Burn to Save, or Save to Burn? Management May Be Key to Conservation of an Iconic Old-Growth Stand in California, USA
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Treatment and Fire Simulations
3. Results
3.1. Current (Pre-Treatment) Tree Basal Area and Density
3.2. Fuel Loadings Pre- and Post-Treatment
3.3. Tree Basal Area and Density Before and After Wildfire
3.4. Fire Behavior
3.5. Carbon and PM2.5 Emissions from Prescribed Fires and Wildfire
4. Discussion
5. Conclusions
6. Epilogue
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franklin, J.F.; Fites-Kaufman, J. Assessment of late-successional forests of the Sierra Nevada. In Sierra Nevada Ecosystem Report. Final Report to Congress. Volume II. Assessments and Scientific Basis for Management Options; Center for Water and Wildland Resources, University of California: Davis, CA, USA, 1996; pp. 627–656. [Google Scholar]
- Moore, K.D. In the Shadow of the Cedars: The Spiritual Values of Old-Growth Forests. Conserv. Biol. 2007, 21, 1120–1123. [Google Scholar] [CrossRef] [PubMed]
- Spies, T.A.; Duncan, S.L. Old-Growth in a New World: A Pacific Northwest Reexamination; Island Press: Washington, DC, USA, 2009. [Google Scholar]
- Steel, Z.L.; Jones, G.M.; Collins, B.M.; Green, R.; Koltunov, A.; Purcell, K.L.; Sawyer, S.C.; Slaton, M.R.; Stephens, S.L.; Stine, P.; et al. Mega-disturbances cause rapid decline of mature conifer forest habitat in California. Ecol. Appl. 2022, 33, e2763. [Google Scholar] [CrossRef]
- USDA. Northwest Forest Plan. Record of Decision. USDA Forest Service, Pacific Northwest and Southwest Regions. 1994. Available online: www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprd3843201.pdf (accessed on 30 December 2024).
- USDA. Sierra Nevada Forest Plan Amendment. Record of Decision; USDA Forest Service, Pacific Southwest Region: Vallejo, CA, USA, 2001. [Google Scholar]
- Beesley, D. Reconstructing the landscape: An environmental history, 1820–1960. In Sierra Nevada Ecosystem Report. Final Report to Congress. Volume II. Assessments and Scientific Basis for Management Options; Center for Water and Wildland Resources, University of California: Davis, CA, USA, 1996; pp. 1–24. [Google Scholar]
- Barbour, M.G.; Pavlik, B.; Drysdale, F.; Lindstrom, S. California’s Changing Landscapes: Diversity and Conservation of California Vegetation; California Native Plant Society: Sacramento, CA, USA, 1993. [Google Scholar]
- Spies, T.A.; Hemstrom, M.A.; Youngblood, A.; Hummel, S. Conserving old-growth forest diversity in disturbance-prone landscapes. Conserv. Biol. 2006, 20, 351–362. [Google Scholar] [CrossRef]
- Kolb, T.E.; Agee, J.K.; Fulé, P.Z.; McDowell, N.G.; Pearson, K.; Sala, A.; Waring, R.H. Perpetuating old ponderosa pine. For. Ecol. Manag. 2007, 249, 141–157. [Google Scholar] [CrossRef]
- North, M.P.; Stephens, S.L.; Collins, B.M.; Agee, J.K.; Aplet, G.; Franklin, J.F.; Fulé, P.Z. Reform forest fire management. Science 2015, 349, 1280–1281. [Google Scholar] [CrossRef] [PubMed]
- Stephens, S.L.; Moghaddas, J.J.; Edminster, C.; Fiedler, C.E.; Haase, S.S.; Harrington, M.; Keeley, J.E.; Knapp, E.E.; McIver, J.D.; Metlen, K.; et al. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western US forests. Ecol. Appl. 2009, 19, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Schwilk, D.W.; Keeley, J.E.; Knapp, E.E.; McIver, J.; Bailey, J.D.; Fettig, C.J.; Fiedler, C.E.; Harrod, R.J.; Moghaddas, J.J.; Outcalt, K.W.; et al. The national fire and fire surrogate study: Effects of fuel reduction methods on forest vegetation structure and fuels. Ecol. Appl. 2009, 19, 285–304. [Google Scholar] [CrossRef] [PubMed]
