Mapping the Evolution of New Energy Vehicle Fire Risk Research: A Comprehensive Bibliometric Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Research Methods and Tools
3. Results and Discussion
3.1. Temporal Distribution of Literature
3.2. Spatial Distribution of Literature
3.2.1. Country and Region Distribution
3.2.2. Institute Distribution of Literature
3.2.3. Major Journal Distribution
3.3. Research Knowledge Base
3.3.1. Core Author Analysis
3.3.2. High-Cited Literature Analysis
Rank | Reference Number | STC | Title | Authors | Journal | Type | Year | IN | CN |
---|---|---|---|---|---|---|---|---|---|
1 | [47] | 837 | A Review of Lithium-Ion Battery Failure Mechanisms and Fire Prevention Strategies | Wang, Q.S.; Mao, B.B.; Stoliarov, S.I.; Sun, J.H. | Progress in Energy and Combustion Science | Review | 2019 | 2 | 2 |
2 | [48] | 801 | A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards | Chen, Y.Q.; Kang, Y.Q.; Zhao, Y.; et al. | Journal of Energy Chemistry | Review | 2021 | 5 | 3 |
3 | [49] | 712 | Mitigating Thermal Runaway of Lithium-Ion Batteries | Feng, X.N.; Ren, D.S.; He, X.M.; Ouyang, M.G. | Joule | Review | 2020 | 1 | 1 |
4 | [52] | 426 | Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review | Liu, B.H.; Jia, Y.K.; Yuan, C.H.; et al. | Energy Storage Materials | Review | 2020 | 1 | 1 |
5 | [53] | 360 | A Review of Battery Fires in Electric Vehicles | Sun, P.Y.; Bisschop, R.; Niu, H.H.; Huang, X.Y. | Fire Technology | Review | 2020 | 3 | 2 |
6 | [54] | 288 | A Review of Safety Strategies of a Li-Ion Battery | Chombo, P.V.; Laoonual, Y. | Journal of Power Sources | Review | 2020 | 1 | 1 |
7 | [55] | 275 | Conductivity and Lithiophilicity Gradients Guide Lithium Deposition to Mitigate Short Circuits | Pu, J.; Li, J.C.; Zhang, K.; et al. | Nature Communications | Article | 2019 | 5 | 2 |
8 | [56] | 265 | Environmental Impacts, Pollution Sources, and Pathways of Spent Lithium-Ion Batteries | Mrozik, W.; Rajaeifar, M.A.; Heidrich, O.; Christensen, P. | Energy & Environmental Science | Review | 2021 | 2 | 1 |
9 | [50] | 221 | A Review of Air-Cooling Battery Thermal Management Systems for Electric and Hybrid Electric Vehicles | Zhao, G.; Wang, X.L.; Negnevitsky, M.; Zhang, H.Y. | Journal of Power Sources | Review | 2021 | 2 | 2 |
10 | [51] | 206 | Reviewing the Current Status and Development of Polymer Electrolytes for Solid-State Lithium Batteries | Wang, H.C.; Sheng, L.; Yasin, G.; et al. | Energy Storage Materials | Article | 2020 | 2 | 1 |
3.3.3. Highly Co-Cited Journals Analysis
3.4. Research Evolution and Hotspots Analysis
3.4.1. Keyword Co-Occurrence and Safety Themes
3.4.2. Research Frontiers in Battery Fire Safety
3.4.3. Evolution of Research Topics and Safety Strategies
4. Conclusions
- There were three identifiable stages in the development of research on NEV fires: an initial exploratory phase (2008–2012), a period of steady development (2013–2018), and a phase of rapid growth (2019–2024). Foundational studies published during the early years effectively shaped the trajectory for later developments. China emerged as the leading contributor in both output and citations, with China and the US as central hubs in regionally clustered collaborations. Core journals such as the Journal of Energy Storage, Fire Technology, Process Safety, and Environmental Protection indicate that this field possesses an interdisciplinary attribute, encompassing multiple disciplines including thermodynamics, materials science, and electrochemistry. Improving study rigor and citation influence, increasing English and open access dissemination, and fostering multinational institutional partnerships and shared data are all necessary.
- From 2019 to 2024, the knowledge base of research on NEV fires primarily comprised three aspects: core authors, representative literature, and highly cited journals. The top ten most influential authors in the field were identified, all of whom were based in China, highlighting the country’s significant contributions to advancing research in this area. Most of the core literature consisted of review articles, indicating that the field is consolidating existing knowledge rather than producing many breakthrough experiments. Highly co-cited journals could be broadly categorized into two thematic areas: energy and materials science, and energy and electrochemistry. Influential journals, particularly Journal of Power Sources, reflect the focus on battery technology, thermal management, and fire prevention, indicating that the theoretical foundation of this field is now well established.
