Fire Carbon Cycle Research Is on the Rise: A Bibliometric Analysis from 1989–2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results and Discussion
3.1. Temporal Evolution of Publication and Citation
3.2. Basic Characteristics of Publications
3.2.1. Marked Journals
3.2.2. Marked Country
3.2.3. Marked Institutions
3.2.4. Top Cited Publications
3.3. Most Popular Keywords
3.4. Thematic Evolution
4. Conclusions and Limitations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bowman, D.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; van der Werf, G.R.; et al. Global and Regional Trends and Drivers of Fire Under Climate Change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- Bowman, D.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Flannigan, M.; Stocks, B.; Turetsky, M.; Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Change Biol. 2009, 15, 549–560. [Google Scholar] [CrossRef]
- Yao, Q.; Jiang, D.; Zheng, B.; Wang, X.; Zhu, X.; Fang, K.; Shi, L.; Wang, Z.; Wang, Y.; Zhong, L.; et al. Anthropogenic warming is a key climate indicator of rising urban fire activity in China. Natl. Sci. Rev. 2024, 11, nwae163. [Google Scholar] [CrossRef] [PubMed]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Soja, A.J.; Tchebakova, N.M.; French, N.H.F.; Flannigan, M.D.; Shugart, H.H.; Stocks, B.J.; Sukhinin, A.I.; Parfenova, E.I.; Chapin, F.S.; Stackhouse, P.W. Climate-induced boreal forest change: Predictions versus current observations. Glob. Planet. Chang. 2007, 56, 274–296. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef]
- Kolden, C.A.; Abatzoglou, J.T.; Jones, M.W.; Jain, P. Wildfires in 2023. Nat. Rev. Earth Environ. 2024, 5, 238–240. [Google Scholar] [CrossRef]
- Williams, A.P.; Abatzoglou, J.T.; Gershunov, A.; Guzman-Morales, J.; Bishop, D.A.; Balch, J.K.; Lettenmaier, D.P. Observed Impacts of Anthropogenic Climate Change on Wildfire in California. Earth’s Future 2019, 7, 892–910. [Google Scholar] [CrossRef]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef]
- Bond, W.J.; Keeley, J.E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evolution. 2005, 20, 387–394. [Google Scholar] [CrossRef]
- Lasslop, G.; Hantson, S.; Harrison, S.P.; Bachelet, D.; Burton, C.; Forkel, M.; Forrest, M.; Li, F.; Melton, J.R.; Yue, C.; et al. Global ecosystems and fire: Multi-model assessment of fire-induced tree-cover and carbon storage reduction. Glob. Change Biol. 2020, 26, 5027–5041. [Google Scholar] [CrossRef]
- Lv, A.; Tian, H.; Liu, M.; Liu, J.; Melillo, J.M. Spatial and temporal patterns of carbon emissions from forest fires in China from 1950 to 2000. J. Geophys. Res. Atmos. 2006, 111, D05313. [Google Scholar]
- Zhang, Y.; Qin, D.; Yuan, W.; Jia, B. Historical trends of forest fires and carbon emissions in China from 1988 to 2012. J. Geophys. Res. Biogeosci. 2016, 121, 2506–2517. [Google Scholar] [CrossRef]
- Houghton, R.A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B Chem. Phys. Meteorol. 2003, 55, 378–390. [Google Scholar]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Yin, Y.; Bloom, A.A.; Worden, J.; Saatchi, S.; Yang, Y.; Williams, M.; Liu, J.; Jiang, Z.; Worden, H.; Bowman, K.; et al. Fire decline in dry tropical ecosystems enhances decadal land carbon sink. Nat. Commun. 2020, 11, 1900. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Ciais, P.; Zhu, D.; Wang, T.; Peng, S.S.; Piao, S.L. How have past fire disturbances contributed to the current carbon balance of boreal ecosystems? Biogeosciences 2016, 13, 675–690. [Google Scholar] [CrossRef]