- North, M.P.; Collins, B.M.; Safford, H.D.; Stephenson, N.L. Montane forests. In Ecosystems of California; Mooney, H.A., Zavaleta, E., Eds.; University of California Press: Berkeley, CA, USA, 2016; pp. 553–577. [Google Scholar]
- Hessburg, P.F.; Prichard, S.J.; Hagmann, R.K.; Povak, N.A.; Lake, F.K. Wildfire and climate change adaptation of western North American forests: A case for intentional management. Ecol. Appl. 2021, 31, e02432. [Google Scholar] [CrossRef] [PubMed]
- Stephens, S.L.; Bernal, A.A.; Collins, B.M.; Finney, M.A.; Lautenberger, C.; Saah, D. Mass fire behavior created by extensive tree mortality and high tree density not predicted by operational fire behavior models in the southern Sierra Nevada. For. Ecol. Manag. 2022, 518, 120258. [Google Scholar] [CrossRef]
- Agee, J.K. Fire Ecology of Pacific Northwest Forests; Island Press: Washington, DC, USA, 1993. [Google Scholar]
- Keeley, J.E.; Safford, H.D. Fire as an ecosystem process. In Ecosystems of California; Mooney, H.A., Zavaleta, E., Eds.; University of California Press: Berkeley, CA, USA, 2016; pp. 27–45. [Google Scholar]
- Noss, R.F.; Franklin, J.F.; Baker, W.L.; Schoennagel, T.; Moyle, P.B. Managing fire-prone forests in the western United States. Front. Ecol. Environ. 2006, 4, 481–487. [Google Scholar] [CrossRef]
- Steel, Z.L.; Safford, H.D.; Viers, J.H. The fire frequency-severity relationship and the legacy of fire suppression in California forests. Ecosphere 2015, 6, 1–23. [Google Scholar] [CrossRef]
- van Wagtendonk, J.W.; Sugihara, N.G.; Stephens, S.L.; Thode, A.E.; Shaffer, K.E.; Fites-Kaufman, J.J. (Eds.) Fire in California’s Ecosystems; University of California Press: Berkeley, CA, USA, 2018. [Google Scholar]
- Safford, H.D.; Van de Water, K.M. Using Fire Return Interval Departure (FRID) Analysis to Map Spatial and Temporal Changes in Fire Frequency on National Forest Lands in California; Research Paper PSW-RP-266; USDA Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2014. [Google Scholar]
- Parks, S.A.; Miller, C.; Parisien, M.A.; Holsinger, L.M.; Dobrowski, S.Z.; Abatzoglou, J. Wildland fire deficit and surplus in the western United States, 1984–2012. Ecosphere 2015, 6, 275. [Google Scholar] [CrossRef]
- Safford, H.D.; Stevens, J.T. Natural Range of Variation (NRV) for Yellow Pine and Mixed Conifer Forests in the Sierra Nevada, Southern Cascades, and Modoc and Inyo National Forests, California, USA; General Technical Report PSW-GTR-256; USDA Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2017. [Google Scholar]
- Hagmann, R.K.; Hessburg, P.F.; Prichard, S.J.; Povak, N.A.; Brown, P.M.; Fule, P.Z.; Keane, R.E.; Knapp, E.E.; Lydersen, J.M.; Metlen, K.L.; et al. Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests. Ecol. Appl. 2021, 31, e02431. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Juang, C.S.; Williams, A.P.; Kolden, C.A.; Westerling, A.L. Increasing synchronous fire danger in forests of the western United States. Geophys. Res. Lett. 2021, 48, e2020GL091377. [Google Scholar] [CrossRef]
- Biswell, H.H. Prescribed Burning in California Wildlands Vegetation Management; University of California Press: Berkeley, CA, USA, 1989. [Google Scholar] [CrossRef]
