
SRS | LC | 0.36 | 0.15 | 0.15 | 0.15 | 0.18 | |
AT | 0.47 | 0.25 | 0.17 | 0.09 | 0.02 | ||
LRS | LC | 0.97 | 0.03 | 0.01 | 0.00 | 0.00 | |
AT | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
B-Santo Isidoro | RH | LC | 0.35 | 0.08 | 0.07 | 0.08 | 0.41 |
AT | 0.77 | 0.14 | 0.07 | 0.01 | 0.00 | ||
SRS | LC | 0.23 | 0.16 | 0.17 | 0.16 | 0.27 | |
AT | 0.51 | 0.25 | 0.16 | 0.07 | 0.01 | ||
LRS | LC | 0.39 | 0.37 | 0.18 | 0.06 | 0.01 | |
AT | 0.03 | 0.91 | 0.05 | 0.00 | 0.00 | ||
C-Ericeira | RH | LC | 0.68 | 0.05 | 0.04 | 0.04 | 0.19 |
AT | 0.95 | 0.03 | 0.01 | 0.00 | 0.00 | ||
SRS | LC | 0.59 | 0.13 | 0.10 | 0.07 | 0.11 | |
AT | 0.87 | 0.08 | 0.03 | 0.01 | 0.00 | ||
LRS | LC | 0.59 | 0.29 | 0.11 | 0.01 | 0.00 | |
AT | 0.82 | 0.17 | 0.01 | 0.00 | 0.00 | ||
D-Carvoeira | RH | LC | 0.62 | 0.07 | 0.06 | 0.06 | 0.19 |
AT | 0.87 | 0.08 | 0.04 | 0.01 | 0.00 | ||
SRS | LC | 0.52 | 0.15 | 0.13 | 0.10 | 0.09 | |
AT | 0.75 | 0.13 | 0.07 | 0.03 | 0.01 | ||
LRS | LC | 0.70 | 0.29 | 0.01 | 0.00 | 0.00 | |
AT | 0.92 | 0.07 | 0.01 | 0.00 | 0.00 | ||
E-Azueira e Sobral da Abelheira | RH | LC | 0.57 | 0.06 | 0.05 | 0.05 | 0.27 |
AT | 0.89 | 0.07 | 0.03 | 0.00 | 0.00 | ||
SRS | LC | 0.48 | 0.14 | 0.11 | 0.09 | 0.18 | |
AT | 0.77 | 0.14 | 0.06 | 0.03 | 0.00 | ||
LRS | LC | 0.50 | 0.23 | 0.18 | 0.08 | 0.01 | |
AT | 0.77 | 0.17 | 0.05 | 0.01 | 0.00 | ||
F-Mafra | RH | LC | 0.44 | 0.07 | 0.06 | 0.07 | 0.35 |
AT | 0.85 | 0.10 | 0.04 | 0.01 | 0.00 | ||
SRS | LC | 0.31 | 0.17 | 0.16 | 0.14 | 0.22 | |
AT | 0.67 | 0.19 | 0.10 | 0.03 | 0.01 | ||
LRS | LC | 0.39 | 0.30 | 0.22 | 0.09 | 0.00 | |
AT | 0.77 | 0.16 | 0.05 | 0.01 | 0.00 | ||
G-Igreja Nova e Cheleiros | RH | LC | 0.38 | 0.09 | 0.08 | 0.08 | 0.37 |
AT | 0.73 | 0.17 | 0.09 | 0.01 | 0.00 | ||
SRS | LC | 0.24 | 0.18 | 0.19 | 0.17 | 0.22 | |
AT | 0.44 | 0.27 | 0.20 | 0.08 | 0.01 | ||
LRS | LC | 0.70 | 0.17 | 0.10 | 0.03 | 0.00 | |
AT | 0.74 | 0.19 | 0.06 | 0.00 | 0.00 | ||
H-Enxara do Bispo, Gradil e Vila Franca do Rosário | RH | LC | 0.35 | 0.07 | 0.06 | 0.07 | 0.45 |
AT | 0.73 | 0.15 | 0.09 | 0.03 | 0.00 | ||
SRS | LC | 0.23 | 0.15 | 0.15 | 0.15 | 0.33 | |
AT | 0.48 | 0.23 | 0.17 | 0.10 | 0.03 | ||
LRS | LC | 0.72 | 0.10 | 0.09 | 0.07 | 0.02 | |
AT | 0.68 | 0.21 | 0.09 | 0.01 | 0.01 | ||
I-Milharado | RH | LC | 0.31 | 0.07 | 0.07 | 0.08 | 0.46 |
AT | 0.68 | 0.18 | 0.11 | 0.03 | 0.00 | ||
SRS | LC | 0.18 | 0.14 | 0.17 | 0.19 | 0.33 | |
AT | 0.35 | 0.27 | 0.23 | 0.12 | 0.03 | ||
