Research on Gas Plasma Ionization Characteristics Based on Methane/Air/K2CO3 Mixed Combustion Scheme
Abstract
1. Introduction
2. Methods
2.1. Description of Gas Plasma Ionization Characteristics
2.2. Calculation of Combustion Components
3. Results and Discussion
3.1. Influence of Ionized Seed Mass Fraction on Gas Plasma Characteristics
3.1.1. Results and Analysis
3.1.2. Qualitative Relationship Between Conductivity and Temperature
3.2. Influence of Initial Reaction Conditions on the Ionization Characteristics of Gas Plasma
3.2.1. Determination of Initial Conditions
3.2.2. Effects of Initial Temperature
3.2.3. Effects of Initial Pressure
3.3. Experimental Verification
4. Conclusions
- (1)
- Based on the same initial reaction conditions, a high-temperature environment is beneficial to the ionization characteristics of gas plasma. Above 1500 K, after adding K2CO3 ionization seeds into the gas, it gradually shows ionization characteristics, and these characteristics become more pronounced as the combustion temperature increases.
- (2)
- For alkali metal salt ionization seeds, their ionization process requires absorbing of the heat released by combustion reactions and releasing free electrons. As a result, ionized seeds endow gas with certain conductive properties, forming seed-induced gas plasma.
- (3)
- For combustion reactions, increasing the initial temperature of reactants is beneficial for improving the ionization characteristics of seed-induced gas plasma.
- (4)
- Alkali metal salt K2CO3 is a powdery crystal at room temperature, easily soluble in water, and can be sprayed with fluidized solid powder using a fluidized bed device. Alkali metal salts have lower costs and higher safety during manufacturing, storage, and use, even in high overload environments. From the perspective of seed characteristics, alkali metal salts are more suitable for use in the field of open air flow control.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, K.; Sun, B.; Yongji, L.; Feng, L.I.; Liu, Y. Experimental investigation on plasma jet deflection with magnetic fluid control based on PIV measurement. Plasma Sci. Technol. 2019, 21, 025503. [Google Scholar] [CrossRef]
- Bae, H.M.; Lee, N.; Sohn, H.S.; Cho, H.H. Thermal design for enhanced temperature uniformity on spark plasma sintering device. Finite Elem. Anal. Des. 2024, 239, 104208. [Google Scholar] [CrossRef]
- Jubin, S.; Powis, A.T.; Villafana, W.; Sydorenko, D.; Rauf, S.; Khrabrov, A.V. Numerical thermalization in 2D PIC simulations: Practical estimates for low-temperature plasma simulations. Phys. Plasmas 2024, 31, 023902. [Google Scholar] [CrossRef]
- Polek, M.P.; Phillips, M.C.; Beg, F.N.; Harilal, S.S. Comparison of excitation temperature of a laser-produced plasma by combining emission and absorption spectroscopy. AIP Adv. 2024, 14, 025043. [Google Scholar] [CrossRef]
- Nunomura, S.; Ezumi, N. Electron temperature characterization of h2 processing plasma by optical emission spectroscopy. Appl. Phys. Express. 2024, 17, 116001. [Google Scholar] [CrossRef]
- Hayat, T.; Ali, S.; Alsaedi, A.; Alsulami, H.H. Influence of thermal radiation and Joule heating in the Eyring–Powell fluid flow with the Soret and Dufour effects. J. Appl. Mech. Tech. Phy. 2016, 57, 1051–1060. [Google Scholar] [CrossRef]
