Modeling Firebrand Spotting in WRF-Fire for Coupled Fire–Weather Prediction
Abstract
1. Introduction
2. Materials and Methods
2.1. Implementation of the Firebrand Spotting Parameterization
2.1.1. Generation
- Horizontal Generation
- Vertical Generation
- Initial Firebrand Properties
- Initial Firebrand Momentum
- Generation Limit
2.1.2. Transport and Physics
- Advection
- Burnout
- Fall Velocity
2.1.3. Landing and Ignition
2.1.4. Lagrangian Transport Parallelization
3. Results
3.1. Idealized Simulations
- Steady-state atmosphere with uncoupled fire processes (Steady-State Uncoupled). In the Steady-State Uncoupled scenario, the feedback from the fire to the atmosphere (i.e., the release of fire heat fluxes to the atmosphere) is turned off, and the surface boundary condition is set to be free-slip. The frictionless condition between atmosphere and surface produces uniform wind speed and direction, and no turbulence is generated. This scenario eliminates nonlinear factors that can affect firebrand generation and transport (i.e., wind variability and turbulence), allowing the validation of firebrand processes in a uniform environment in which cause-effect relationships are more evident.
- LES atmosphere with coupled fire processes (LES Coupled). In the LES Coupled scenario, the feedback from the fire to the atmosphere is turned on, in that the fire fluxes are transferred to the atmosphere allowing for turbulent eddies and a fire-induced atmospheric circulation. The intention for this scenario is to show the firebrands’ response in a turbulent environment, where generation occurs on a non-homogeneous fire front, and fluctuating winds (horizontal and vertical) affect transport, burnout, and landing.
3.2. Marshall Fire Simulations
3.2.1. Simulation Configuration
3.2.2. Verification Methods
3.2.3. Forecast Evaluation
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fernandez-Pello, A.C. Wildland fire spot ignition by sparks and firebrands. Fire Saf. J. 2017, 91, 2–10. [Google Scholar] [CrossRef]
- Storey, M.A.; Price, O.F.; Almeida, M.; Ribeiro, C.; Bradstock, R.A.; Sharples, J.J. Experiments on the influence of spot fire and topography interaction on fire rate of spread. PLoS ONE 2021, 16, e0245132. [Google Scholar] [CrossRef]
- DeCastro, A.; Siems-Anderson, A.; Smith, E.; Knievel, J.C.; Kosović, B.; Brown, B.G.; Balch, J.K. Weather Research and Forecasting—Fire Simulated Burned Area and Propagation Direction Sensitivity to Initiation Point Location and Time. Fire 2022, 5, 58. [Google Scholar] [CrossRef]
- Linn, R.R.; Goodrick, S.L.; Brambilla, S.; Brown, M.J.; Middleton, R.S.; O’Brien, J.J.; Hiers, J.K. QUIC-fire: A fast-running simulation tool for prescribed fire planning. Environ. Model. Softw. 2020, 125, 104616. [Google Scholar] [CrossRef]
- Mell, W.; Jenkins, M.A.; Gould, J.; Cheney, P. A physics-based approach to modelling grassland fires. Int. J. Wildland Fire 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Koo, E.; Pagni, P.J.; Linn, R.R. Using FIRETEC to describe firebrand behavior in wildfires. In Proceedings of the 10th International Conference on Fire and Materials 2007, San Francisco, CA, USA, 29–31 January 2007. [Google Scholar]
- Tohidi, A.; Kaye, N.B. Stochastic modeling of firebrand shower scenarios. Fire Saf. J. 2017, 91, 91–102. [Google Scholar] [CrossRef]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Intermountain Forest & Range Experiment Station: Ogden, UT, USA; Forest Service, U.S. Department of Agriculture: Washington, DC, USA, 1972; Volume 115. [Google Scholar]
- Finney, M.A. FARSITE, Fire Area Simulator–Model Development and Evaluation; Forest Service, U.S. Department of Agriculture: Washington, DC, USA; Rocky Mountain Research Station: Fort Collins, CO, USA, 1998. [Google Scholar]
- Finney, M.A. FlamMap: Fire Behavior Mapping and Analysis Program. Available online: https://research.fs.usda.gov/firelab/projects/flammap (accessed on 10 September 2025).