- The keyword clustering analysis revealed that the primary focus of research on NEV fire was on power battery thermal management and performance optimization, power battery materials and safety performance, TR of batteries, and fire risk assessment, as well as fire prevention and control technology. The research frontiers in the field of NEV fires could be categorized into five major areas: mechanisms and propagation paths of TR, development of high-safety battery materials and flame-retardant technologies, thermal management and thermal safety control, intelligent early warning and fault diagnosis, and fire suppression and firefighting techniques. Research on NEV fires has evolved through three stages: early work (2008–2012) on battery performance and materials, mid-phase studies (2013–2018) on TR mechanisms and accident causes, and recent efforts (2019–2024) emphasizing electrolyte optimization, thermal management, real-time monitoring, and integrated fire prevention. This shift reflects a transition from passive analysis to proactive strategies, supported by extensive experimental and numerical studies, and highlights the growing need for comprehensive safety systems across the battery lifecycle.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Xi, X.; Na, Q.; Wang, S.; Kadry, S.N.; Kumar, P.M. The Technological Innovation of Hybrid and Plug-in Electric Vehicles for Environment Carbon Pollution Control. Environ. Impact Assess. Rev. 2021, 86, 106506. [Google Scholar] [CrossRef]
- Zhang, G.; Wei, X.; Tang, X.; Zhu, J.; Chen, S.; Dai, H. Internal Short Circuit Mechanisms, Experimental Approaches and Detection Methods of Lithium-Ion Batteries for Electric Vehicles: A Review. Renew. Sustain. Energy Rev. 2021, 141, 110790. [Google Scholar] [CrossRef]
- Zahoor, A.; Yu, Y.; Zhang, H.; Nihed, B.; Afrane, S.; Peng, S.; Sápi, A.; Lin, C.J.; Mao, G. Can the New Energy Vehicles (NEVs) and Power Battery Industry Help China to Meet the Carbon Neutrality Goal before 2060? J. Environ. Manag. 2023, 336, 117663. [Google Scholar] [CrossRef]
- Dorsz, A.; Lewandowski, M. Analysis of Fire Hazards Associated with the Operation of Electric Vehicles in Enclosed Structures. Energies 2021, 15, 11. [Google Scholar] [CrossRef]
- Huang, Z.; Yu, Y.; Duan, Q.; Qin, P.; Sun, J.; Wang, Q. Heating Position Effect on Internal Thermal Runaway Propagation in Large-Format Lithium Iron Phosphate Battery. Appl. Energy 2022, 325, 119778. [Google Scholar] [CrossRef]
- Fayaz, H.; Afzal, A.; Samee, A.D.M.; Soudagar, M.E.M.; Akram, N.; Mujtaba, M.A.; Jilte, R.D.; Islam, T.; Ağbulut, Ü.; Saleel, C.A. Optimization of Thermal and Structural Design in Lithium-Ion Batteries to Obtain Energy Efficient Battery Thermal Management System (BTMS): A Critical Review. Arch. Comput. Methods Eng. 2022, 29, 129–194. [Google Scholar] [CrossRef]
- Yusuf, A.; Li, Z.; Yuan, X.; Wang, D. Toward a New Generation of Fire-Safe Energy Storage Devices: Recent Progress on Fire-Retardant Materials and Strategies for Energy Storage Devices. Small Methods 2022, 6, 2101428. [Google Scholar] [CrossRef]
- Zou, K.; Li, Q.; Lu, S. An Experimental Study on Thermal Runaway and Fire Behavior of Large-Format LiNi0.8Co0.1Mn0.1O2 Pouch Power Cell. J. Energy Storage 2022, 49, 104138. [Google Scholar] [CrossRef]
- Zhao, C.; Hu, W.; Meng, D.; Mi, W.; Wang, X.; Wang, J. Full-Scale Experimental Study of the Characteristics of Electric Vehicle Fires Process and Response Measures. Case Stud. Therm. Eng. 2024, 53, 103889. [Google Scholar] [CrossRef]
- Zhan, W.; Feng, X.; Zhang, Q.; Chen, L.; Li, L.; Kong, Q.; Shi, F.; Chen, M.; Du, D.; Jiang, J. Effects of Silica Aerogel Particles on Performance of the Coatings for New Energy Vehicle Battery Packs. J. Dispers. Sci. Technol. 2024, 1–11. [Google Scholar] [CrossRef]