- Birdsey, R.; Pregitzer, K.; Lucier, A. Forest carbon management in the United States: 1600–2100. J. Environ. Qual. 2006, 35, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- North, M.P.; Stine, P.; O’Hara, K.; Zielinski, W.J.; Stephens, S.L. An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests; General Technical Report PSW-GTR-220; USDA Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2009. [Google Scholar]
- Covington, W.W.; Moore, M.M. Postsettlement changes in natural fire regimes and forest structure: Ecological restoration of old-growth ponderosa pine forests. J. Sustain. For. 1994, 2, 153–181. [Google Scholar] [CrossRef]
- Merschel, A.; Vora, R.S.; Spies, T. Conserving dry old-growth forest in Central Oregon, USA. J. For. 2019, 117, 128–135. [Google Scholar] [CrossRef]
- Hessburg, P.F.; Charnley, S.; Wendel, K.; White, E.M.; Singleton, P.H.; Peterson, D.W.; Halofsky, J.E.; Gray, A.N.; Spies, T.A.; Flitcrof, R.L.; et al. The 1994 Eastside Screens Large-Tree Harvest Limit: Review of Science Relevant to Forest Planning 25 Years Later; General Technical Report PNW-GTR-990; USDA Forest Service: Portland, OR, USA, 2020. [Google Scholar]
- North, M.P.; Tompkins, R.E.; Bernal, A.A.; Collins, B.M.; Stephens, S.L.; York, R.A. Operational resilience in western US frequent-fire forests. For. Ecol. Manag. 2022, 507, 120004. [Google Scholar] [CrossRef]
- Barbour, M.; Kelley, E.; Maloney, P.; Rizzo, D.; Royce, E.; Fites-Kaufmann, J. Present and past old-growth forests of the Lake Tahoe Basin, Sierra Nevada, US. J. Veg. Sci. 2002, 13, 461–472. [Google Scholar] [CrossRef]
- Taylor, A.H. Identifying forest reference conditions on early cut-over lands, Lake Tahoe Basin, USA. Ecol. Appl. 2004, 14, 1903–1920. [Google Scholar] [CrossRef]
- Maxwell, R.S.; Taylor, A.H.; Skinner, C.; Safford, H.D.; Isaacs, R.; Airey, C.; Young, A. Landscape scale modeling of reference period forest conditions and fire behavior on heavily-logged lands. Ecosphere 2014, 5, 32. [Google Scholar] [CrossRef]
- Thorne, J.H.; Safford, H.D.; Boynton, R.; Stewart, J.; Lindström, S. Forests and climate change in the Lake Tahoe Basin. In Ecosystem Resilience, Climate Change, and Environmental Management in the Tahoe Basin; Coats, B., Ed.; University of Nevada Press: Reno, NV, USA, 2025. [Google Scholar]
- USDA. Lake Tahoe Basin Management Unit Management Plan, Record of Decision; US Department of Agriculture, Forest Service: Vallejo, CA, USA, 2016. [Google Scholar]
- TRPA. TRPA Threshold Standards and Regional Plan; Tahoe Regional Planning Agency: Stateline, NV, USA, 2021. [Google Scholar]
- Williams, J.N.; Safford, H.D.; Steel, Z.L.; Paulson, A.K.; Enstice, N. High severity burn area and proportion exceed historic conditions in forests of Sierra Nevada and adjacent ranges (USA). Ecosphere 2023, 14, e4397. [Google Scholar] [CrossRef]
- Dickinson, M.B.; Johnson, E.A. Fire effects on trees. Chapter 14. In Forest Fires: Behaviour and Ecological Effects; Johnson, E.A., Miyanishi, K., Eds.; Academic Press: New York, NY, USA, 2001. [Google Scholar]
- Michaletz, S.E.; Johnson, E.A. A biophysical process model of tree mortality in surface fires. Can. J. For. Res. 2008, 38, 2013–2029. [Google Scholar] [CrossRef]
- WRCC (Western Regional Climate Center). RAWS USA Climate Archive. 2024. Available online: https://wrcc.dri.edu/cgi-bin/rawMAIN.pl?caCBRN (accessed on 17 May 2024).