- Tymstra, C.; Bryce, R.; Wotton, B.; Taylor, S.; Armitage, O. Development and Structure of Prometheus: The Canadian Wildland Fire Growth Simulation Model; Information Report NOR-X-417; Natural Resources Canada, The Canadian Forest Service, The Northern Forestry Centre (NoFC): Edmonton, AB, Canada, 2010. [Google Scholar]
- Andrews, P.L. Current status and future needs of the BehavePlus Fire Modeling System. Int. J. Wildland Fire 2014, 23, 21–33. [Google Scholar] [CrossRef]
- Sanjuan, G.; Brun, C.; Margalef, T.; Cortés, A. Wind Field Uncertainty in Forest Fire Propagation Prediction. Procedia Comput. Sci. 2014, 29, 1535–1545. [Google Scholar] [CrossRef]
- Mell, W.; Simeoni, A.; Morvan, D.; Hiers, J.K.; Skowronski, N.; Hadden, R.M. Clarifying the meaning of mantras in wildland fire behaviour modelling: Reply to Cruz et al. (2017). Int. J. Wildland Fire 2018, 27, 770–775. [Google Scholar] [CrossRef]
- Ager, A.A.; Vaillant, N.M.; Finney, M.A. Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning. J. Combust. 2011, 2011, 572452. [Google Scholar] [CrossRef]
- McArthur, A.G. Fire Behaviour in Eucalypt Forests; Department of National Development, Commonwealth of Australia: Canberra, Australia, 1967. [Google Scholar]
- Tarifa, C.S. Transport and Combustion of Firebrands; Instituto Nacional de Tecnica Aeroespacial, Esteban Terradas: Madrid, Spain, 1967; Volume 2. [Google Scholar]
- Tarifa, C.S.; Notario, P.P.D.; Moreno, F.G. On the flight paths and lifetimes of burning particles of wood. Symp. Int. Combust. 1965, 10, 1021–1037. [Google Scholar] [CrossRef]
- Albini, F.A. Spot Fire Distance from Burning Trees; General Technical Report; Intermountain Forest and Range Experiment Station: Missoula, MT, USA, 1979. [Google Scholar]
- Albini, F. Potential Spotting Distance from Wind-Driven Surface Fires; Research Paper INT-309; USDA Forest Service, Intermountain Forest and Range Experiment Station: Odgen, UT, USA, 983. Available online: https://www.fs.usda.gov/treesearch/pubs/32533 (accessed on 10 September 2025).
- Ellis, P.F. The likelihood of ignition of dry-eucalypt forest litter by firebrands. Int. J. Wildland Fire 2015, 24, 225–235. [Google Scholar] [CrossRef]
- Woycheese, J.P.; Pagni, P.J.; Liepmann, D. Brand Lofting Above Large-Scale Fires; Building and Fire Research Laboratory, National Institute of Standards and Technology: Gaithersburg, MD, USA, 1998. [Google Scholar]
- Alexandridis, A.; Russo, L.; Vakalis, D.; Bafas, G.V.; Siettos, C.I. Wildland fire spread modelling using cellular automata: Evolution in large-scale spatially heterogeneous environments under fire suppression tactics. Int. J. Wildland Fire 2011, 20, 633–647. [Google Scholar] [CrossRef]
- Freire, J.G.; DaCamara, C.C. Using cellular automata to simulate wildfire propagation and to assist in fire management. Nat. Hazards Earth Syst. Sci. 2019, 19, 169–179. [Google Scholar] [CrossRef]
- Coen, J.L.; Cameron, M.; Michalakes, J.; Patton, E.G.; Riggan, P.J.; Yedinak, K.M. WRF-Fire: Coupled Weather–Wildland Fire Modeling with the Weather Research and Forecasting Model. J. Appl. Meteorol Clim. 2013, 52, 16–38. [Google Scholar] [CrossRef]