- Zheng, B.; Ciais, P.; Chevallier, F.; Chuvieco, E.; Yang, C.; Hui, Y. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 2021, 7, eabh2646. [Google Scholar] [CrossRef]
- McKinley, D.C.; Ryan, M.G.; Birdsey, R.A.; Giardina, C.P.; Harmon, M.E.; Heath, L.S.; Houghton, R.A.; Jackson, R.B.; Morrison, J.F.; Murray, B.C.; et al. A synthesis of current knowledge on forests and carbon storage in the United States. Ecol. Appl. 2011, 21, 1902–1924. [Google Scholar] [CrossRef] [PubMed]
- Randerson, J.T.; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 2012, 117, G04012. [Google Scholar] [CrossRef]
- Chinese Academy of Sciences. Blue Book on Forest Fire Carbon Emissions (2023); Chinese Academy of Sciences: Beijing, China, 2023. [Google Scholar]
- Pausas, J.G.; Keeley, J.E. A Burning Story: The Role of Fire in the History of Life. BioScience 2009, 59, 593–601. [Google Scholar] [CrossRef]
- Pellegrini, A.F.A.; Ahlstrom, A.; Hobbie, S.E.; Reich, P.B.; Nieradzik, L.P.; Staver, A.C.; Scharenbroch, B.C.; Jumpponen, A.; Anderegg, W.R.L.; Randerson, J.T.; et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 2018, 553, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Jobbágy, E.G.; Jackson, R.B. The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Santin, C.; Doerr, S.H.; Otero, X.L.; Chafer, C.J. Quantity, composition and water contamination potential of ash produced under different wildfire severities. Environ. Res. 2015, 142, 297–308. [Google Scholar] [CrossRef]
- Weintraub, M.N.; Schimel, J.P. Interactions between Carbon and Nitrogen Mineralization and Soil Organic Matter Chemistry in Arctic Tundra Soils. Ecosystems 2003, 6, 129–143. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y. Research trends and areas of focus on the Chinese Loess Plateau: A bibliometric analysis during 1991–2018. Catena 2020, 194, 104798. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z.; Yu, G.; Zhang, T.; Yang, M. A bibliometric analysis of carbon exchange in global drylands. J. Arid Land 2021, 13, 1089–1102. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhao, M.; Lu, Z.; Zhang, H. Seed Traits Research Is on the Rise: A Bibliometric Analysis from 1991–2020. Plants 2022, 11, 2006. [Google Scholar] [CrossRef]
- Zheng, C.; Bochmann, H.; Liu, Z.; Kant, J.; Schrey, S.D.; Wojciechowski, T.; Postma, J.A. Plant root plasticity during drought and recovery: What do we know and where to go? Front. Plant Sci. 2023, 14, 1084355. [Google Scholar] [CrossRef]
- Zuo, F.; Yao, Q.; Shi, L.; Wang, Z.; Bai, M.; Fang, K.; Guo, F.; Yuan, L.; Zhang, W. Research on Wildfire and Soil Water: A Bibliometric Analysis from 1990 to 2023. Fire 2024, 7, 434. [Google Scholar] [CrossRef]
- Lasslop, G.; Coppola, A.I.; Voulgarakis, A.; Yue, C.; Veraverbeke, S. Influence of Fire on the Carbon Cycle and Climate. Curr. Clim. Chang. Rep. 2019, 5, 112–123. [Google Scholar] [CrossRef]
- Wu, C.; Sitch, S.; Huntingford, C.; Mercado, L.M.; Venevsky, S.; Lasslop, G.; Archibald, S.; Staver, A.C. Reduced global fire activity due to human demography slows global warming by enhanced land carbon uptake. Proc. Natl. Acad. Sci. USA 2022, 119, e2101186119. [Google Scholar] [CrossRef] [PubMed]