- Hu, J.; Tang, X.; Zhu, X.; Liu, T.; Wang, X. Suppression of Thermal Runaway Induced by Thermal Abuse in Large-Capacity Lithium-Ion Batteries with Water Mist. Energy 2024, 286, 129669. [Google Scholar] [CrossRef]
- Cheng, C.; Kong, F.; Shan, C.; Xu, B. Numerical Study on Lithium-Ion Battery Thermal Runaway Under Fire Conditions. Fire Technol. 2023, 59, 1073–1087. [Google Scholar] [CrossRef]
- Bai, Z.P.; Yu, Y.Y.; Zhang, J.Y.; Hu, H.M.; Xing, M.Y.; Yao, H.W. Study on Fire Characteristics of Lithium Battery of New Energy Vehicles in a Tunnel. Process Saf. Environ. Prot. 2024, 186, 728–737. [Google Scholar] [CrossRef]
- Chen, J.; Xiong, P.; Li, K.; Yang, S. Optimization Study of Fire Prevention Structure of Electric Vehicle Based on Bottom Crash Protection. Fire 2024, 7, 209. [Google Scholar] [CrossRef]
- Cho, I.; Park, S.; Kim, J. A Fire Risk Assessment Method for High-Capacity Battery Packs Using Interquartile Range Filter. J. Energy Storage 2022, 50, 104663. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, R.; Jin, Y.; Lin, J.; Zheng, Y.; Zhang, L.; Gao, X.; Yang, S. Battery Leakage Fault Diagnosis Based on Multi-Modality Multi-Classifier Fusion Decision Algorithm. J. Energy Storage 2023, 72, 108741. [Google Scholar] [CrossRef]
- Merigó, J.M.; Cancino, C.A.; Coronado, F.; Urbano, D. Academic Research in Innovation: A Country Analysis. Scientometrics 2016, 108, 559–593. [Google Scholar] [CrossRef]
- Liu, H.; Chen, H.; Hong, R.; Liu, H.; You, W. Mapping Knowledge Structure and Research Trends of Emergency Evacuation Studies. Saf. Sci. 2020, 121, 348–361. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Yao, J.; Ye, D.; Lang, Z.; Glowacz, A. Mapping the Knowledge Domains of New Energy Vehicle Safety: Informetrics Analysis-Based Studies. J. Energy Storage 2021, 35, 102275. [Google Scholar] [CrossRef]
- Huang, R.; Liu, H.; Wei, Z.; Jiang, Y.; Pan, K.; Wang, X.; Kong, J. Insights into the Quantitative Structure–Activity Relationship for Ionic Liquids: A Bibliometric Mapping Analysis. Environ. Sci. Pollut. Res. 2023, 30, 95054–95076. [Google Scholar] [CrossRef]
- Feng, J.K.; Cao, Y.L.; Ai, X.P.; Yang, H.X. Tri-(4-Methoxythphenyl) Phosphate: A New Electrolyte Additive with Both Fire-Retardancy and Overcharge Protection for Li-Ion Batteries. Electrochim. Acta 2008, 53, 8265–8268. [Google Scholar] [CrossRef]
- Walz, K.A.; Johnson, C.S.; Genthe, J.; Stoiber, L.C.; Zeltner, W.A.; Anderson, M.A.; Thackeray, M.M. Elevated Temperature Cycling Stability and Electrochemical Impedance of LiMn2O4 Cathodes with Nanoporous ZrO2 and TiO2 Coatings. J. Power Sources 2010, 195, 4943–4951. [Google Scholar] [CrossRef]
- Shibutani, R.; Tsutsumi, H. Fire-Retardant Solid Polymer Electrolyte Films Prepared from Oxetane Derivative with Dimethyl Phosphate Ester Group. J. Power Sources 2012, 202, 369–373. [Google Scholar] [CrossRef]
- Ping, P.; Wang, Q.; Huang, P.; Li, K.; Sun, J.; Kong, D.; Chen, C. Study of the Fire Behavior of High-Energy Lithium-Ion Batteries with Full-Scale Burning Test. J. Power Sources 2015, 285, 80–89. [Google Scholar] [CrossRef]
- Chen, M.; Yuen, R.; Wang, J. An Experimental Study about the Effect of Arrangement on the Fire Behaviors of Lithium-Ion Batteries. J. Therm. Anal. Calorim. 2017, 129, 181–188. [Google Scholar] [CrossRef]
- Biharta, M.A.S.; Santosa, S.P.; Widagdo, D. Design and Optimization of Lithium-Ion Battery Protector with Auxetic Honeycomb for in-Plane Impact Using Machine Learning Method. Front. Energy Res. 2023, 11, 1114263. [Google Scholar] [CrossRef]
- Liu, H.; Yu, Z.; Chen, C.; Hong, R.; Jin, K.; Yang, C. Visualization and Bibliometric Analysis of Research Trends on Human Fatigue Assessment. J. Med. Syst. 2018, 42, 179. [Google Scholar] [CrossRef]
- Huang, R.; Liu, H.; Ma, H.; Qiang, Y.; Pan, K.; Gou, X.; Wang, X.; Ye, D.; Wang, H.; Glowacz, A. Accident Prevention Analysis: Exploring the Intellectual Structure of a Research Field. Sustainability 2022, 14, 8784. [Google Scholar] [CrossRef]