- Menon, M.; Ponta, F.; Sun, X.; Dai, Q. Aerodynamic analysis of flow-control devices for wind turbine applications based on the trailing-edge slotted-flap concept. J. Aerospace Eng. 2016, 29, 04016037. [Google Scholar] [CrossRef]
- Abdullah, M.; Galib, M.T.; Khan, M.S.A.; Rahman, T.; Hossain, M.M. Recent advancements in flow control using plasma actuators and plasma vortex generators. Heat Transf. 2024, 53, 4244–4267. [Google Scholar] [CrossRef]
- Jia, M.; Lin, D.; Huang, S.; Zhang, Z.; Cui, W.; Wang, W. Experimental investigation on gliding arc plasma ignition in double-head swirling combustor. Aerosp. Sci. Technol. 2021, 113, 106726. [Google Scholar] [CrossRef]
- Igor, L.; Oleg, B.; Jinghua, F. Focusing plasma jets to achieve high current density: Feasibility and opportunities for applications in debris removal and space exploration. Aerosp. Sci. Technol. 2021, 108, 106343. [Google Scholar] [CrossRef]
- Wang, L.; Chi, W.W.; Alam, M.M. Post-stall flow control using a sawtooth plasma actuator in burst mode. Aerosp. Sci. Technol. 2020, 107, 106251. [Google Scholar] [CrossRef]
- Kolbakir, C.; Hu, H.; Liu, Y. An experimental study on different plasma actuator layouts for aircraft icing mitigation. Aerosp. Sci. Technol. 2020, 107, 106325. [Google Scholar] [CrossRef]
- Kim, M.; Jeon, Y.; Kim, Y.; Kim, S. Impact-ionization and tunneling fet characteristics of dual-functional devices with partially covered intrinsic regions. IEEE Trans. Nanotechnol. 2015, 14, 633–637. [Google Scholar] [CrossRef]
- Luo, W.D.; Li, F.; Sun, B.G. MHD control of weakly ionized plasma jet flows. J. Beijing Univ. Aeronaut. Astronaut. 2015, 41, 1758–1764. [Google Scholar] [CrossRef]
- Druker, N.; Goldwine, G.; Greenberg, J.B.; Sher, E. Enhancement of plasma assisted ignition by multi-voltage pulse discharges: A theoretical study. Int. J. Engine Res. 2024, 25, 14–19. [Google Scholar] [CrossRef]
- Kiseleva, E.M.; Viktorov, M.E.; Skalyga, V.A. Diagnostics of hot electron component escaping from dense nonequilibrium plasma of continuous ecr discharge. Plasma Phys. Rep. 2023, 49, 449–453. [Google Scholar] [CrossRef]
- Mahottamananda, S.N.; Pal, Y.; Sriram, Y.S.; Subha, S.; Trache, D. Evaluating Ignition and Combustion Performance with Al-Metal-Organic Frameworks and Nano-Aluminum in HTPB Fuel. Chin. J. Explos. Propellants 2024, 47, 413–421. [Google Scholar] [CrossRef]
- Murali, S.; Hussam, W.K.; Sheard, G.J. Heat transfer enhancement in quasi-two-dimensional magnetohydrodynamic duct flows using repeated flow-facing wedge-shaped protrusions. Int. J. Heat Mass Tran. 2021, 171, 121066. [Google Scholar] [CrossRef]
- Zhao, K.; Ming, M.; Feng, L.I. Experimental study on plasma jet deflection and energy extraction with MHD control. Chin. J. Aeronaut. 2020, 33, 1602–1610. [Google Scholar] [CrossRef]
- Kinefuchi, K.; Cho, S.; Tsukizaki, R. Characterization of a Capillary Flow Controller for Electric Propulsion. J. Propul. Power 2020, 36, 1–7. [Google Scholar] [CrossRef]
- Dheepika, M.; Hassan, B.V.T.; Mathew, T.K. Emergence of cosmic space in Tsallis modified gravity from equilibrium and non-equilibrium thermodynamic perspective. Phys. Scr. 2024, 99, 16. [Google Scholar] [CrossRef]
- Kumar, P.; Gangopadhyay, G. Nonequilibrium thermodynamic signatures of collective dynamical states around chimera in a chemical reaction network. Phys. Rev. E 2023, 108, 044218. [Google Scholar] [CrossRef]