- Landry, J.S.; Partanen, A.I.; Matthews, H.D. Carbon cycle and climate effects of forcing from fire-emitted aerosols. Environ. Res. Lett. 2017, 12, 11. [Google Scholar] [CrossRef]
- Byrne, B.; Liu, J.; Lee, M.; Yin, Y.; Bowman, K.W.; Miyazaki, K.; Norton, A.J.; Joiner, J.; Pollard, D.F.; Griffith, D.W.T.; et al. The Carbon Cycle of Southeast Australia During 2019–2020: Drought, Fires, and Subsequent Recovery. AGU Adv. 2021, 2, e2021AV000469. [Google Scholar] [CrossRef]
- Murphy, B.P.; Prior, L.D.; Cochrane, M.A.; Williamson, G.J.; Bowman, D. Biomass consumption by surface fires across Earth’s most fire prone continent. Glob. Change Biol. 2019, 25, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Hayes, D.J.; Fernandez, I. Fire reduces riverine DOC concentration draining a watershed and alters post-fire DOC recovery patterns. Environ. Res. Lett. 2021, 16, 024022. [Google Scholar] [CrossRef]
- Fellows, A.W.; Flerchinger, G.N.; Lohse, K.A.; Seyfried, M.S. Rapid Recovery of Gross Production and Respiration in a Mesic Mountain Big Sagebrush Ecosystem Following Prescribed Fire. Ecosystems 2018, 21, 1283–1294. [Google Scholar] [CrossRef]
- Feng, L.; Zhou, W. The Forest Fire Dynamic Change Influencing Factors and the Impacts on Gross Primary Productivity in China. Remote Sens. 2023, 15, 1364. [Google Scholar] [CrossRef]
- Worrall, F.; Clay, G.D.; May, R. Controls upon biomass losses and char production from prescribed burning on UK moorland. J. Environ. Manag. 2013, 120, 27–36. [Google Scholar] [CrossRef]
- Gorham, E. Northern Peatlands—Role in the Carbon-cycle and Probable Responses to Climatic Warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Krinner, G.; Viovy, N.; de Noblet-Ducoudré, N.; Ogée, J.; Polcher, J.; Friedlingstein, P.; Ciais, P.; Sitch, S.; Prentice, I.C. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 2005, 19, 44. [Google Scholar] [CrossRef]
- Lewis, S.; Maslin, M. Defining the Anthropocene. Nature 2015, 519, 171–180. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Howarth, R.W. Nitrogen limitation on land and the sea- how can it occur. Biogeochemistry 1991, 13, 87–115. [Google Scholar] [CrossRef]
- Zhao, J.; Yue, C.; Wang, J.; Hantson, S.; Wang, X.; He, B.; Li, G.; Wang, L.; Zhao, H.; Luyssaert, S. Forest fire size amplifies postfire land surface warming. Nature 2024, 633, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Castellanos-Acuna, D.; Coogan, S.C.P.; Abatzoglou, J.T.; Flannigan, M.D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Chang. 2021, 12, 63–70. [Google Scholar] [CrossRef]
- Huesca, M.; Litago, J.; Palacios-Orueta, A.; Montes, F.; Sebastián-López, A.; Escribano, P. Assessment of forest fire seasonality using MODIS fire potential: A time series approach. Agric. For. Meteorol. 2009, 149, 1946–1955. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, F.; Wang, Y.; Huang, X.; Ye, J. Seasonal differences in the spatial patterns of wildfire drivers and susceptibility in the southwest mountains of China. Sci. Total Environ. 2023, 869, 161782. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, M.; Liu, K. Dynamic prediction of global monthly burned area with hybrid deep neural networks. Ecol. Appl. 2022, 32, e2610. [Google Scholar] [CrossRef] [PubMed]