- Schweickert, R.A.; Moore, J.G.; Lahren, M.M.; Kortemeier, W.; Kitts, C.; Adamek, T. The Tahoe-Sierra frontal fault zone, Emerald Bay area, Lake Tahoe, California: History, displacements, and rates. Geosphere 2019, 15, 783–819. [Google Scholar] [CrossRef]
- CSRL. Soilweb. California Soil Resources Lab, University of California-Davis and UC-Division of Agriculture and Natural Resources. 2024. Available online: https://casoilresource.lawr.ucdavis.edu/gmap/ (accessed on 17 May 2024).
- Beaty, R.M.; Taylor, A.H. Fire disturbance and forest structure in old-growth mixed conifer forests in the northern Sierra Nevada, California. J. Veg. Sci. 2007, 18, 879–890. [Google Scholar]
- USDA. Forest Service Region 5 Common Stand Exam Field Guide. US Department of Agriculture, Forest Service, Vallejo, California. 2012. Available online: https://www.fs.usda.gov/nrm/fsveg/index.shtml (accessed on 30 December 2024).
- Safford, H.D.; Stevens, J.T.; Merriam, K.; Meyer, M.D.; Latimer, A.M. Fuel treatment effectiveness in California yellow pine and mixed conifer forests. For. Ecol. Manag. 2012, 274, 17–28. [Google Scholar] [CrossRef]
- Carlson, C.H.; Dobrowksi, S.Z.; Safford, H.D. Variation in tree mortality and regeneration affect forest carbon recovery following fuel treatments and wildfire in the Lake Tahoe Basin, California, USA. Carbon Balance Manag. 2012, 7, 7. [Google Scholar] [CrossRef]
- Brown, J.K. Handbook for Inventorying Surface Fuels and Biomass in the Interior West; US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1982; Volume 129. [Google Scholar]
- Rebain, S.A. The Fire and Fuels Extension to the Forest Vegetation Simulator: Updated Model Documentation; USDA Forest Service, Forest Management Service Center: Fort Collins, CO, USA, 2022. [Google Scholar]
- Hummel, S.; Kennedy, M.; Steel, E.A. Assessing forest vegetation and fire simulation model performance after the Cold Springs wildfire, Washington USA. For. Ecol. Manag. 2013, 287, 40–52. [Google Scholar] [CrossRef]
- Ghilardi, C.R.; Knapp, B.O.; He, H.S.; Larsen, S.R.; Kabrick, J.M. Evaluation of the Fire and Fuels Extension to the Forest Vegetation Simulator within the Missouri Ozarks. In Proceedings of the 2017 Forest Vegetation Simulator (FVS) e-Conference, virtual, 28 February–2 March 2017; e-General Technical Report SRS-224. Keyser, C.E., Keyser, T.L., Eds.; USDA Forest Service, Southern Research Station: Asheville, NC, USA, 2017; pp. 94–97. [Google Scholar]
- Barker, J.S.; Fried, J.S.; Gray, A.N. Evaluating model predictions of fire-induced tree mortality using wildfire-affected forest inventory measurements. Forests 2019, 10, 958. [Google Scholar] [CrossRef]
- Young, D.; Meyer, M.D.; Estes, B.E.; Gross, S.E.; Wuenschel, A.; Restaino, C.M.; Safford, H.D. Forest recovery following extreme drought in California, USA: Natural patterns and effects of pre-drought management. Ecol. Appl. 2020, 30, e02002. [Google Scholar] [CrossRef]
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; Gen. Tech. Rep. RMRS-GTR-153; USDA Forest Service, Rocky Mountain Research Station: Ft. Collins, CO, USA, 2005. [Google Scholar]
- NFDRS. Pocket Card for Lake Tahoe Basin. National Fire Danger Rating System. 2022. Available online: https://wildfireweb-prod-media-bucket.s3.us-gov-west-1.amazonaws.com/2022-11/2022_CA_TMU_ERC_FMY.pdf (accessed on 30 December 2024).