- Mandel, J.; Beezley, J.D.; Kochanski, A.K. Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model. Dev. 2011, 4, 591–610. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Kosović, B.; Jiménez, P.A.; Coen, J.L. An Accurate Fire-Spread Algorithm in the Weather Research and Forecasting Model Using the Level-Set Method. J. Adv. Model. Earth Syst. 2018, 10, 908–926. [Google Scholar] [CrossRef]
- Mandel, J.; Amram, S.; Beezley, J.; Kelman, G.; Kochanski, A.; Kondratenko, V.; Lynn, B.; Regev, B.; Vejmelka, M. Recent advances and applications of WRF–SFIRE. Nat. Hazards Earth Syst. Sci. 2014, 14, 2829–2845. [Google Scholar] [CrossRef]
- Filippi, J.-B.; Morandini, F.; Balbi, J.H.; Hill, D.R. Discrete event front-tracking simulation of a physical fire-spread model. Simulation 2010, 86, 629–646. [Google Scholar] [CrossRef]
- Xue, H.; Hu, X.; Dahl, N.; Xue, M. Post-frontal combustion heat modeling in DEVS-FIRE for coupled atmosphere-fire simulation. Procedia Comput. Sci. 2012, 9, 302–311. [Google Scholar] [CrossRef]
- Roberts, M.; Lareau, N.; Juliano, T.W.; Shamsaei, K.; Ebrahimian, H.; Kosovic, B. Sensitivity of Simulated Fire-Generated Circulations to Fuel Characteristics During Large Wildfires. J. Geophys. Res. Atmos. 2023, 129, e2023JD040548. [Google Scholar] [CrossRef]
- Dowell, D.C.; Alexander, C.R.; James, E.P.; Weygandt, S.S.; Benjamin, S.G.; Manikin, G.S.; Blake, B.T.; Brown, J.M.; Olson, J.B.; Hu, M.; et al. The High-Resolution Rapid Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast Model. Part I: Motivation and System Description. Weather. Forecast. 2022, 37, 1371–1395. [Google Scholar] [CrossRef]
- Andreae, M.O.; Rosenfeld, D.; Artaxo, P.; Costa, A.A.; Frank, G.P.; Longo, K.M.; Silva-Dias, M.A.F. Smoking Rain Clouds over the Amazon. Science 2004, 303, 1337–1342. [Google Scholar] [CrossRef]
- Bowman, D.M.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Frediani, M.E.B.; Rodriguez, C.A.M. Description of the cloud hydrometeors observed in the Amazon region during the wet and dry season. Meteorologica 2008, 33, 1–10. [Google Scholar]
- Manzello, S.L.; Suzuki, S.; Gollner, M.J.; Fernandez-Pello, A.C. Role of firebrand combustion in large outdoor fire spread. Prog. Energy Combust. Sci. 2020, 76, 100801. [Google Scholar] [CrossRef] [PubMed]
- Wadhwani, R.; Sullivan, C.; Wickramasinghe, A.; Kyng, M.; Khan, N.; Moinuddin, K. A review of firebrand studies on generation and transport. Fire Saf. J. 2022, 134, 103674. [Google Scholar] [CrossRef]
- Coen, J. Some Requirements for Simulating Wildland Fire Behavior Using Insight from Coupled Weather—Wildland Fire Models. Fire 2018, 1, 6. [Google Scholar] [CrossRef]
- Albini, F.A. PROGRAM BURNUP: A Simulation Model of the Burning of Large Woody Natural Fuels; Montana State University: Bozeman, MT, USA, 1994. [Google Scholar]
- Albini, F.A.; Reinhardt, E.D. Modeling ignition and burning rate of large woody natural fuels. Int. J. Wildland Fire 1995, 5, 81–91. [Google Scholar] [CrossRef]
- Thompson, G.; Eidhammer, T.A. Study of Aerosol Impacts on Clouds and Precipitation Development in a Large Winter Cyclone. J. Atmos. Sci. 2014, 71, 3636–3658. [Google Scholar] [CrossRef]