- Chen, M.; Dongxu, O.; Cao, S.; Liu, J.; Wang, Z.; Wang, J. Effects of Heat Treatment and SOC on Fire Behaviors of Lithium-Ion Batteries Pack. J. Therm. Anal. Calorim. 2019, 136, 2429–2437. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Zhang, W.; Jiang, X.; Han, L.; Wang, X.; Kan, Y.; Song, L.; Hu, Y. Flame-Retardant in-Situ Formed Gel Polymer Electrolyte with Different Valance States of Phosphorus Structures for High-Performance and Fire-Safety Lithium-Ion Batteries. Chem. Eng. J. 2024, 490, 151568. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, M.; Zhou, X.; Ju, X.; Yang, L. Investigating Thermal Runaway Characteristics and Trigger Mechanism of the Parallel Lithium-Ion Battery. Appl. Energy 2023, 349, 121690. [Google Scholar] [CrossRef]
- Lang, Z.; Liu, H.; Meng, N.; Wang, H.; Wang, H.; Kong, F. Mapping the Knowledge Domains of Research on Fire Safety—An Informetrics Analysis. Tunn. Undergr. Space Technol. 2021, 108, 103676. [Google Scholar] [CrossRef]
- Winz, I.; Brierley, G.; Trowsdale, S. The Use of System Dynamics Simulation in Water Resources Management. Water Resour. Manag. 2009, 23, 1301–1323. [Google Scholar] [CrossRef]
- Kelly (Letcher), R.A.; Jakeman, A.J.; Barreteau, O.; Borsuk, M.E.; ElSawah, S.; Hamilton, S.H.; Henriksen, H.J.; Kuikka, S.; Maier, H.R.; Rizzoli, A.E.; et al. Selecting among Five Common Modelling Approaches for Integrated Environmental Assessment and Management. Environ. Model. Softw. 2013, 47, 159–181. [Google Scholar] [CrossRef]
- Lang, Z.; Wang, D.; Liu, H.; Gou, X. Mapping the Knowledge Domains of Research on Corrosion of Petrochemical Equipment: An Informetrics Analysis-Based Study. Eng. Fail. Anal. 2021, 129, 105716. [Google Scholar] [CrossRef]
- Mao, B.; Fear, C.; Chen, H.; Zhou, H.; Zhao, C.; Mukherjee, P.P.; Sun, J.; Wang, Q. Experimental and Modeling Investigation on the Gas Generation Dynamics of Lithium-Ion Batteries during Thermal Runaway. eTransportation 2023, 15, 100212. [Google Scholar] [CrossRef]
- Liu, P.; Wang, C.; Sun, S.; Zhao, G.; Yu, X.; Hu, Y.; Mei, W.; Jin, K.; Wang, Q. Understanding the Influence of the Confined Cabinet on Thermal Runaway of Large Format Batteries with Different Chemistries: A Comparison and Safety Assessment Study. J. Energy Storage 2023, 74, 109337. [Google Scholar] [CrossRef]
- Chen, S.; Peng, Q.; Wei, Z.; Li, Y.; Yue, Y.; Zhang, Y.; Zeng, W.; Jin, K.; Jiang, L.; Wang, Q. Revealing the Quasi-Solid-State Electrolyte Role on the Thermal Runaway Behavior of Lithium Metal Battery. Energy Storage Mater. 2024, 70, 103481. [Google Scholar] [CrossRef]
- Weng, J.; Xiao, C.; Ouyang, D.; Yang, X.; Chen, M.; Zhang, G.; Yuen, R.K.K.; Wang, J. Mitigation Effects on Thermal Runaway Propagation of Structure-Enhanced Phase Change Material Modules with Flame Retardant Additives. Energy 2022, 239, 122087. [Google Scholar] [CrossRef]
- Meng, D.; Wang, X.; Hu, W.; Zhao, C.; Wang, J. A Comparative Investigation of Charging Conditions on Thermal Runaway of Lithium-Ion Batteries Induced by Different Incident Heat Fluxes. Process Saf. Environ. Prot. 2024, 184, 25–37. [Google Scholar] [CrossRef]
- Ren, D.; Hsu, H.; Li, R.; Feng, X.; Guo, D.; Han, X.; Lu, L.; He, X.; Gao, S.; Hou, J.; et al. A Comparative Investigation of Aging Effects on Thermal Runaway Behavior of Lithium-Ion Batteries. eTransportation 2019, 2, 100034. [Google Scholar] [CrossRef]
- Feng, X.; Wong, S.K.; Chen, T.; Ouyang, M. An Automatic Identification Method of Thermal Physical Parameter for Lithium-Ion Batteries Suffering from Thermal Runaway. J. Energy Storage 2024, 83, 110358. [Google Scholar] [CrossRef]