- Curtis, R.O.; Marshall, D.D. Technical note: Why quadratic mean diameter? West. J. Appl. For. 2000, 15, 137–139. [Google Scholar] [CrossRef]
- Jones, G.M.; Stanley, C.K.; Peery, M.Z.; Maxwell, C.; Wilson, K.N. Accelerated forest restoration may benefit spotted owls through landscape complementation. Anim. Conserv. 2024, volume, pages. [Google Scholar] [CrossRef]
- Rothermel, R.C. How to Predict the Spread and Intensity of Forest and Range Fires; General Technical Report INT-GTR-143; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1983. [Google Scholar]
- Stephens, S.L.; Collins, B.M.; Fettig, C.J.; Finney, M.A.; Hoffman, C.M.; Knapp, E.E.; North, M.P.; Safford, H.D.; Wayman, R.B. Drought, tree mortality, and wildfire in forests adapted to frequent fire. BioScience 2018, 68, 77–88. [Google Scholar] [CrossRef]
- Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.V.; Lattin, J.D.; Anderson, N.H.; Cline, S.P.; Aumen, N.G.; Sedell, J.R.; et al. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 1986, 15, 133–302. [Google Scholar]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Imeson, A.C.; Verstraten, J.M.; van Mulligen, E.J.; Sevink, J. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. Catena 1992, 19, 345–361. [Google Scholar] [CrossRef]
- Shakesby, R.; Doerr, S. Wildfire as a hydrological and geomorphological agent. Earth-Sci. Rev. 2006, 74, 269–307. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol. 2014, 204, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Ottmar, R.D. Wildland fire emissions, carbon, and climate: Modeling fuel consumption. For. Ecol. Manag. 2014, 317, 41–50. [Google Scholar] [CrossRef]
- Miller, W.W.; Johnson, D.W.; Gergans, N.; Carroll-Moore, E.M.; Walker, R.F.; Cody, T.L.; Wone, B. Update on the effects of a Sierran wildfire on surface runoff water quality. J. Environ. Qual. 2013, 42, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Ellis, B.K.; Craft, J.A.; Stanford, J.A. Long-term atmospheric deposition of nitrogen, phosphorus and sulfate in a large oligotrophic lake. PeerJ 2015, 3, e841. [Google Scholar] [CrossRef] [PubMed]
- Scordo, F.; Sadro, S.; Culpepper, J.; Seitz, C.; Chandra, S. Wildfire smoke effects on lake-habitat specific metabolism: Toward a conceptual understanding. Geophys. Res. Lett. 2022, 49, e2021GL097057. [Google Scholar] [CrossRef]
- Ladd, T.M.; Catlett, D.; Maniscalco, M.A.; Kim, S.M.; Kelly, R.L.; John, S.G.; Carlson, C.A.; Iglesias-Rodriguez, M.D. Food for all? Wildfire ash fuels growth of diverse eukaryotic plankton. Proc. R. Soc. B. 2023, 290, 20231817. [Google Scholar] [CrossRef]
- Das, A.; Battles, J.; Stephenson, N.; Mantgem, P. The contribution of competition to tree mortality in old-growth coniferous forests. For. Ecol. Manag. 2011, 261, 1203–1213. [Google Scholar] [CrossRef]
- Fettig, C.J.; Hilszczański, J. Management strategies for bark beetles in conifer forests. In Bark Beetles: Biology and Ecology of Native and Invasive Species; Vega, F.E., Hofstetter, R.W., Eds.; Academic Press: Amsterdam, The Netherlands, 2015; pp. 555–584. [Google Scholar]