- Morrison, H.; Van Lier-Walqui, M.; Fridlind, A.M.; Grabowski, W.W.; Harrington, J.Y.; Hoose, C.; Korolev, A.; Kumjian, M.R.; Milbrandt, J.A.; Pawlowska, H.; et al. Confronting the Challenge of Modeling Cloud and Precipitation Microphysics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001689. [Google Scholar] [CrossRef]
- Heffter, J.L.; Stunder, B.J. Volcanic ash forecast transport and dispersion (VAFTAD) model. Weather. Forecast. 1993, 8, 533–541. [Google Scholar] [CrossRef]
- Draxler, R.R.; Gillette, D.A.; Kirkpatrick, J.S.; Heller, J. Estimating PM10 air concentrations from dust storms in Iraq, Kuwait and Saudi Arabia. Atmos. Environ. 2001, 35, 4315–4330. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4.3; Technical Note NCAR/TN-556+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Chen, S.S. Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model. Mon. Weather. Rev. 2014, 142, 1927–1944. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G. An overview of the HYSPLIT_4 modelling system for trajectories. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Stein, A.; Draxler, R.; Rolph, G.; Stunder, B.; Cohen, M.; Ngan, F. Supplement: Detailed Description of The Model Updates. Bull. Am. Meteorol. Soc. 2015, 96, ES203–ES207. [Google Scholar]
- Witty, W.H. A new method of numerical integration of differential equations. Math. Comput. 1964, 18, 497–500. [Google Scholar] [CrossRef][Green Version]
- Tse, S.D.; Fernandez-Pello, A.C. On the flight paths of metal particles and embers generated by power lines in high winds–a potential source of wildland fires. Fire Saf. J. 1998, 30, 333–356. [Google Scholar] [CrossRef]
- Bhutia, S.; Ann Jenkins, M.; Sun, R. Comparison of Firebrand Propagation Prediction by a Plume Model and a Coupled–Fire/Atmosphere Large–Eddy Simulator. J. Adv. Model. Earth Syst. 2010, 2, 4. [Google Scholar] [CrossRef]
- Koo, E.; Pagni, P.J.; Weise, D.R.; Woycheese, J.P. Firebrands and spotting ignition in large-scale fires. Int. J. Wildland Fire 2010, 19, 818–843. [Google Scholar] [CrossRef]
- Filkov, A.; Prohanov, S.; Mueller, E.; Kasymov, D.; Martynov, P.; Houssami, M.E.; Thomas, J.; Skowronski, N.; Butler, B.; Gallagher, M.; et al. Investigation of firebrand production during prescribed fires conducted in a pine forest. Proc. Combust. Inst. 2017, 36, 3263–3270. [Google Scholar] [CrossRef]
- Tohidi, A.; Kaye, N.; Bridges, W. Statistical description of firebrand size and shape distribution from coniferous trees for use in Metropolis Monte Carlo simulations of firebrand flight distance. Fire Saf. J. 2015, 77, 21–35. [Google Scholar] [CrossRef]
- Boulder County. Marshall Fire Operational After-Action Report; Operational After-Action Report; Boulder County Office of Emergency Management: Boulder, CO, USA, 2022.
- Dougherty, M.T.; Johnson, C. Marshall Fire Investigative Summary and Review; Boulder County Office of Emergency Management: Boulder, CO, USA, 2023; Available online: https://kdvr.com/wp-content/uploads/sites/11/2023/06/marshall-fire-investigative-summary.pdf (accessed on 10 September 2025).