- Li, J.; Goerlandt, F.; Reniers, G. An Overview of Scientometric Mapping for the Safety Science Community: Methods, Tools, and Framework. Saf. Sci. 2021, 134, 105093. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, B.; Stoliarov, S.I.; Sun, J. A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies. Prog. Energy Combust. Sci. 2019, 73, 95–131. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Feng, X.; Ren, D.; He, X.; Ouyang, M. Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 2020, 4, 743–770. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Negnevitsky, M.; Zhang, H. A Review of Air-Cooling Battery Thermal Management Systems for Electric and Hybrid Electric Vehicles. J. Power Sources 2021, 501, 230001. [Google Scholar] [CrossRef]
- Wang, H.; Sheng, L.; Yasin, G.; Wang, L.; Xu, H.; He, X. Reviewing the Current Status and Development of Polymer Electrolytes for Solid-State Lithium Batteries. Energy Storage Mater. 2020, 33, 188–215. [Google Scholar] [CrossRef]
- Liu, B.; Jia, Y.; Yuan, C.; Wang, L.; Gao, X.; Yin, S.; Xu, J. Safety Issues and Mechanisms of Lithium-Ion Battery Cell upon Mechanical Abusive Loading: A Review. Energy Storage Mater. 2020, 24, 85–112. [Google Scholar] [CrossRef]
- Sun, P.; Bisschop, R.; Niu, H.; Huang, X. A Review of Battery Fires in Electric Vehicles. Fire Technol. 2020, 56, 1361–1410. [Google Scholar] [PubMed]
- Chombo, P.V.; Laoonual, Y. A Review of Safety Strategies of a Li-Ion Battery. J. Power Sources 2020, 478, 228649. [Google Scholar] [CrossRef]
- Pu, J.; Li, J.; Zhang, K.; Zhang, T.; Li, C.; Ma, H.; Zhu, J.; Braun, P.V.; Lu, J.; Zhang, H. Conductivity and Lithiophilicity Gradients Guide Lithium Deposition to Mitigate Short Circuits. Nat. Commun. 2019, 10, 1896. [Google Scholar] [CrossRef]
- Mrozik, W.; Rajaeifar, M.A.; Heidrich, O.; Christensen, P. Environmental Impacts, Pollution Sources and Pathways of Spent Lithium-Ion Batteries. Energy Environ. Sci. 2021, 14, 6099–6121. [Google Scholar] [CrossRef]
- Ouyang, D.; Chen, M.; Huang, Q.; Weng, J.; Wang, Z.; Wang, J. A Review on the Thermal Hazards of the Lithium-Ion Battery and the Corresponding Countermeasures. Appl. Sci. 2019, 9, 2483. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, J.; Zhu, X.; Wang, H.; Huang, L.; Wang, Y.; Xu, S. Overcharge-to-Thermal-Runaway Behavior and Safety Assessment of Commercial Lithium-Ion Cells with Different Cathode Materials: A Comparison Study. J. Energy Chem. 2021, 55, 484–498. [Google Scholar] [CrossRef]
- Huang, W.; Feng, X.; Han, X.; Zhang, W.; Jiang, F. Questions and Answers Relating to Lithium-Ion Battery Safety Issues. Cell Rep. Phys. Sci. 2021, 2, 100285. [Google Scholar] [CrossRef]
- Bravo Diaz, L.; He, X.; Hu, Z.; Restuccia, F.; Marinescu, M.; Barreras, J.V.; Patel, Y.; Offer, G.; Rein, G. Review—Meta-Review of Fire Safety of Lithium-Ion Batteries: Industry Challenges and Research Contributions. J. Electrochem. Soc. 2020, 167, 090559. [Google Scholar]
- Liu, H.; Hong, R.; Xiang, C.; Lv, C.; Li, H. Visualization and Analysis of Mapping Knowledge Domains for Spontaneous Combustion Studies. Fuel 2020, 262, 116598. [Google Scholar] [CrossRef]
- Li, Z.; Liang, G.; Ding, Y.; Liao, Q.; Zhu, X.; Cheng, M. Experimental Study on the Thermal Management Performance of Lithium-Ion Battery with PCM Combined with 3-D Finned Tube. Appl. Therm. Eng. 2024, 245, 122794. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, J.; Zhu, M.; Zhao, L.; Chen, Y.; Chen, M. Experimental Investigation on the Thermal Management for Lithium-Ion Batteries Based on the Novel Flame Retardant Composite Phase Change Materials. Batteries 2023, 9, 378. [Google Scholar] [CrossRef]
- Li, T.; Wang, L.; Li, J. A Safer Organic Cathode Material with Overheating Self-Protection Function for Lithium Batteries. Chem. Eng. J. 2022, 431, 133901. [Google Scholar] [CrossRef]
- Liu, C.; Shen, W.; Liu, X.; Chen, Y.; Ding, C.; Huang, Q. Research on Thermal Runaway Process of 18650 Cylindrical Lithium-Ion Batteries with Different Cathodes Using Cone Calorimetry. J. Energy Storage 2023, 64, 107175. [Google Scholar] [CrossRef]