- Restaino, C.M.; Young, D.J.; Estes, B.; Gross, S.E.; Wuenschel, A.; Meyer, M.D.; Safford, H.D. Forest structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USA. Ecol. Appl. 2019, 29, e01902. [Google Scholar] [CrossRef] [PubMed]
- Long, J.N.; Shaw, J.D. A density management diagram for even-aged Sierra Nevada mixed-conifer stands. West. J. Appl. For. 2012, 27, 187–195. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of tree mortality under drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Weed, A.S.; Ayres, M.P.; Hicke, J.A. Consequences of climate change for biotic disturbances in North American forests. Ecol. Monogr. 2013, 83, 441–470. [Google Scholar] [CrossRef]
- Asaro, C.; Koch, F.H.; Potter, K.M. Denser forests across the USA experience more damage from insects and pathogens. Sci. Rep. 2023, 13, 3666. [Google Scholar] [CrossRef] [PubMed]
- Young, D.J.; Stevens, J.T.; Earles, J.M.; Moore, J.; Ellis, A.; Jirka, A.L.; Latimer, A.M. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol. Lett. 2017, 20, 78–86. [Google Scholar] [CrossRef]
- McEwan, L.C.; Hirth, D.H. Southern bald eagle productivity and nest site selection. J. Wildl. Manag. 1979, 43, 585–594. [Google Scholar] [CrossRef]
- Lehman, R.N. A Survey of Selected Habitat Features of 95 Bald Eagle Nest Sites in California; Administrative Report 79-1; State of California Resources Agency, Department of Fish and Game: Sacramento, CA, USA, 1980. [Google Scholar]
- Anthony, R.G.; Knight, R.L.; Allen, G.T.; McClelland, B.R.; Hodges, J.I. Habitat use by nesting and roosting bald eagles in the Pacific Northwest. In US Fish and Wildlife Publications 1982, 34, 332–342. [Google Scholar]
- Peterson, A. Habitat Suitability Index Models: Bald Eagle (Breeding Season); U.S. Fish & Wildlife Service Biological Report; US Department of the Interior: Washington, DC, USA, 1986; Volume 82. [Google Scholar]
- Leighton, F.A.; Gerrard, J.M.; Gerrard, P.; Whitfield, D.W.; Maher, W.J. An aerial census of bald eagles in Saskatchewan. J. Wildl. Manag. 1979, 33, 61–69. [Google Scholar] [CrossRef]
- Stephens, S.L.; Miller, J.D.; Collins, B.M.; North, M.P.; Keane, J.J.; Roberts, S.L. Wildfire impacts on California spotted owl nesting habitat in the Sierra Nevada. Ecosphere 2016, 7, e01478. [Google Scholar] [CrossRef]
- Jones, G.M.; Gutiérrez, R.J.; Tempel, D.J.; Whitmore, S.A.; Berigan, W.J.; Peery, M.Z. Megafires: An emerging threat to old-forest species. Front. Ecol. Environ. 2016, 14, 300–306. [Google Scholar] [CrossRef]
- Thompson, C.; Smith, H.; Green, R.; Wasser, S.; Purcell, K. Fisher use of postfire landscapes: Implications for habitat connectivity and restoration. West. N. Am. Nat. 2021, 81, 225–242. [Google Scholar] [CrossRef]
- Mathisen, J.E. Effects of Human Disturbance on Nesting of Bald Eagles. J. Wildl. Manag. 1968, 32, 1–6. [Google Scholar] [CrossRef]
- Grier, J.W. Bald eagle behavior and productivity responses to climbing to nests. J. Wildl. Manag. 1969, 33, 961–966. [Google Scholar] [CrossRef]
- Jaffee, N.B. Nest Site Selection and Foraging Behavior of the Bald Eagle (Haliaeetus leucocephalus) in Virginia. Master’s Thesis, William & Mary University, Williamsburg, VA, USA, 1980; p. 1539625093. [Google Scholar] [CrossRef]