- Frediani, M.; Juliano, T.W.; Knievel, J.C.; Tessendorf, S.A.; Kosovic, B. The role of fire spotting in fire-weather prediction. ESS Open Arch. 2022. [Google Scholar] [CrossRef]
- Juliano, T.W.; Lareau, N.; Frediani, M.E.; Shamsaei, K.; Eghdami, M.; Kosiba, K.; Wurman, J.; DeCastro, A.; Kosović, B.; Ebrahimian, H. Toward a Better Understanding of Wildfire Behavior in the Wildland-Urban Interface: A Case Study of the 2021 Marshall Fire. Geophys. Res. Lett. 2023, 50, e2022GL101557. [Google Scholar] [CrossRef]
- Computational and Information System Laboratory. Derecho: NCAR’s Latest Supercomputer. 2023. Available online: https://arc.ucar.edu/docs (accessed on 10 September 2025).
- Haupt, S.E.; Kosovic, B.; Shaw, W.; Berg, L.K.; Churchfield, M.; Cline, J.; Draxl, C.; Ennis, B.; Koo, E.; Kotamarthi, R.; et al. On bridging a modeling scale gap: Mesoscale to microscale coupling for wind energy. Bull. Am. Meteorol. Soc. 2019, 100, 2533–2550. [Google Scholar] [CrossRef]
- Blaylock, B.K. High-Resolution Rapid Refresh Model Data Analytics for Wildland Fire Weather Assessment. Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USA, 2019. [Google Scholar]
- Hong, S.-Y.; Dudhia, J.; Chen, S.-H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather. Rev. 2006, 132, 103–120. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather. Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108, 8851. [Google Scholar] [CrossRef]
- U.S. Department of Interior, Geological Survey, and U.S. Department of Agriculture. 13 Anderson Fire Behavior Fuel Models (LF 1.4.0). Available online: https://landfire.gov/fbfm13.php (accessed on 10 September 2025).
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: New York, NY, USA, 2011; Volume 100. [Google Scholar]
- Jolliffe, I.T.; Stephenson, D.B. Forecast Verification: A Practitioner’s Guide in Atmospheric Science; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Murphy, A.H. The Finley Affair: A Signal Event in the History of Forecast Verification. Weather Forecast. 1996, 11, 3–20. [Google Scholar] [CrossRef]
- Murphy, A.H.; Winkler, R.L. A general framework for forecast verification. Mon. Weather Rev. 1987, 115, 1130–1338. [Google Scholar] [CrossRef]
- KUSA-TV. Marshall Fire Map. Available online: https://www.marshallfiremap.com/ (accessed on 26 December 2023).












| Parameter | Steady-State Uncoupled Fire | LES Coupled Fire |
|---|---|---|
| Horizontal grid spacing | 40 m | 10 m |
| fire grid refinement | 5 m | 5 m |
| Vertical layers | 51 uniformly spaced | 51 stretched |
| Model top | 2 km | 2 km |
| Timestep | 0.5 s | 0.125 s |
| Lateral boundary conditions | Open | Periodic |
| Temperature profile | 305 K at surface, 300 K from surface to 1 km, 310 K at model top increasing linearly after 1 km | 305 K at surface, 300 K from surface to 1 km, 310 K at model top increasing linearly after 1 km |
| Fire ignition | Ignition after 10 s 1 km × 100 m file line | Ignition after 30 min 1 km × 40 m fire line |
| Fire fuel | Anderson’s 13-fuel model, category 10 (timber litter with understory) | Anderson’s 13-fuel model, category 10 (timber litter with understory) |