- Tong, B.; Li, J.; Sun, J.; Wang, Q.; Qin, P. Restoring the Gas Diffusion Field before the Fire of the LiNi0.7Co0.2Mn0.1O2 Lithium-Ion Battery Thermal Runaway. J. Energy Storage 2024, 88, 111548. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.; Gao, J.; He, Z.; Yao, S.; Zhou, X.; Zhang, H. In Situ Extinguishing Mechanism and Performance of Self-Portable Microcapsule Fire Extinguishing Agent for Lithium-Ion Batteries. J. Energy Storage 2024, 93, 112393. [Google Scholar] [CrossRef]
- Kannan, U.; Swamidurai, R. Empirical Validation of System Dynamics Cyber Security Models. In Proceedings of the 2019 SoutheastCon, Huntsville, AL, USA, 11–14 April 2019; IEEE: New York, NY, USA, 2019; pp. 1–6. [Google Scholar]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Li, H.; Duan, Q.; Zhao, C.; Huang, Z.; Wang, Q. Experimental Investigation on the Thermal Runaway and Its Propagation in the Large Format Battery Module with Li(Ni1/3Co1/3Mn1/3)O2 as Cathode. J. Hazard. Mater. 2019, 375, 241–254. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, F.; Huang, W.; Peng, Y.; Xu, C.; Ouyang, M. Mechanism of Internal Thermal Runaway Propagation in Blade Batteries. J. Energy Chem. 2024, 89, 184–194. [Google Scholar] [CrossRef]
- Shen, X.; Li, C.; Shi, C.; Yang, C.; Deng, L.; Zhang, W.; Peng, L.; Dai, J.; Wu, D.; Zhang, P.; et al. Core-Shell Structured Ceramic Nonwoven Separators by Atomic Layer Deposition for Safe Lithium-Ion Batteries. Appl. Surf. Sci. 2018, 441, 165–173. [Google Scholar] [CrossRef]
- Zou, Y.; Cao, Z.; Zhang, J.; Wahyudi, W.; Wu, Y.; Liu, G.; Li, Q.; Cheng, H.; Zhang, D.; Park, G.; et al. Interfacial Model Deciphering High-Voltage Electrolytes for High Energy Density, High Safety, and Fast-Charging Lithium-Ion Batteries. Adv. Mater. 2021, 33, 2102964. [Google Scholar] [CrossRef]
- Yang, W.; Li, C.; Li, X.; Wang, H.; Deng, J.; Fu, T.; Luo, Y.; Wang, Y.; Xue, K.; Zhang, G.; et al. High Flame Retardant Composite Phase Change Materials with Triphenyl Phosphate for Thermal Safety System of Power Battery Module. eTransportation 2024, 20, 100325. [Google Scholar] [CrossRef]
- Weng, J.; Huang, Q.; Li, X.; Zhang, G.; Ouyang, D.; Chen, M.; Yuen, A.C.Y.; Li, A.; Lee, E.W.M.; Yang, W.; et al. Safety Issue on PCM-Based Battery Thermal Management: Material Thermal Stability and System Hazard Mitigation. Energy Storage Mater. 2022, 53, 580–612. [Google Scholar] [CrossRef]
- Sarvar-Ardeh, S.; Rafee, R.; Rashidi, S. Enhancing the Performance of Liquid-Based Battery Thermal Management System by Porous Substrate Minichannel. J. Energy Storage 2023, 71, 108142. [Google Scholar] [CrossRef]
- Li, Z.; Cong, J.; Ding, Y.; Yang, Y.; Huang, K.; Ge, X.; Chen, K.; Zeng, T.; Huang, Z.; Fang, C.; et al. Strategies for Intelligent Detection and Fire Suppression of Lithium-Ion Batteries. Electrochem. Energy Rev. 2024, 7, 32. [Google Scholar] [CrossRef]
- Ping, P.; Wang, Q.; Chung, Y.; Wen, J. Modelling Electro-Thermal Response of Lithium-Ion Batteries from Normal to Abuse Conditions. Appl. Energy 2017, 205, 1327–1344. [Google Scholar] [CrossRef]
- Gan, D.Z.; Gong, S.; Zhang, W.; Shao, L. Large-Area Flexible Pressure Sensors for In Situ Monitoring of Cell Swelling in Vehicle Battery Packs. IEEE Sens. J. 2024, 24, 13980–13990. [Google Scholar] [CrossRef]
- Wang, Z.; He, C.; Geng, Z.; Li, G.; Zhang, Y.; Shi, X.; Yao, B. Experimental Study of Thermal Runaway Propagation Suppression of Lithium-Ion Battery Module in Electric Vehicle Power Packs. Process Saf. Environ. Prot. 2024, 182, 692–702. [Google Scholar] [CrossRef]
- Shan, T.; Zhu, X.; Wang, Z. Understanding the Boundary and Mechanism of Gas-Induced Explosion for Lithium-Ion Cells: Experimental and Theoretical Analysis. J. Energy Chem. 2023, 86, 546–558. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science Mapping Software Tools: Review, Analysis, and Cooperative Study among Tools. J. Am. Soc. Inf. Sci. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
Rank | Retrieval Strategies | Date Set | Number of Records | Periods | Dataset Used in Each Section |