- Landry, J.-S.; Matthews, H.D.; Ramankutty, N. A global assessment of the carbon cycle and temperature responses to major changes in future fire regime. Clim. Chang. 2015, 133, 179–192. [Google Scholar] [CrossRef]
- Poulter, B.; AragÃO, L.; Heyder, U.; Gumpenberger, M.; Heinke, J.; Langerwisch, F.; Rammig, A.; Thonicke, K.; Cramer, W. Net biome production of the Amazon Basin in the 21st century. Glob. Change Biol. 2010, 16, 2062–2075. [Google Scholar] [CrossRef]
- Harrison, S.P.; Bartlein, P.J.; Brovkin, V.; Houweling, S.; Kloster, S.; Prentice, I.C. The biomass burning contribution to climate–carbon-cycle feedback. Earth Syst. Dyn. 2018, 9, 663–677. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1361. [Google Scholar] [CrossRef]
- Jones, M.W.; Kelley, D.I.; Burton, C.A.; Di Giuseppe, F.; Barbosa, M.L.F.; Brambleby, E.; Hartley, A.J.; Lombardi, A.; Mataveli, G.; McNorton, J.R.; et al. State of Wildfires 2023–2024. Earth Syst. Sci. Data 2024, 16, 3601–3685. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global Emergence of Anthropogenic Climate Change in Fire Weather Indices. Geophys. Res. Lett. 2019, 46, 326–336. [Google Scholar] [CrossRef]
- Cunningham, C.X.; Williamson, G.J.; Bowman, D. Increasing frequency and intensity of the most extreme wildfires on Earth. Nat. Ecol. Evol. 2024, 8, 1420–1425. [Google Scholar] [CrossRef] [PubMed]
- Cahoon, D.R., Jr.; Stocks, B.J.; Levine, J.S.; Cofer, W.R., III; Pierson, J.M. Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia. J. Geophys. Res. Atmos. 1994, 99, 18627–18638. [Google Scholar] [CrossRef]
- Kurz, W.A.; Apps, M.J. A 70-Year Retrospective Analysis of Carbon Fluxes in the Canadian Forest Sector. Ecol. Appl. 1999, 9, 526–547. [Google Scholar] [CrossRef]
- Kurz, W.A.; Apps, M.J. An Analysis of Future Carbon Budgets of Canadian Boreal Forests. Water Air Soil Pollut. 1995, 82, 321–331. [Google Scholar] [CrossRef]
- Seiler, W.; Crutzen, P.J. Estimates of Gross and Net Fluxes of Carbon Between the Biosphere and the Atmosphere from Biomass Burning. Clim. Chang. 1980, 2, 207–247. [Google Scholar] [CrossRef]
- Mack, M.C.; Bret-Harte, M.S.; Hollingsworth, T.N.; Jandt, R.R.; Schuur, E.A.; Shaver, G.R.; Verbyla, D.L. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 2011, 475, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Du, P.; Zhang, M.; Liu, M.; Xu, T.; Song, Y. Estimation of emissions from biomass burning in China (2003–2017) based on MODIS fire radiative energy data. Biogeosciences 2019, 16, 1629–1640. [Google Scholar] [CrossRef]
- Zheng, B.; Ciais, P.; Chevallier, F.; Yang, H.; Canadell, J.G.; Chen, Y.; Velde, I.R.v.d.; Aben, I.; Chuvieco, E.; Davis, S.J.; et al. Record-high CO2 emissions from boreal fires in 2021. Science 2023, 379, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Byrne, B.; Liu, J.; Bowman, K.W.; Pascolini-Campbell, M.; Chatterjee, A.; Pandey, S.; Miyazaki, K.; van der Werf, G.R.; Wunch, D.; Wennberg, P.O.; et al. Carbon emissions from the 2023 Canadian wildfires. Nature 2024, 633, 835–839. [Google Scholar] [CrossRef]