- Stocek, R.; Pearce, P. Status of breeding success of New Brunswick bald eagles. Can. Field Nat. 1981, 95, 428–433. [Google Scholar] [CrossRef]
- Burke, M. Bald eagle nesting improved with silvicultural manipulation in northeastern California. In Biology and Management of Bald Eagles and Ospreys; Bird, D.M., Seymour, N.R., Gerrard, J.M., Eds.; MacDonald Raptor Research Center, McGill University: Montreal, QC, Canada, 1983; pp. 101–105. [Google Scholar]
- Weeks, J.; Miller, J.E.; Steel, Z.L.; Batzer, E.E.; Safford, H.D. High-severity fire drives persistent floristic homogenization in human-altered forests. Ecosphere 2023, 14, e4409. [Google Scholar] [CrossRef]
- Richter, C.J.; Rejmánek, M.; Miller, J.E.D.; Weeks, J.; Welch, K.R.; Safford, H.D. The species diversity x fire severity relationship is hump-shaped in yellow pine and mixed conifer forests. Ecosphere 2019, 10, e02882. [Google Scholar] [CrossRef]
- Converse, S.J.; White, G.C.; Farris, K.L.; Zack, S. Small mammals and forest fuel reduction: National-scale responses to fire and fire surrogates. Ecol. Appl. 2006, 16, 1717–1729. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.J.; Burnett, R.; Fogg, A. Fire and mechanical forest management treatments support different portions of the bird community in fire-suppressed forests. Forests 2021, 12, 150. [Google Scholar] [CrossRef]
- Taylor, A.H. Fire disturbance and forest structure in an old-growth Pinus ponderosa forest, southern Cascades, USA. J. Veg. Sci. 2010, 21, 561–572. [Google Scholar] [CrossRef]
- Pawlikowski, N.C.; Coppoletta, M.; Knapp, E.; Taylor, A.H. Spatial dynamics of tree group and gap structure in an old-growth ponderosa pine-California black oak forest burned by repeated wildfires. For. Ecol. Manag. 2019, 434, 289–302. [Google Scholar] [CrossRef]
. | 1-h | 10-h | 100-h | 1000-h | Duff | Live Woody | Live Herb |
---|---|---|---|---|---|---|---|
SRX | 12 | 12 | 14 | 25 | 125 | 150 | 150 |
TFRX | 8 | 8 | 10 | 15 | 50 | 110 | 110 |
Wildfire | 2 | 3 | 6 | 7 | 15 | 59 | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weeks, J.; Nagelson, B.; Bisbing, S.; Safford, H. Burn to Save, or Save to Burn? Management May Be Key to Conservation of an Iconic Old-Growth Stand in California, USA. Fire 2025, 8, 70. https://doi.org/10.3390/fire8020070
Weeks J, Nagelson B, Bisbing S, Safford H. Burn to Save, or Save to Burn? Management May Be Key to Conservation of an Iconic Old-Growth Stand in California, USA. Fire. 2025; 8(2):70. https://doi.org/10.3390/fire8020070
Chicago/Turabian StyleWeeks, JonahMaria, Bryant Nagelson, Sarah Bisbing, and Hugh Safford. 2025. "Burn to Save, or Save to Burn? Management May Be Key to Conservation of an Iconic Old-Growth Stand in California, USA" Fire 8, no. 2: 70. https://doi.org/10.3390/fire8020070
APA StyleWeeks, J., Nagelson, B., Bisbing, S., & Safford, H. (2025). Burn to Save, or Save to Burn? Management May Be Key to Conservation of an Iconic Old-Growth Stand in California, USA. Fire, 8(2), 70. https://doi.org/10.3390/fire8020070