| Surface friction | Free-slip surface (frictionless) | 0.005 drag coefficient applied to the surface |
| Zonal wind speed | Uniform speed of 10 m s−1 | Initial speed of 10 m s−1 |
| Perturbations | - | Deardorff’s turbulent kinetic energy subgrid-scale model, coefficient 0.1 |
| - | Surface Heat Flux of 100 W m−2 + coupled fire heat flux | |
| - | Temperature perturbation bubble of 0.5 K with 40 m depth | |
| - | Physics options for LES [27] |
| Firebrand Process | Parameter Category | Namelist Parameter | Default Value | Value in Ideal Scenarios |
|---|---|---|---|---|
| - | Maximum Array Size | fs_array_maxsize | 100,000 | 100,000 |
| Generation | Generation Limit | fs_firebrand_gen_lim | 0 (off, no firebrands) | 100,000 |
| Generation | 2-D Horizontal Generation Threshold | fs_ROSthresh | 0.1 m s−1 | 0.1 m s−1 |
| Generation | 2-D Horizontal Generation Period | fs_firebrand_gen_dt | 5 timesteps | 10 timesteps |
| Generation | Vertical Generation | fs_firebrand_gen_levels | 5 | 1 |
| Generation | Vertical Generation | fs_firebrand_gen_maxhgt | 15 m | 10 m |
| Generation | Vertical Generation Random Levels | fs_firebrand_gen_levrand | false | false |
| Generation | Vertical Generation Random Levels | fs_firebrand_gen_levrand_seed | 1 | 1 |
| Generation | Generation Momentum | fs_firebrand_gen_mom3d_dt | 0 | 0 |
| Generation | Initial Firebrand Properties | fs_firebrand_gen_prop_diam | 10 mm | 3.6 mm |
| Generation | Initial Firebrand Properties | fs_firebrand_gen_prop_effd | 10 mm | 3.6 mm |
| Generation | Initial Firebrand Properties | fs_firebrand_gen_prop_temp | 900 K | 900 K |
| Generation | Initial Firebrand Properties | fs_firebrand_gen_prop_tvel | 0 m/s | 0 m/s |
| Transport and Physics | Constant Firebrand Properties | fs_firebrand_dens | 513,000 g/m3 | 513,000 g/m3 |
| Transport and Physics | Constant Firebrand Properties | fs_firebrand_dens_char | 299,000 g/m3 | 299,000 g/m3 |
| Transport and Physics | Advection | fs_firebrand_max_life_dt | 200 timesteps | 200 timesteps |
| Landing and Ignition | Landing | fs_firebrand_land_hgt | 0.15 m | 0.15 m |
| Landing and Ignition | Ignition | fs_ignneighb | 0 (no ignition) | 0 |
| Landing and Ignition | Ignition | fs_ignthresh | 0 (no ignition) | 0 |
| Total Generated | Total Landed | Total Burned Out | Median Distance [m] | Outlier Max Distance [m, % Increase] | Total Outlier [%] | Steady State Uncoupled Distance [m] | |
|---|---|---|---|---|---|---|---|
| Base | 281,746 | 279,796 | 1950 (1%) | 24 | 70, 34% | 2.6% | 30 |
| T = 300 K | 281,746 | 250,034 | 31,712 (11%) | 30 | 78, 38% | 2.3% | 35 |
| T = 600 K | 281,746 | 279,430 | 2316 (1%) | 26 | 75, 35% | 2.8% | 30 |
| d= 10 mm | 281,746 | 280,316 | 1430 (1%) | 14 | 31, 45% | 1.6% | 15 |
| d = 2.6 mm | 281,746 | 48,725 | 233,021 (83%) | 30 | 54, 55% | 0.6% | 33 |
| ρ = 200 kg m−3 | 281,746 | 233,692 | 48,054 (17%) | 38 | 103, 37% | 2.5% | 45 |
| ρ = 350 kg m−3 | 281,746 | 278,698 | 3048 (1%) | 30 | 90, 33% | 3.3% | 35 |
| U = 15 m s−1 | 415,278 | 410,937 | 4341 (1%) | 29 | 94, 31% | 2.5% | 45 |
| U = 5 m s−1 | 266,934 | 265,227 | 1707 (1%) | 20 | 56, 36% | 1.1% | 15 |