- Jones, M.W.; Veraverbeke, S.; Andela, N.; Doerr, S.H.; Kolden, C.; Mataveli, G.; Pettinari, M.L.; Le Quere, C.; Rosan, T.M.; van der Werf, G.R.; et al. Global rise in forest fire emissions linked to climate change in the extratropics. Science 2024, 386, eadl5889. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Xu, M.; Ciais, P.; Tao, S.; Shen, H.; Chang, J.; Li, W.; Deng, L.; He, J.; Leng, Y.; et al. Contributions of ecological restoration policies to China’s land carbon balance. Nat. Commun. 2024, 15, 9708. [Google Scholar] [CrossRef] [PubMed]
Description | Result |
---|---|
Timespan | 1989:2023 |
Sources (Journals, etc.) | 477 |
Documents | 2408 |
Annual Growth Rate % | 16.29 |
Document Average Age | 9.89 |
Average citations per doc | 69.81 |
Keywords Plus (ID) | 5491 |
Authors | 11,088 |
Authors of single-authored docs | 62 |
Co-authors per Doc | 7.56 |
International co-authorships % | 46.43 |
Journal | Publications |
---|---|
Global Change Biology | 127 |
Global Biogeochemical Cycles | 105 |
Forest Ecologyand Management | 79 |
Atmospheric Chemistryand Physics | 76 |
Environmental Research Letters | 67 |
Journalof Geophysical Research-Atmospheres | 67 |
Scienceofthe Total Environment | 67 |
Biogeosciences | 66 |
Journalof Geophysical Research-Biogeosciences | 58 |
Remote Sensingof Environment | 46 |
Country | Institution | Publications |
---|---|---|
USA | University of Maryland | 161 |
USA | Colorado State University | 151 |
USA | University of Colorado | 142 |
UK | University of Exeter | 140 |
USA | US Forest Service | 132 |
USA | Northern Arizona University | 124 |
USA | Oregon State University | 118 |
USA | University of California, Irvine | 116 |
USA | Goddard Space Flight Center | 111 |
USA | University of Alaska Fairbanks | 110 |
Title | Year | Journal | Citations |
---|---|---|---|
Emission of trace gases and aerosols from biomass burning | 2001 | Global Biogeochemical Cycles | 2786 |
Northern peatlands—role in the carbon-cycle and probable responses to climatic warming | 1991 | Ecological Applications | 2785 |
Nitrogen limitation on land and in the sea—how can it occur | 1991 | Biogeochemistry | 2674 |
Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model | 2003 | Global Change Biology | 2334 |
Fire in the earth system | 2009 | Science | 2190 |
Defining the Anthropocene | 2015 | Nature | 1819 |
A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system | 2005 | Global Biogeochemical Cycles | 1553 |
Trends in the sources and sinks of carbon dioxide | 2009 | Nature Geoscience | 1399 |
Climate extremes and the carbon cycle | 2013 | Nature | 1355 |
Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle | 2014 | Nature | 1042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Yang, S.; Yao, Q.; Zhang, W.; Liu, Z.; Pei, Y.; Zuo, F. Fire Carbon Cycle Research Is on the Rise: A Bibliometric Analysis from 1989–2023. Fire 2025, 8, 4. https://doi.org/10.3390/fire8010004
Wang D, Yang S, Yao Q, Zhang W, Liu Z, Pei Y, Zuo F. Fire Carbon Cycle Research Is on the Rise: A Bibliometric Analysis from 1989–2023. Fire. 2025; 8(1):4. https://doi.org/10.3390/fire8010004
Chicago/Turabian StyleWang, Di, Siquan Yang, Qichao Yao, Weikang Zhang, Zhaogang Liu, Yanyan Pei, and Fenglin Zuo. 2025. "Fire Carbon Cycle Research Is on the Rise: A Bibliometric Analysis from 1989–2023" Fire 8, no. 1: 4. https://doi.org/10.3390/fire8010004
APA StyleWang, D., Yang, S., Yao, Q., Zhang, W., Liu, Z., Pei, Y., & Zuo, F. (2025). Fire Carbon Cycle Research Is on the Rise: A Bibliometric Analysis from 1989–2023. Fire, 8(1), 4. https://doi.org/10.3390/fire8010004