- Nedelcu, L.; Burdusel, M.; Grigoroscuta, M.A.; Enculescu, M.; Badica, P.; Banciu, M.G. Microwave and Terahertz Properties of Spark-Plasma-Sintered Zr0.8Sn0.2TiO4 Ceramics. Materials 2022, 15, 1258. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, J.; Wang, P. Study of Bulk Amorphous and Nanocrystalline Alloys Fabricated by High-Sphericity Fe84Si7B5C2Cr2 Amorphous Powders at Different Spark-Plasma-Sintering Temperatures. Materials 2022, 15, 1106. [Google Scholar] [CrossRef] [PubMed]
- Martín-Vaquero, J. Polynomial-based mean weighted residuals methods for elliptic problems with nonlocal boundary conditions in the rectangle. Nonlinear Anal. Model. Control 2014, 9, 448–459. [Google Scholar] [CrossRef]
- Khan, Z.; Rasheed, H.U.; Khan, H.A.M.A. Mathematical simulation of casson mhd flow through a permeable moving wedge with nonlinear chemical reaction and nonlinear thermal radiation. Materials 2022, 15, 747. [Google Scholar] [CrossRef]
- Fujino, T.; Ichinokiyama, D.; Ichikawa, T. Plasma Characteristics and Performance of Nonequilibrium Disk Magnetohydrodynamic Generator with Swirl Vanes. J. Propul. Power 2018, 34, 992–1001. [Google Scholar] [CrossRef]
- Valenzuela-Delgado, M.; Ortiz-Perez, A.S.; Flores-Fuentes, W.; Bravo-Zanoguera, M.E.; Acuna-Ramirez, A.; Ocampo-Diaz, J.D. Theoretical and experimental study of low conducting fluid MHD flow in an open annular channel. Int. J. Heat Mass Transf. 2018, 127, 322–331. [Google Scholar] [CrossRef]
Reaction Process | Reaction Process |
(1) | (2) |
(3) | (4) |
(5) | (6) |
(7) | (8) |
(9) | (10) |
(11) | (12) |
(13) | (14) |
(15) | (16) |
(17) | (18) |
K2CO3 Seeds Mass Fraction | σ (T) = a1T + a2T2 + a3T3 + a4T4 + a5T5 | ||||
---|---|---|---|---|---|
a1 | a2 | a3 | a4 | a5 | |
1% | 0.00374 | −1.19856 × 10−5 | 1.40541 × 10−8 | −7.15634 × 10−12 | 1.33864 × 10−15 |
5% | 0.00489 | −1.61065 × 10−5 | 1.94334 × 10−8 | −1.01970 × 10−11 | 1.96759 × 10−15 |
10% | 0.00344 | −1.17463 × 10−5 | 1.47230 × 10−8 | −8.03843 × 10−12 | 1.61580 × 10−15 |
Case | Initial Temperature K | Pressure Pa | Conductivity S/m | Excess Air Coefficient | Percentage of Ionized Seeds | Magnetic Field Intensity T |
---|---|---|---|---|---|---|
1 | 600 | 101,325 | 2.9 | 0.9 | 5% | 0 |
2 | 600 | 101,325 | 2.9 | 0.9 | 5% | 0.6 |
3 | 900 | 101,325 | 7.5 | 0.9 | 5% | 0.6 |
4 | 1200 | 101,325 | 11.8 | 0.9 | 5% | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Lu, Y.; Zhang, X.; Zhang, X.; Li, F. Research on Gas Plasma Ionization Characteristics Based on Methane/Air/K2CO3 Mixed Combustion Scheme. Fire 2025, 8, 148. https://doi.org/10.3390/fire8040148
Zhao K, Lu Y, Zhang X, Zhang X, Li F. Research on Gas Plasma Ionization Characteristics Based on Methane/Air/K2CO3 Mixed Combustion Scheme. Fire. 2025; 8(4):148. https://doi.org/10.3390/fire8040148
Chicago/Turabian StyleZhao, Kai, Yongji Lu, Xiaohui Zhang, Xueying Zhang, and Feng Li. 2025. "Research on Gas Plasma Ionization Characteristics Based on Methane/Air/K2CO3 Mixed Combustion Scheme" Fire 8, no. 4: 148. https://doi.org/10.3390/fire8040148
APA StyleZhao, K., Lu, Y., Zhang, X., Zhang, X., & Li, F. (2025). Research on Gas Plasma Ionization Characteristics Based on Methane/Air/K2CO3 Mixed Combustion Scheme. Fire, 8(4), 148. https://doi.org/10.3390/fire8040148