| Experiment | Domain Size [x, y] | Derecho HPC Allocation | Configuration | Number of Requested Processes (Used CPU) | Execution Time | Simulation Cost [Core-Hours] |
|---|---|---|---|---|---|---|
| LES fire off | 1001, 501 | 10 nodes, 128 CPU each | - | 1275 | 23 min | 477 |
| LES-Coupled | Spotting off | 1275 | 27 min | 566 | ||
| Spotting on | 1275 | 30 min | 622 | |||
| Steady-State Uncoupled | 251, 126 | 1 node, 128 CPU | Spotting off | 80 | 18 min | 39 |
| Spotting on | 80 | 21 min | 44 |
| Name | Total Firebrands | Number of Neighbors |
|---|---|---|
| t5n1 | 5 | 1 |
| t5n2 | 5 | 2 |
| t5n3 | 5 | 3 |
| t3n3 | 3 | 3 |
| t10n1 | 10 | 1 |
| t10n2 | 10 | 2 |
| t10n3 | 10 | 3 |
| t15n3 | 15 | 3 |
| t3n5 | 3 | 5 |
| t5n5 | 5 | 5 |
| t10n5 | 10 | 5 |
| t6n6 | 6 | 6 |
| Approx. Coordinates of Report | Reported Local Time [MST] | Reported Location | Source | Reassigned Coordinates | Corresponding Model Output Time [MST] |
|---|---|---|---|---|---|
| (105.1745 W, 39.9557 N) | 12:18 PM | Parking lot of Costco, Superior | OAAR | (105.1781 W, 39.9553 N) | 12:45 PM |
| 12:56 PM | Bill Fudale, 6th and W. Charles St., Superior | 9News Timeline | |||
| (105.1687 W, 39.9603 N) | 12:45 PM | Home Depot in Louisville (northeast side of Hwy 36) | OAAR | (105.1716 W, 39.9609 N) | 12:45 PM |
| (105.1940 W, 39.9865 N) | 12:46 PM | S. Boulder and 68th | OAAR | (105.1933 W, 39.9850 N) | 12:45 PM |
| (105.1664 W, 39.9728 N) | 1:33 PM | Hillside neighborhood, Louisville | 9News Timeline | (105.1716 W, 39.9736 N) | 1:30 PM |
| (105.1495 W, 39.9546 N) | 4:07 PM | Troon Ct., Louisville | 9News Timeline | (105.1528 W, 39.9541 N) | 4:00 PM |
| (105.1644 W, 39.9309 N) | 4:32 PM | McCaslin Blvd. and Coalton Rd. | 9News Timeline | (105.1675 W, 39.9311 N) | 4:30 PM |
| (105.1644 W, 39.9779 N) | 4:36 PM | South of Harper Lake | 9News Timeline | (105.1669 W, 39.9781 N) | 4:30 PM |
| (105.1580 W, 39.9714 N) | 7:12 PM | Vista Ln. Louisville | 9News Timeline | (105.1579 W, 39.9721 N) | 7:15 PM |
| fire perimeter | 20:00 PM | Weather conditions notably changed | OAAR | fire perimeter | 20:00 PM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frediani, M.; Shamsaei, K.; Juliano, T.W.; Ebrahimian, H.; Kosović, B.; Knievel, J.C.; Tessendorf, S.A. Modeling Firebrand Spotting in WRF-Fire for Coupled Fire–Weather Prediction. Fire 2025, 8, 374. https://doi.org/10.3390/fire8100374
Frediani M, Shamsaei K, Juliano TW, Ebrahimian H, Kosović B, Knievel JC, Tessendorf SA. Modeling Firebrand Spotting in WRF-Fire for Coupled Fire–Weather Prediction. Fire. 2025; 8(10):374. https://doi.org/10.3390/fire8100374
Chicago/Turabian StyleFrediani, Maria, Kasra Shamsaei, Timothy W. Juliano, Hamed Ebrahimian, Branko Kosović, Jason C. Knievel, and Sarah A. Tessendorf. 2025. "Modeling Firebrand Spotting in WRF-Fire for Coupled Fire–Weather Prediction" Fire 8, no. 10: 374. https://doi.org/10.3390/fire8100374
APA StyleFrediani, M., Shamsaei, K., Juliano, T. W., Ebrahimian, H., Kosović, B., Knievel, J. C., & Tessendorf, S. A. (2025). Modeling Firebrand Spotting in WRF-Fire for Coupled Fire–Weather Prediction. Fire, 8(10), 374. https://doi.org/10.3390/fire8100374