LRS | LC | 0.79 | 0.15 | 0.05 | 0.01 | 0.00 | |
AT | 0.77 | 0.22 | 0.01 | 0.00 | 0.00 | ||
J-Malveira e São Miguel de Alcainça | RH | LC | 0.30 | 0.05 | 0.05 | 0.06 | 0.53 |
AT | 0.83 | 0.11 | 0.06 | 0.01 | 0.00 | ||
SRS | LC | 0.21 | 0.09 | 0.12 | 0.14 | 0.44 | |
AT | 0.62 | 0.18 | 0.13 | 0.06 | 0.01 | ||
LRS | LC | 0.36 | 0.36 | 0.21 | 0.07 | 0.00 | |
AT | 0.72 | 0.24 | 0.03 | 0.01 | 0.00 | ||
K-Venda do Pinheiro e Santo Estêvão das Galés | RH | LC | 0.39 | 0.06 | 0.06 | 0.07 | 0.42 |
AT | 0.80 | 0.12 | 0.06 | 0.02 | 0.00 | ||
SRS | LC | 0.28 | 0.13 | 0.13 | 0.15 | 0.31 | |
AT | 0.59 | 0.19 | 0.13 | 0.07 | 0.02 | ||
LRS | LC | 0.41 | 0.37 | 0.15 | 0.07 | 0.00 | |
AT | 0.44 | 0.43 | 0.10 | 0.02 | 0.00 |
Radiant Heat (RH) 0.1–30 m | Short-Range Spotting (SRS) 0.1–100 m | |||
---|---|---|---|---|
Parishes of Municipality of Mafra | Ranks | Exposure Values | Ranks | Exposure Values |
Malveira e São Miguel de Alcainça | 1 | 0.53 | 1 | 0.44 |
Milharado | 2 | 0.46 | 2 | 0.33 |
Enxara do Bispo, Gradil e Vila Franca do Rosário | 3 | 0.45 | 2 | 0.33 |
Venda do Pinheiro e Santo Estêvão das Galés | 3 | 0.42 | 3 | 0.31 |
Santo Isidoro | 4 | 0.41 | 4 | 0.27 |
Igreja Nova e Cheleiros | 5 | 0.37 | 5 | 0.22 |
Mafra | 6 | 0.35 | 5 | 0.22 |
Encarnação | 7 | 0.31 | 6 | 0.18 |
Azueira e Sobral da Abelheira | 8 | 0.27 | 6 | 0.18 |
Carvoeira | 9 | 0.19 | 7 | 0.09 |
Ericeira | 9 | 0.19 | 8 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.I.; Beverly, J.L.; Colaço, M.C.; Rego, F.C.; Sequeira, A.C. Applying a Fire Exposure Metric in the Artificial Territories of Portugal: Mafra Municipality Case Study. Fire 2025, 8, 179. https://doi.org/10.3390/fire8050179
Khan SI, Beverly JL, Colaço MC, Rego FC, Sequeira AC. Applying a Fire Exposure Metric in the Artificial Territories of Portugal: Mafra Municipality Case Study. Fire. 2025; 8(5):179. https://doi.org/10.3390/fire8050179
Chicago/Turabian StyleKhan, Sidra Ijaz, Jennifer L. Beverly, Maria Conceição Colaço, Francisco Castro Rego, and Ana Catarina Sequeira. 2025. "Applying a Fire Exposure Metric in the Artificial Territories of Portugal: Mafra Municipality Case Study" Fire 8, no. 5: 179. https://doi.org/10.3390/fire8050179
APA StyleKhan, S. I., Beverly, J. L., Colaço, M. C., Rego, F. C., & Sequeira, A. C. (2025). Applying a Fire Exposure Metric in the Artificial Territories of Portugal: Mafra Municipality Case Study. Fire, 8(5), 179. https://doi.org/10.3390/fire8050179