---|---|---|---|---|---|
1 | TS = (new energy vehicles) | A | 11,919 | 2008–2024 | Not used |
2 | TS = (lithium battery) | B | 146,474 | 2008–2024 | Not used |
3 | TS = (fire) OR TS = (fire disaster) | C | 162,898 | 2008–2024 | Not used |
4 | TS = (new energy vehicles) OR TS = (lithium battery) | A∪B | 156,740 | 2008–2024 | Not used |
5 | (TS = (fire) OR TS = (fire disaster)) AND (TS = (new energy vehicles) OR TS = (lithium battery)) | (A∪B)∩C | 1675 | 2008–2024 | Section 3.1 Section 3.4 |
6 | (TS = (fire) OR TS = (fire disaster)) AND (TS = (new energy vehicles) OR TS = (lithium battery)) | (A∪B)∩C | 1465 | 2019–2024 | Section 3.2 Section 3.3 Section 3.4 |
Rank | Country | Region | Quantity | Percentage | Total Link Strength | Total Citations | Average Citations |
---|---|---|---|---|---|---|---|
1 | China | East Asia | 777 | 51.87% | 191 | 21,451 | 27.6075 |
2 | USA | Northern America | 197 | 13.15% | 129 | 7170 | 36.3959 |
3 | South Korea | East Asia | 93 | 6.21% | 45 | 1009 | 10.8495 |
4 | UK | Western Europe | 74 | 4.94% | 67 | 2169 | 29.3108 |
5 | Australia | Oceania | 40 | 2.67% | 46 | 1681 | 42.0250 |
6 | Germany | Central Europe | 33 | 2.20% | 29 | 501 | 15.1818 |
7 | India | South Asia | 28 | 1.87% | 28 | 721 | 25.7500 |
8 | Japan | East Asia | 27 | 1.80% | 11 | 577 | 21.3704 |
9 | Canada | Northern America | 22 | 1.47% | 29 | 788 | 35.8182 |
10 | Spain | Southern Europe | 22 | 1.47% | 34 | 717 | 32.5909 |
Rank | Institution | Country | Total Connections | Number of Publications | Total Citations | Average Citations |
---|---|---|---|---|---|---|
1 | University of Science and Technology of China | China | 127 | 167 | 5962 | 35.7 |
2 | Tsinghua University | China | 75 | 90 | 4727 | 52.5 |
3 | Nanjing Tech University | China | 33 | 49 | 898 | 18.3 |
4 | Beijing Institute of Technology | China | 33 | 45 | 1261 | 28.0 |
5 | Chinese Academy of Sciences | China | 27 | 33 | 1405 | 42.6 |
6 | Jiangsu University | China | 38 | 27 | 657 | 24.3 |
7 | China People’s Police University | China | 41 | 22 | 679 | 30.9 |
8 | City University of Hong Kong | China | 27 | 22 | 682 | 31.0 |
9 | China University of Mining and Technology | China | 13 | 20 | 158 | 7.9 |
10 | The Hong Kong Polytechnic University | China | 15 | 20 | 797 | 39.9 |
Rank | Journal Title | Quantity | Average Citations | Citation Indicator | Impact Factor (2023) |
---|---|---|---|---|---|
1 | Journal of Energy Storage | 112 | 14.82 | SCIE | 8.9 |
2 | Fire Technology | 47 | 18.62 | SCIE | 2.3 |
3 | Process Safety and Environmental Protection | 45 | 22.51 | SCIE | 6.9 |
4 | Journal of Power Sources | 43 | 34.88 | SCIE | 8.1 |
5 | Applied Thermal Engineering | 41 | 26.68 | SCIE | 6.1 |
6 | Energies | 41 | 10.10 | SCIE | 3.0 |
7 | Batteries-Basel | 39 | 10.21 | SCIE | 4.6 |
8 | Chemical Engineering Journal | 29 | 23.90 | SCIE | 13.3 |
9 | Energy Storage Materials | 29 | 60.14 | SCIE | 18.9 |
10 | Journal of The Electrochemical Society | 24 | 18.38 | SCIE | 3.1 |
Rank | Keywords | Occurrences | Total Link Strength | Rank | Keywords | Occurrences | Total Link Strength |
---|---|---|---|---|---|---|---|
1 | lithium-ion battery | 832 | 3294 | 11 | thermal management system | 129 | 599 |
2 | thermal runaway | 433 | 2101 | 12 | hazards | 126 | 754 |
3 | safety | 310 | 1490 | 13 | electric vehicle | 110 | 532 |
4 | fire | 259 | 1365 | 14 | failure | 94 | 558 |
5 | electrochemical performance | 210 | 818 | 15 | model | 91 | 487 |
6 | behavior | 200 | 1107 | 16 | overcharge | 73 | 432 |
7 | mechanism | 181 | 953 | 17 | anode | 66 | 201 |
8 | thermal stability | 171 | 873 | 18 | abuse | 64 | 401 |
9 | electrolyte | 168 | 849 | 19 | temperature | 63 | 342 |
10 | propagation | 161 | 914 | 20 | internal short-circuit | 61 | 277 |
Keywords | Year | Strength | Begin | End | 2008–2024 |
---|---|---|---|---|---|
additives | 2008 | 6.12 | 2008 | 2018 | ▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂ |
electrochemical property | 2009 | 6.63 | 2009 | 2016 | ▂▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂ |
electrochemical performance | 2009 | 5.03 | 2009 | 2016 | ▂▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂ |
cathode material | 2009 | 4.35 | 2009 | 2014 | ▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂ |
trimethyl phosphate | 2009 | 3.77 | 2009 | 2020 | ▂▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂ |
electrodes | 2009 | 3.41 | 2009 | 2019 | ▂▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂ |
phosphate | 2010 | 3.84 | 2010 | 2015 | ▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂ |
high power | 2011 | 7.36 | 2011 | 2020 | ▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂ |
performance | 2008 | 6.24 | 2012 | 2015 | ▂▂▂▂▃▃▃▃▂▂▂▂▂▂▂▂▂ |
li-ion batteries | 2012 | 4.13 | 2012 | 2019 | ▂▂▂▂▃▃▃▃▃▃▃▃▂▂▂▂▂ |
thermal stability | 2013 | 6.91 | 2013 | 2017 | ▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂ |
electrolytes | 2014 | 10.12 | 2014 | 2020 | ▂▂▂▂▂▂▃▃▃▃▃▃▃▂▂▂▂ |
safety | 2008 | 5.55 | 2014 | 2018 | ▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂ |
explosion | 2014 | 3.84 | 2014 | 2015 | ▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂▂▂ |
heat release rate | 2015 | 4.6 | 2015 | 2017 | ▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂ |
lithium ion battery | 2009 | 4.12 | 2015 | 2016 | ▂▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂▂ |
calorimetry | 2008 | 3.34 | 2015 | 2018 | ▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂ |
graphite | 2015 | 2.91 | 2015 | 2016 | ▂▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂▂ |
cell | 2016 | 5.24 | 2016 | 2019 | ▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂ |
mechanical property | 2016 | 3.77 | 2016 | 2021 | ▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂ |
lipf6 | 2016 | 3.45 | 2016 | 2020 | ▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂ |
fire hazard | 2016 | 3.27 | 2016 | 2017 | ▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂ |
challenges | 2017 | 4.24 | 2017 | 2019 | ▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂ |
li ion | 2016 | 4.3 | 2018 | 2020 | ▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂ |
membrane | 2019 | 4.68 | 2019 | 2020 | ▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂ |
discharge | 2019 | 3.91 | 2019 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂ |
heat release | 2019 | 3.84 | 2019 | 2020 | ▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂ |
lithium ion | 2019 | 3.05 | 2019 | 2020 | ▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂ |
short circuit | 2020 | 4.09 | 2020 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂ |
lithium ion battery safety | 2018 | 3.76 | 2020 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂ |
management system | 2017 | 3.26 | 2020 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂ |
impact | 2020 | 2.99 | 2020 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Kong, J.; Cao, Y.; Liu, H.; You, W. Mapping the Evolution of New Energy Vehicle Fire Risk Research: A Comprehensive Bibliometric Analysis. Fire 2025, 8, 395. https://doi.org/10.3390/fire8100395
Zhao Y, Kong J, Cao Y, Liu H, You W. Mapping the Evolution of New Energy Vehicle Fire Risk Research: A Comprehensive Bibliometric Analysis. Fire. 2025; 8(10):395. https://doi.org/10.3390/fire8100395
Chicago/Turabian StyleZhao, Yali, Jie Kong, Yimeng Cao, Hui Liu, and Wenjiao You. 2025. "Mapping the Evolution of New Energy Vehicle Fire Risk Research: A Comprehensive Bibliometric Analysis" Fire 8, no. 10: 395. https://doi.org/10.3390/fire8100395
APA StyleZhao, Y., Kong, J., Cao, Y., Liu, H., & You, W. (2025). Mapping the Evolution of New Energy Vehicle Fire Risk Research: A Comprehensive Bibliometric Analysis. Fire, 8(10), 395. https://doi.org/10.3390/fire8100395